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Abstract
Aims  Gastric cancer is one of the leading causes 
for cancer mortality. Recent studies have defined the 
landscape of genomic alterations of gastric cancer and 
their association with clinical outcomes. However, the 
pathogenesis of gastric cancer has not been completely 
characterised.
Methods  Driver genes were detected by five 
computational tools, MutSigCV, OncodriveCLUST, 
OncodriveFM, dendrix and edriver, using mutation data 
of stomach adenocarcinoma (STAD) from the cancer 
genome altas database, followed by an integrative 
investigation.
Results  TTN, TP53, LRP1B, CSMD3, OBSCN, ARID1A, 
FAT4, FLG, PCLO and CSMD1 were the 10 most 
frequently mutated genes. PIK3CD, NLRC3, FMNL1, 
TRAF3IP3 and CR1 were the top five hub genes of 
the blue coexpression module positively correlated 
with pathological tumour stage and lymph node stage 
(p values <0.05 for all cases). Hierarchical clustering 
analysis of copy number variations of driver genes 
revealed three subgroups of STAD patients, and cluster 2 
tumours were significantly associated with lower lymph 
node stage, less number of positive lymph nodes and 
higher microsatellite instability and better overall survival 
than cluster 1 and cluster 3 tumours (p values <0.05 for 
all cases, Wilcoxon rank-sum test or log rank test). High 
expression in one or more of DNER, LHCGR, NLRP14, 
OR4N2, PSG6, TTC29 and ZNF568 genes was associated 
with increased mortality (p values <0.05 for all cases, log 
rank test).
Conclusions  The driver genes shed insights into the 
tumourigenesis of gastric cancer and the genes DNER, 
LHCGR, NLRP14, OR4N2, PSG6, TTC29 and ZNF568 
pave the way for developing prognostic biomarkers for 
the disease.

Introduction
Gastric cancer (GC) ranks the fifth in cancer inci-
dence rate and the third in the cause of cancer-
associated mortalities throughout the world.1 
Annually, the number of new GC cases reaches 1 
million, and the number of deaths caused by the 
disease is 782 685.1 GC could be divided into three 
subtypes, including adenocarcinoma, undifferen-
tiated carcinoma and signet ring-cell carcinoma.2 
Up to now, surgery is the only curative method for 
patients with GC at early stages. However, a large 
fraction of patients with GC are diagnosed at late 
stages.2 Therefore, identifying effective biomarkers 

is essential for the early diagnosis and prognosis of 
patients with GC.

In recent years, numerous next generation 
sequencing studies have characterised the genomics 
basis and found many actionable genetic drivers 
in GC. CDH1, RhoA and ARID1A mutations are 
a common set of genetic variations related to the 
diffuse subtype of GCs from various regions.3–6 
TP53, TGFβR2, ARID1A, CDH1, SYNE1 and 
TMPRSS2 were recurrently mutated genes in 49 
late stage GC tumours.4 The Cancer Genome Altas 
(TCGA) project classified GC tumours into four 
distinct subtypes, namely Epstein-Barr virus posi-
tive, genomic stability, chromosomal unstable and 
microsatellite unstable subtypes. ERBB2, CCNE1, 
CCND1 and EGFR amplifications that are mutually 
exclusive might function as driver alterations in GC 
tumours.7

Though the genomics landscape of GC has been 
largely illustrated, the molecular mechanism by 
which GC initiates and progresses is not completely 
understood. Therefore, in this study, we applied 
five distinct computational tools to detect driver 
genes and conducted integrated analyses on them 
in 387 stomach adenocarcinoma (STAD) samples.8 
The results revealed a set of new driver genes, three 
subgroups of STAD patients and their association 
with clinical phenotypes of STAD patients, shed-
ding insights into the pathogenesis of the disease 
and providing potential prognostic biomarkers and 
druggable targets in STAD.

Methods and materials
Acquisition of somatic mutations of STAD 
patients
A total of 208 012 somatic mutations of 387 STAD 
samples were obtained from the TCGA database 
(http://​gdac.​broadinstitute.​org/).8 Mutations were 
classified into nine categories based on their func-
tional impact assessed by Ensembl Variant Effect 
Predictor9, including missense mutation, nonsense 
mutation, frame shift indels, in-frame indels, intron, 
non-stop mutation, silent, untranslated region 
(UTR), RNA and splicing site mutation. RNA 
represents somatic mutations in the untranslated 
region and could be functional possibly through 
impacting RNA expression level.

Prediction of driver genes in STAD
The prediction of driver genes were conducted 
by five distinct computational methods, including 
MutSigCV,10 OncodriveCLUST,11 OncodriveFM,12 

http://www.pathologists.org.uk/
http://jcp.bmj.com/
http://orcid.org/0000-0002-0915-2372
http://crossmark.crossref.org/dialog/?doi=10.1136/jclinpath-2019-206400&domain=pdf&date_stamp=2020-08-13
http://gdac.broadinstitute.org/


580 Wang H, et al. J Clin Pathol 2020;73:579–586. doi:10.1136/jclinpath-2019-206400

Original research

dendrix13 and edriver.14 The parameters of all software were used 
with default values. Driver genes were determined according to 
the following criteria. The genes with q value <0.05 are statis-
tically mutated (MutSigCV). Genes with q values smaller than 
0.05 were considered as drivers (OncodriveFM and Oncodrive-
CLUST). The genes were reported in at least 10% of modules in 
any K (dendrix). The genes with p values<0.05 were statistically 
mutated in protein domain regions (edriver).

Gene Ontology (GO) term and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses in STAD
GO system classifies genes into a set of predefined terms according 
to their functional characteristics; GO term enrichment analysis 
is commonly used to analyse the functional involvement for set 
of genes. KEGG pathway is a manual curation of signalling path-
ways, which is the up-to-date understanding on the molecular 
interaction and relation networks. Enrichment of GO biolog-
ical process terms and KEGG signalling pathway was performed 
on the homepage of the Database for Annotation, Visualization 
and Integrated Discovery (https://​david.​ncifcrf.​gov/) in order to 
functionally annotate the set of driver genes.15 Driver genes were 
regarded to be enriched in GO terms or KEGG pathways with 
significant evidence following the cut-off of Benjamini adjusted 
p value of less than 0.05.

Weighted gene coexpression network analysis (WGCNA) in 
STAD
Normalised read counts of driver genes of 415 STAD patients 
were downloaded from TCGA database. Coexpression 
network was constructed with the R package of WGCNA using 
normalised read counts of driver genes.16 The softpower and 
minimum number of genes of a module were set to 7 and 10, 
respectively; the remaining parameters were used by default. 
Coexpression modules were identified via hierarchical average 
linkage clustering and dynamic tree cut algorithm. Genes that 
showed high intramodular connectivity were defined as hub 
genes in the coexpression network. The clinical factors anal-
ysed in the WGCNA analysis included patients’ age, gender, 
pathological stage, number of positive lymph nodes, radiation 
therapy, targeted molecular therapy, microsatellite instability 
and survival status. Module–trait associations were assessed 
by correlating the module eigengene with clinical traits, which 
enables the identification of modules highly correlated with 
phenotypes.

Protein–protein interaction (PPI) network analysis in STAD
PPI network was constructed with Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) to prioritise the core 
driver genes.17 PPI network was imported to Cytoscape for 
calculation of degree value for each node.18 Hub nodes with the 
highest degree centrality connect most adjacent proteins in the 
PPI network. Molecular Complex Detection (MCODE)19 was 
applied to detect hub clustering modules with default parameters 
in Cytoscape.

Copy number variation (CNV) analyses in STAD
Focal CNV values of driver genes of 441 STAD samples were 
obtained from the TCGA database.20 To detect the subgroups 
of STAD patients, the CNV values of driver genes were grouped 
using the R package of pheatmap. Difference in patients’ age, 
pathological stage, number of positive lymph nodes and micro-
satellite instability was compared among the three subgroups of 
STAD patients using the Wilcoxon rank-sum test. To analyse the 

difference in overall survival, Kaplan-Meier (KM) survival anal-
ysis was conducted using the R package of survival,21 and differ-
ence in overall survival rates was compared among the three 
subgroups of STAD patients using the log-rank test. P<0.05 was 
considered as statistically significant.

Survival analyses in STAD
To characterise the association between driver gene expression 
and patients’ overall survival, STAD patients were divided into 
the ‘high-expression’ and ‘low-expression’ groups based on the 
median values. The difference in survival rates was compared 
between the high-expression and low-expression groups using 
the R package of survival.22 In order to further confirm the asso-
ciation of driver genes with patients’ clinical outcome, multivar-
iate analysis was carried out between patients’ overall survival 
and driver gene expression levels and clinicopathological factors 
using logistic regression model. The clinical features included 
age, gender, pathological stage, number of positive lymph nodes, 
radiation therapy, targeted molecular therapy and microsatellite 
instability. Odd ratio (OR) and p value were extracted from the 
logistic regression model. P<0.05 was considered statistically 
significant.

Validation of randomised selection of STAD patients
The cohorts of STAD patients were, to a certain degree, different 
for somatic mutation, coexpression network, CNV and survival 
analyses. To evaluate whether selection of STAD patients might 
affect the findings, clinical factors were compared among the 
four subsets of STAD patients. The Student’s t-test was used to 
compare age, number of positive lymph nodes and microsatel-
lite instability; Fisher’s exact test was used to compare gender, 
cancer stage, radiotherapy, targeted molecular therapy and 
survival status among the four subsets of STAD patients. P<0.05 
was predefined to be statistically significant.

Results
Somatic mutations and driver genes in STAD
A total of 208 012 somatic mutations were detected in 387 
STAD samples. Of them, missense (109 607), silent mutations 
(42 123) and frame shift deletions (20 714) were the most 
frequent variant types (figure  1A). C>T/G>A, insertions and 
deletions and A>G/T>C were the top three transitions, with 
transition rates of 47.7%, 16.6% and 14.5%, respectively in 
STAD (figure 1B). The somatic mutation density ranged from 
0.19 to 241.59 mutations/Mb with an average mutation density 
of 26.03 mutations/Mb. To understand the cause for the muta-
tion density variation, mutation statuses in the DNA mismatch-
repair (MMR) pathway genes MLH1, MLH3, MSH2, MSH3, 
MSH6 and PMS2 were analysed. We found 64 STAD patients 
had mutations in any of MMR genes, and the average mutation 
density in MMR-mutant patients was significantly higher than 
MMR wide-type patients (54.38 vs 6.87 mutations/Mb, p<0.01, 
Wilcoxon rank-sum test, figure 1C). The STAD sample that had 
the highest mutation density (241.59 mutations/Mb) had one 
mutation in MSH6.

Overall, 18 528 genes were mutated in at least one STAD 
sample. Eighteen, 32, 13, 114 and 235 driver genes were 
predicted by mutsigCV, OncodriveFM, OncodriveCLUST, 
dendrix and edriver, respectively. Combining the five sets of 
driver genes, 376 driver genes were detected by the five tools. 
PIK3CA is the overlapping gene predicted by all five tools 
(figure 1D). Among the 376 driver genes, TTN, TP53, LRP1B, 
CSMD3, OBSCN, ARID1A, FAT4, FLG, PCLO and CSMD1 
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Figure 1  Characterisation of somatic mutations and driver genes in STAD patients. (A) Number of mutation classes with different functional impacts 
in STAD; (B) somatic mutation signatures in STAD; (C) the difference of somatic mutation densities among MMR-mutant, MMR wild-type samples and 
STAD samples with mutations in any MMR genes. (D) The overlap of driver genes detected by MutSigCV, OncodriveFM, OncodriveCLUST, dendrix and 
edriver in STAD. MMR, mismatch-repair; STAD, stomach adenocarcinoma.

Figure 2  Mutation rates of the 20 most frequently mutated driver genes in 387 STAD samples. The left panel showed the mutation frequencies of 
the 20 most frequently mutated driver genes in 387 STAD samples; the right panel presented the distribution of somatic mutations with different 
functional impact in 387 STAD samples. STAD, stomach adenocarcinoma.

were the top 10 frequently mutated genes in STAD, with muta-
tion frequencies of 62%, 48.6%, 29.2%, 28.7%, 28.7%, 26.1%, 
25.8%, 25.8%, 24% and 23.3%, respectively, across all STAD 

samples (figure  2). The large fraction of driver genes were 
mutated genes at low frequency in STAD, with a mean mutation 
rate of 7.3%.
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Figure 3  The module–trait associations in the WGCNA analysis. Heatmap showed the correlation between module eigengenes and clinical traits. 
Each cell contained the corresponding correlation and p value. The right bar showed the degree of correlation between module eigengenes and 
clinical traits.

GO term and KEGG pathway enrichment analyses
GO enrichment analysis showed that driver genes were signifi-
cantly over-represented in 10 biological processes (Benjamini 
adjusted p value <0.05), including extracellular matrix organ-
isation, collagen catabolic process, regulation of heart rate by 
cardiac conduction, actin filament capping, axon guidance, 
membrane depolarisation during action potential, regulation of 
heart rate by cardiac conduction and membrane depolarisation 
during action potential. The driver genes were also significantly 
enriched in 16 KEGG pathways, including endometrial cancer, 
Extracellular Matrix (ECM)–receptor interaction, Rap1 signal-
ling pathway, PI3K-Akt signalling pathway, colorectal cancer, 
pathways in cancer, pancreatic cancer, proteoglycans in cancer 
and chronic myeloid leukaemia (Benjamini adjusted p value 
<0.05).

WGCNA analysis in STAD
WGCNA analysis found three different coexpression modules, 
namely the turquoise (94 genes), brown (83 genes) and blue 
(26 genes) modules in 415 STAD patients (online supplemen-
tary figure 1). The module–trait association analysis showed 
that the blue module exhibited significantly positive correla-
tion with pathological tumour stage and lymph node stage 
and significantly negative correlation with pathological stage. 
The turquoise module was significantly positively correlated 
with pathological tumour stage and negatively correlated 
with patients’ age (p values <0.05 for all cases, figure  3). 
ANK2, TLN1, LAMA4, CACNA1C and PKD1 were the top 

five hub genes in the turquoise module. PIK3CD, NLRC3, 
FMNL1, TRAF3IP3 and CR1 were the top five hub genes in 
the blue module.

PPI network analysis in STAD
We also applied STRING to develop the PPI network for driver 
genes. The PPI network comprised 1138 edges and 376 nodes, 
with a median node degree of 4 (online supplementary figure 
2A). As expected, the PPI network exhibited significantly more 
interactions than the randomly imputed interactions using 
similar size of proteins (PPI enrichment p value <0.0001). Then 
the software cytoscape was used to analyse the degree centrality 
of driver genes in the PPI network. Five candidate hub nodes, 
the degree of which was greater than 9 times the corresponding 
median values, were identified, namely, FN1, TP53, CTNNB1, 
EGFR and KRAS (online supplementary figure 2A). Moreover, 
we conducted module analysis and found top three modules 
with high scores using MCODE (MCODE scores ≥8, online 
supplementary figure 2B–D). The five candidate hub nodes were 
included in the three modules.

CNV analyses in STAD
We also obtained focal CNVs of all driver genes of 441 STAD 
samples from the TCGA database. DCC, SMAD4, MYO5B, 
BRWD1, UMODL1, APP, SYT4, TMPRSS15, GRIK1 and HERC5 
were the 10 most frequently deleted driver genes in STAD, while 
KCNB1, ARFGEF2, TP53TG5, DPM1, ADCY8, BHLHE23, 
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Figure 4  Differences in lymph node stage (A), number of positive lymph nodes (B), microsatellite instability (C) and survival rates (D) were 
compared among the three clusters of STAD patients (1–3). STAD, stomach adenocarcinoma.

ZBTB46, EPPK1, LRP12 and PABPC1 were the 10 most commonly 
amplified driver genes in STAD (online supplementary figure 3). 
Of the 376 driver genes, 369 genes had CNVs data. Hierarchical 
clustering of the 369 driver genes revealed three subgroups of 
STAD patients: those with large CNVs (cluster 1), those with 
minimal CNVs (cluster 2) and those with intermediate CNVs 
(cluster 3) (online supplementary figure 4). Cluster 2 tumours 
showed significantly lower lymph node stage, less number of 
positive lymph nodes and higher microsatellite instability than 
cluster 1 and cluster 3 tumours (p values <0.05 for all cases, 
Wilcoxon rank-sum test, figure 4A,B,C). Moreover, patients in 
cluster 2 exhibited significantly more favourable survival rates 
than patients in the clusters 1 and 3 (p value=0.04 and 0.05, log 
rank test, figure 4D).

Survival analyses in STAD
KM analysis indicated that 26 and 44 driver genes exhibited posi-
tive and negative correlation with patients’ prognosis respectively 
in STAD patients (p<0.05 for all cases, log rank test). Multivar-
iate analysis was carried out between patients’ overall survival 
and clinicopathological factors and driver gene expression levels 
to further verify the association between the expression of driver 
genes and patients’ overall survival. Increased expression of 
DNER, LHCGR, NLRP14, OR4N2, PSG6, TTC29 and ZNF568 
was associated with increased mortality (p<0.05 for all cases, log 
rank test, online supplementary table 1 and figure 5A–G). Lastly, 
in order to develop a clinically useful strategy for GC prognosti-
cation, we pooled the seven prognostic genes (DNER, LHCGR, 
NLRP14, OR4N2, PSG6, TTC29 and ZNF568) identified above 

to devise a single prognostic expression panel. High expression 
of one or more of the seven genes was present in 341 patients 
and associated with a higher mortality rate in STAD patients 
(p<0.05, log rank test, figure 5H). These driver genes and the 
expression panel might be potential prognostic biomarkers for 
STAD patients in the future.

Validation of randomised selection of STAD patients
The datasets were different STAD patient cohorts for somatic 
mutation, coexpression network, CNVs and survival analyses. 
To assess the heterogeneity across the different datasets, clin-
ical information was compared among the four sets of STAD 
patients. No significant difference was observed in patients’ age, 
microsatellite instability and number of positive lymph nodes (p 
value >0.05 for all cases, t test, online supplementary table 2), 
gender, cancer stage, radiotherapy, targeted molecular therapy 
and overall survival (p value >0.05 for all cases, Fisher’s exact 
test, online supplementary table 2). The results suggest that the 
selection of different cohorts of STAD patients was at random 
and did not significantly impact the results in our study.

Discussion
The accumulation of driver mutations that confer a prolifera-
tion advantage to cancer cells plays a key role in the formation 
of cancer.23 Driver genes are enriched for driver mutations, and 
detection of these driver genes is critical to the molecular char-
acterisation of cancer genomes.24–28 Numerous computational 
tools have been developed to predict driver genes based on a 
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Figure 5  Survival analysis of driver genes in STAD. High DNER (A), LHCGR (B), NLRP14 (C), OR4N2 (D), PSG6 (E), TTC29 (F), ZNF568 (G) expression 
levels and prognostic expression panel (H) was associated with poor prognosis in STAD patients. Red and blue curves represented high and low 
expression groups, respectively. STAD, stomach adenocarcinoma.

variety of algorithms. The MutsigCV prioritises significantly 
recurrently mutated genes in a large cohort of cancer samples 
by comparing the actual mutation rate with the baseline muta-
tion rate. In the MutSigCV analysis, p value was calculated for 
the gene by convoluting the background distributions of all 
the mutation types and determining the probability of meeting 
or exceeding that score by background mutation alone.10 
OncodriveFM first uses three scoring systems, including SIFT,29 
PolyPhen230 and MutationAssessor,31 to measure the damaging 
impact of somatic mutations. A uniform score was produced by 
combining the three different functional scores using transFIC.32 
Then OncodriveFM12 prioritises the genes that accumulate 
variants with high functional impact and exhibit significantly 
higher functional scores than random permutations. Oncodrive-
CLUST builds the background model by evaluating coding-silent 

mutations and detects genes that show a significant bias towards 
mutation clustering within the protein sequence.11 The dendrix 
finds sets of genes whose mutations occurred in the majority of 
cancer samples, while display high exclusivity.13 E-Driver is an 
algorithm to investigate the somatic missense mutation distribu-
tion within the functional regions of protein and finds the genes 
that show a bias towards enrichment of missense mutations in 
comparison with other regions of the same protein.14 In this 
study, five computational tools were used to predict driver genes 
using complementary algorithms rather than somatic mutation 
frequencies; by combining the five tools, we were able to identify 
a more comprehensive list of driver genes than that predicted by 
MutSigCV alone.33–35

We applied five computational algorithms, MutSigCV, 
OncodriveCLUST, OncodriveFM, dendrix and edriver, to detect 
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driver genes using somatic mutations of 387 STAD samples. TP53, 
ARID1A and CDH1 were predicted as driver genes in STAD, 
which is in concordance with previously published studies.3–6 
Of the 376 driver genes, some are known oncogenes,36 such as 
CTNNB1, EGFR, PIK3CA and ROS1, while others are tumour 
suppressor gene,37 such as ATM, SMAD4, SMARCA4, CHEK2 
and RHOA. Notably, a large fraction of driver genes was mutated 
at low frequencies and first reported as driver genes in STAD, 
such as FSHR, ACTN4, ZBTB46 and RHOA. These new driver 
genes provide promising candidates for functional validation in 
future studies.

The blue and turquoise modules exhibited significant correla-
tion with pathological stage and patients’ age in the WGCNA 
analysis. ANK2, TLN1, LAMA4, CACNA1C and PKD1 were the 
top five hub genes in the turquoise module. PIK3CD, NLRC3, 
FMNL1, TRAF3IP3 and CR1 were the top five hub genes in the 
blue module. These results suggest that these genes were inten-
sively correlated with other genes at the mRNA expression level. 
FN1, TP53, CTNNB1, EGFR and KRAS were the hub nodes in 
the PPI network. Therefore, these driver genes may have key 
roles in the coexpression and PPI networks. Further analysis of 
the driver genes identified subsets of STAD patients who showed 
significantly different survival rates. STAD patients with minimal 
CNVs in driver genes (cluster 2) showed more favourable 
survival rates than patients with intermediate and substantial 
CNVs (clusters 1 and 3). By contrast, those STAD patients exhib-
iting high expression in one or more of the seven genes, DNER, 
LHCGR, NLRP14, OR4N2, PSG6, TTC29 and ZNF568, were 
associated with a poor prognosis. Identifying these subgroups 
of STAD patients might be of importance in clinical settings. 
Cytological or surgical STAD tumours exhibiting minimal CNVs 
in driver genes and low expression in any of the seven genes 
might be associated with a decreased mortality. Therefore, these 
patients are recommended to undergo less aggressive treatment 
and frequent follow-up.

Take home messages

►► A total of 376 driver genes was identified. TTN, TP53, LRP1B, 
CSMD3, OBSCN, ARID1A, FAT4, FLG, PCLO and CSMD1 were 
the 10 most frequently mutated genes.

►► PIK3CD, NLRC3, FMNL1, TRAF3IP3 and CR1 were the top 
five hub genes in the blue module positively correlated with 
pathological tumour stage and lymph node stage.

►► Hierarchical clustering analysis of copy number variations 
of driver genes revealed three subgroups of stomach 
adenocarcinoma patients, and cluster 2 tumours were 
significantly associated with lower lymph node stage, less 
number of positive lymph nodes and higher microsatellite 
instability and better overall survival than cluster 1 and 
cluster 3 tumours.

►► High expression in one or more of DNER, LHCGR, NLRP14, 
OR4N2, PSG6, TTC29 and ZNF568 genes was associated with 
increased mortality.
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