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Abstract: Cigarette smoking (CS) leads to significant bone loss, which is recognized as an independent
risk factor for osteoporosis. The number of smokers is continuously increasing due to the addictive
nature of smoking. Therefore it is of great value to effectively prevent CS-induced osteoporosis. How-
ever, there are currently no effective interventions to specifically counteract CS-induced osteoporosis,
owing to the fact that the specific mechanisms by which CS affects bone metabolism are still elusive.
This review summarizes the latest research findings of important pathways between CS exposure and
bone metabolism, with the aim of providing new targets and ideas for the prevention of CS-induced
osteoporosis, as well as providing theoretical directions for further research in the future.
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1. Introduction

Osteoporosis is a musculoskeletal disorder characterized by bone remodeling imbal-
ance, contributing to a high risk of fragility fractures [1]. Osteoporosis and osteoporosis-
related fractures are recognized as a worldwide public health challenge [2]. According to
the literature survey, there are over 200 million individuals with osteoporosis [3]. Patients
with osteoporosis being older than 50 are closely correlated with an increased risk of osteo-
porotic fractures, particularly in postmenopausal women [4,5]. Additionally, it should be
noted that treatment for osteoporosis and osteoporotic fractures is costly, with an estimated
annual cost of EUR 55 billion to the European Union [6].

Tobacco consumption represents one of the most common risk factors affecting the
progression of diseases across the world. As reported by the World Health Organization,
tobacco consumption is responsible for nearly 6.5 million deaths per year throughout the
world [7]. It estimates that there will be approximately 8 million deaths per year attributed
to tobacco consumption throughout the world by 2050 [7]. Additionally, cigarette smoking
(CS) is the most commonly accepted approach to consuming tobacco. Based on their smok-
ing status, smokers are divided into four categories: non-smokers (<100 cigarettes through-
out their life), light smokers (1–10 cigarettes per day), moderate smokers (11–19 cigarettes
per day) and heavy smokers (≥20 cigarettes per day) [8].

Cigarette smoking (CS) is recognized as an independent risk factor for the development
of osteoporosis. Clinical studies have illustrated that smokers have significantly lower bone
mineral density (BMD) than non-smokers (Table 1), and cumulative bone loss can increase
their lifetime risk of hip fracture by 50% [9,10]. It has been shown that long-term CS can
lead to an imbalance of bone turnover, further contributing to the reduction in bone mass
and bone length and increased risk of fractures [11–14]. Furthermore, chronic consumption
of cigarettes has been increasingly linked to impaired muscle function [15,16].
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Smoking cessation is the best strategy to attenuate the detrimental influence of CS
on bone metabolism [17]. However, this strategy may not be reliable in smokers owing to
withdrawal symptoms and the lack of smoking rituals during cessation [18]. There have
been several attempts to replace cigarettes, such as nicotine chewing gums, transdermal
patches and nasal sprays [19]. However, these alternatives have limited efficiency [18,19],
as the number of smokers worldwide continues to increase. According to the latest survey,
the fact that 1.1–1.3 billion people worldwide smoke, which can cause 8 million deaths per
year [20], indicating that smoking addiction is extremely high, and cigarette control is not
that effective.

Therefore, it is essential to find effective interventions for CS-induced osteoporosis.
However, the specific effects and molecular mechanisms of smoking on bone metabolism
and the development of osteoporosis are currently unclear [21]. In this review, we aim to
summarize the key findings of CS on bone metabolism and update potential directions for
the treatment of smoking-related osteoporosis.

Table 1. Clinical studies of cigarette smoking in relation to osteoporosis.

Reference Gender Smoking Status Population
(n)

Age
(Years Old) Site BMD Values

(g/cm2) p Value

Hollenbach
et al. [22]

Male
Non-smokers 417 60–99

Hip

0.935 ± 0.008
<0.05

Smokers 87 60–89 0.895 ± 0.016

Female
Non-Smokers 573 60–99 0.780 ± 0.005

<0.01
Smokers 181 60–89 0.741 ± 0.010

Marques et al.
[23]

55.9%
Female

Never-Smokers 1275 75.1 ± 4.7

Trabecular

0.1428 ± 0.00344

0.152Former-Smokers 1176 74.5 ± 4.7 0.1444 ± 0.00335

Current-Smokers 222 73.0 ± 4.6 0.01398 ± 0.00352

Egger et al.
[24]

Male

Never Smokers 42 63–67

Lumber

1.12

<0.05Ex-Smokers 140 63–69 1.07

Current Smokers 42 63–68 1.04

Female

Never Smokers 99 64–67 0.97

nsEx-Smokers 64 63–67 0.90

Current Smokers 23 63–68 0.89

Trevisan et al.
[25] Female

Never Smokers 812 66 ± 10

Lumber

0.77 ± 0.11

nsFormer-Smokers 156 65 ± 10 0.78 ± 0.13

Current Smokers 99 61 ± 10 0.76 ± 0.11

Bjarnason
et al. [26] Female

Non-Smokers 192 53.5 ± 1.9
Hip

0.86 ± 0.09
ns

Smokers 78 53.1 ± 1.6 0.85 ± 0.1

2. The Role of CS on Bone Metabolism: Pathophysiological Mechanisms

Due to the complex composition of cigarettes and the lack of standardized in vitro and
in vivo experimental set-ups (Table 2), the pathophysiological mechanisms of CS on bone
metabolism are still elusive. It is attributed to the absence of amounts of reliable and valid
research to clearly define these mechanisms, and some observations have been somewhat
debated [27]. Recent studies have presented mechanisms of the influences of CS on bone
metabolism, including indirect and direct mechanisms [11,12,27,28].
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Table 2. Animal models of cigarette smoking-induced osteoporosis.

Animal Smoking Mode Intervention Dose Intervention
Duration Result Reference

Rat Cigarette smoke
inhalation

1 h each time
twice a day

6 days per week
for 16 weeks

Bone loss and
decreased BMD Zhuang et al. [29]

Rat Cigarette smoke
inhalation 2 h each day 9 weeks Delayed fracture healing Chang et al. [30]

Rat Cigarette smoke
inhalation

30 min each time
twice a day

5 days per week
for 6 months

Bone loss and
decreased BMD Levi et al. [31]

Mice Cigarette Smoke
inhalation

50 min each time
twice a day

5 days per week
for 24 weeks

Bone loss and
decreased BMD Xiong et al. [32]

Mice Gavaged orally BaP (120 mg/kg) 6 days Bone loss and
decreased BMD Iqbal et al. [33]

2.1. Indirect Mechanisms
2.1.1. Body Weight

It has been shown that body weight is negatively associated with long-term CS [34–36].
This is probably because nicotine, a major addictive substance in cigarettes, inhibits food
ingestion by stimulating the secretion of both dopamine and serotonin [37]. Additionally,
CS has been shown to enhance lipid oxidation, contributing to the reduction in body
weight [38]. In 2007, Wong et al. provided the underlying mechanisms explaining why
long-term CS resulted in a reduction in body weight: (i) weight loss results in a reduction
in the mechanical loading on bone, contributing to a decreased stimulus for osteogenic
differentiation; (ii) CS cause a reduction in adipose tissue by inhibiting the conversation of
androgen to estrogen; and (iii) CS cause a reduction in leptin levels, which has been known
to enhance bone mass [12].

2.1.2. Parathyroid Hormone- (PTH-) Vitamin D Axis

The PTH-vitamin D axis exerts crucial functions in maintaining bone density and
calcium hemostasis [39]. PTH has a regulatory function in regulating serum calcium levels
by bone and kidney reabsorption, while vitamin D can modulate the absorption of calcium
from the intestine [40,41]. Several studies have indicated that smoking downregulates
vitamin D serum levels [42,43] and inhibits the production of PTH [44]. However, the influ-
ence of CS on the inhibition of the production of PTH remains controversial [45,46]. These
inconsistencies may be due to confounding effects of body weight, alcohol consumption,
medication use and calcium and vitamin D supplementation [42,47].

2.1.3. Gonadal Hormones

Estrogen and testosterone exert essential functions in modulating bone remodel-
ing [48,49]. It has been shown that estrogen inhibits osteoclast differentiation and bone re-
sorption [50], while testosterone promotes proliferation and osteogenic differentiation [51].
In females, CS causes a reduction in estrogen levels by altering estrogen metabolism [52,53].
Several explanations behind this phenomenon are as follows: (i) nicotine and cotinine
suppress aromatase enzyme activity, contributing to a reduction in estrogen levels [54];
(ii) CS promotes estradiol to decompose into 2-methoxyestrone in the liver [55]; and (iii) CS
enhances serum hormone-binding globulin levels, leading to a reduction in free estradiol
levels in the blood [56,57]. In males, current findings are contradictory. Some research
indicated testosterone levels were comparable between smokers and nonsmokers, whereas
other research showed that smokers had higher testosterone levels than nonsmokers [58,59].
Like females, the potential mechanism of aromatase inhibition was involved in males [44].
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2.1.4. Oxidative Stress

The presence of reactive oxygen species (ROS) in bone can influence resident cell be-
havior, extra-cellular matrix composition and tissue architecture. CS is related to high levels
of ROS, which improves osteoclast activity and suppresses osteoblast activity, leading to a
reduction in bone mass [60,61], and maqui berry extract, a fruit extract rich in anthocyanins,
is effective against the effects of CSE on osteoblasts. A clinical study demonstrated that
smoking increased levels of oxidative stress [62]. Consistently, Zhu and colleagues observed
that cigarette smoke extract (CSE) significantly enhanced ROS and nitrotyrosine levels in hu-
man osteoblasts [63]. Probing potential molecular mechanisms, Aspera-Werz et al.reported
that Nrf2 directly modulates antioxidant defense systems in human mesenchymal stem
cells exposed to CSE [64], and resveratrol could decrease ROS level generated by CSE to
protect the primary cilia integrity in human bone mesenchymal stem cells.

2.2. Direct Mechanisms

CS has been found to exert a direct role in bone tissue through binding to several
receptors, including nicotinic acetylcholine receptors and androgen receptors in osteoblasts
and aryl hydrocarbon receptors in osteoclasts [11]. Nicotine, a major addictive substance
in cigarettes, binds to nicotinic receptors in osteoblasts [65]. However, the role of nicotine
in bone metabolism has been controversial. Marinucci et al. observed that nicotine nega-
tively contributed to the impaired osteogenic differentiation of mesenchymal stem cells
(MSCs) [66]. On the contrary, Daffner and colleagues demonstrated that nicotine could even
promote MSC proliferation and osteogenic differentiation at concentrations lower than
its serum concentration in smokers [67]. Aspera-Werz et al. showed that the osteogenic
differentiation of MSCs was not largely altered when the cells were exposed to nicotine
at concentrations similar to its serum levels in smokers [64]. Similarly, Shintcovsk and
colleagues demonstrated that nicotine had no influence on osteoclastogenesis [68]. There-
fore, nicotine may not be a major compound responsible for impaired bone metabolism in
bone cells.

Many studies have reported the negative relationship between CS and bone
mass [69–71]. However, early diagnosis of impaired bone metabolism remains a great
challenge. Due to the lack of obvious symptoms in the early stages of CS-induced osteo-
porosis, the bone metabolism of smokers has been impaired for a long period of time when
they start to feel back pain or suffer from fractures [72,73]. Actually, after reaching peak
bone mass around the age of 30 in adults, bone loss occurs at varying rates, and smoking
significantly accelerates this process. Hence, it is highly desirable to detect the alternations
of bone metabolism in the early stages to prevent the development of osteoporosis [4].

Several factors secreted into the blood by osteoblasts and osteoclasts regulate osteoblast-
medicated bone formation and osteoclast-mediated bone resorption [74,75]. These serum
markers represent a crucial complementary diagnostic tool to bone mineral density [76]. In
general, monitoring these secreted markers could be helpful in determining the alternations
in bone metabolism before the manifestation of osteoporosis. Figure 1 summarizes the
direct effects of CS on bone metabolism.

2.2.1. Markers for Bone Formation

Hydroxyproline (HYP) and type I collagen N- and C-terminal propeptides (PINP
and PICP/CICP) in blood are commonly used to evaluate bone formation [77–79]. Ehnert
and colleagues demonstrated that following total joint replacement, heavy smokers had
a greater risk of prolonged hospital stay due to reduced levels of CICP as compared to
nonsmokers [80]. Additionally, there are alternative markers involved in osteogenesis.
Gürlek et al. reported that smoking significantly decreased salivary levels of osteocalcin
(OC, later stage of osteogenic differentiation) [81]. Supporting these data, in a rat model,
Gao et al. reported that chronic exposure to smoking significantly decreases levels of
bone-specific alkaline phosphatase (BAP, early stage of osteogenic differentiation) and OC,
resulting in osteoporotic bone [82].
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2.2.2. Markers for Bone Degradation

C-terminal telopeptide (CTX) and N-terminal telopeptide (NTX) in blood are com-
monly used to represent collagen-I degradation [78,79]. Oncken et al. demonstrated that
smoking cessation contributed to a reduction in NTX levels in postmenopausal women [83].
In addition, there are alternative markers involved in osteoblastogensis. Our previous
in vitro study revealed that chronic exposure to CSE-enhanced carbonic anhydrate II (CA
II, early stage of osteoclastic differentiation [84]) and tartrate-resistant acid phosphatase
5b (TRAP 5b, later stage of osteoclastic differentiation [85]) activities in a bone co-culture
system, resulting in an osteoporotic microenvironment [86].

Although these markers can represent bone metabolic alternations, the underlying
mechanisms by which CS induces an osteoporotic bone environment are not yet fully
understood. Understanding the regulatory mechanisms in bone cells impaired by CS will
enable us to obtain insights into the development of CS-induced osteoporotic bones and
screen relevant preventive treatment strategies for smokers with osteoporotic bones.

2.2.3. RANKL-RANK-OPG Pathway

It has been shown that the receptor activator of nuclear factor-kappa B ligand (RANKL)-
RANK-osteoprotegerin (OPG) (RANKL-RANK-OPG) pathway exerts a crucial role in os-
teoclast differentiation and bone resorption [87–89]. Leibbrandt and colleagues revealed
that osteoclasts failed to be differentiated in a RANKL and RANK knockout mouse model,
indicating RANKL is crucial for osteoclastic differentiation and activation [90]. RANKL, a
membrane protein, is synthesized and released by osteoblasts, which is capable of binding
to the RANK receptor located on osteoclasts, activating osteoclastogenesis [91]. As a decoy
receptor for RANKL, OPG suppresses osteoclastogenesis by binding to RANKL [92]. Hence,
the balance between RANKL and OPG exerts a vital role in regulating bone metabolism [93].

Currently, few studies have been conducted regarding the association between CS
and the RNKL-RANK-OPG pathway. In terms of human studies, researchers have demon-
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strated that smoking significantly reduced OPG levels, leading to an increased RANKL/OPG
ratio [45,94]. Consistently, in an in vitro bone co-culture system, our previous research
showed that chronic exposure to CSE enhanced osteoclast function via upregulation of the
RANKL/OPG ratio, resulting in an osteoporotic microenvironment, and bisphosphonates
can be used to counteract the effects of CSE on the RANKL/OPG pathway [86].

Several studies have shown the RANKL-RANK-OPG pathway is also involved in
indirect pathophysiological mechanisms (PTH-vitamin D axis and gonadal hormones),
which makes this pathway of great therapeutic interest [90]. Moreover, this pathway, in
interaction with several factors, such as prostaglandin E2 and interleukins, further affects
bone metabolism [90]. For instance, estrogen and androgen could enhance OPG levels
in osteoblasts and downregulate the RANKL/OPG ratio, further inhibiting osteoclast
differentiation [95].

2.2.4. Wnt/β-catenin Pathway

The canonical Wnt/β-catenin signaling pathway may be one potential mechanism
that is involved in the regulation of RANKL/OPG balance. Glass et al. reported that the ac-
tivation of the Wnt/β-catenin pathway in osteoblasts can downregulate the RANKL/OPG
ratio, leading to compromised osteoclast differentiation and bone resorption [96]. Apart
from suppressing osteoclastogenesis, it also enhances the osteogenic differentiation of
MSCs [97], bone formation [98] and mineralization [99]. Therefore, the Wnt/β-catenin
pathway appears to exert a dual role in bone remodeling, enhancing osteogenesis on the
one hand and suppressing osteoclastogenesis on the other hand. Understanding and char-
acterizing the Wnt/β-catenin pathway in detail is believed to be critical to guiding the
interaction between osteoblast and osteoclast [100].

Wnt ligands, which secrete glycoproteins, are engaged in activating the Wnt/β-catenin
canonical pathway [101]. When Wnt ligands (Wnt 3a and 5a) bind with receptor complexes,
including Frizzled and LRP5/6, the Wnt/β-catenin pathway is activated to accumulate
β-catenin in the cytoplasm of osteoblasts [102]. Then, the accumulated β-catenin transfers
into the nucleus to regulate the transcription of osteogenic-related genes such as Osterix,
RUNX2 and OPG [103]. Eventually, the accumulated OPG binds with RANKL and prevents
it from integrating with RANKL located on osteoclasts, inhibiting osteoclastogenesis [104].
Additionally, sclerostin and Dickkopf-1 (DKK1) are potent targets, blocking the canonical
Wnt signaling pathway [105]. DKK1 is expressed by osteocytes and mature osteoblast,
while sclerostin is expressed by osteocytes [106].

To date, few studies have been carried out showing the association between CS and
inhibitors of Wnt signaling. Jorde et al. reported that smokers had higher levels of DKK1
and lower levels of bone formation (PINP) when compared to nonsmokers [39]. Supporting
these data, Miranda et al. revealed that smoking could enhance the levels of DKK1 and
sclerostin in patients with periodontitis [107]. Thus, the inhibition of Wnt signaling by CS
may result in the upregulation of the RANKL/OPG ratio, leading to excessive osteoclast
differentiation and bone resorption (Figure 2).

2.2.5. Aryl Hydrocarbon Receptor (AhR) Pathway

Smoking exposure potently activates the cellular Aryl hydrocarbon receptor
(AhR) [108], as cigarette smoke contains a large number of exogenous ligands for AhR, such
as dioxin-like derivatives represented by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and a
variety of polycyclic aromatic hydrocarbon (PAH)-based compounds such as benzo(a)pyrene
(BaP) [109]. The AhR is one of the ligand-activated transcription factors for sensing envi-
ronmental pollutants, which stays in an inactive form in the cytoplasm. Upon binding to
exogenous ligands from smoke, the conformation of the AhR is changed, which enables
AhR translocation into the nucleus, where it heterodimerizes with the aromatic hydrocar-
bon receptor nuclear transfer protein (ARNT) and activates xenobiotic response elements
(XRE), to the initial transcription of target genes (CYP1a1/CYP1a2/CYP1b1) and leads
to different toxicological and pathological effects [109,110]. Recent studies have shown
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that endogenous activation of the AhR has multiple roles in the regulation of bone remod-
eling and its associated signaling pathways, which may be an essential mechanism for
smoking-induced osteoporosis [111].
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Figure 2. Proposed regulatory mechanisms for bone metabolism in (A) physiological conditions and
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Jameel et al. reported that BaP and TCDD in cigarette smoke caused AhR activation
and a significant increase in CYP1A1 and CYP1A2 expression, resulting in enhanced
OC differentiation and compromised bone mass in wild-type mice but not in AhR-/-

mice [33]. Moreover, TCDD administration was unable to stimulate osteoclastogenesis
in bone marrow macrophages (BMMs) from CYP1A1/CYP1A2 double knockout and
CYP1A1/CYP1A2/CYP1B1 triple knockout mice, unlike in BMM from wild-type mice [33].
These results suggest that AhR-induced CYP1 expression mediates at least in part the
activation of osteoclastogenesis by AhR ligands from cigarette smoke. Further studies
found that RANKL-stimulated osteoclastogenic signaling (e.g., phosphorylation of Akt,
MAPK and NF-κB) was impaired in AhR-/- BMMs [112]. Furthermore, the AhR was
found to be activated by RANKL at an earlier stage than signature osteoclastic genes
(e.g., CSTK and NFATc1) in pre-osteoclasts, suggesting a regulatory role of the AhR in OC
differentiation. BaP was shown to induce higher levels of c-Fos in RANKL-stimulated
BMMs, but c-Fos was not induced by BaP or RANKL in AhR-/- BMMs [112]. Consistently,
the AhR activation in BMMs was also found to lead to significant upregulation of c-Fos and
NFATc1 expression, thereby initiating osteoclastic differentiation [113]. Taken together, the
AhR pathway mediates excessive osteoclastic differentiation and bone resorption caused by
smoking exposure, which could be a potential target for the prevention of smoking-induced
osteoporosis (Figure 3).
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Figure 3. Smoking exposure induces osteoclast differentiation through the AhR pathway, leading to
osteoporosis. Dotted lines represent release, arrows represent promotion.

3. Limitations and Future Overview

Studies on CS and bone metabolism are limited and have mostly been conducted
in vitro. In vivo models of CS-induced osteoporosis still need further standardization.
Therefore, the mechanisms of CS-induced osteoporosis that we have summarized in this
review have not been fully validated by multiple studies. Comprehensive and systematic
research is needed to reveal the key mechanisms of smoking-induced osteoporosis in the
future. Bone metabolism is a process involving a variety of cells, including osteoblasts,
osteoclasts and osteocytes, and it is not sufficient to study the effects of smoke on a single
cell type. Similarly, the composition of cigarette smoke is very complex, so it is clear that
studying the effects of one chemical component alone is incomplete. Therefore, in the future,
we need to rely on in vitro co-culture systems and 3D cell culture systems of bone cells,
as well as standardized animal models of smoking exposure to complete the mechanistic
study of CS-induced osteoporosis. Moreover, exploring the genetic relationships of BMD
with cigarette smoking status may provide insight into the novel genetic mechanisms of
osteoporosis. A recent study found CS has the strongest correlation with human BMD
compared to other common lifestyles and identified multiple candidate genes related to
BMD and smoking, such as MAP1LC3B, a biomarker in the process of autophagy [114].
These findings could provide new directions for future research into the mechanisms, as
well as new genetic targets for the prevention and treatment of CS-induced osteoporosis.
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4. Conclusions

Smoking is highly addictive and significantly increases the rate of bone loss. The
prevention and treatment of CS-induced osteoporosis deserve widespread attention. There
are currently no effective interventions to specifically counteract CS-induced osteoporosis,
owing to the fact that the specific mechanisms by which CS affects bone metabolism are
uncertain. CS may affect bone metabolism through indirect pathways, such as affecting
weight, hormone levels and oxidative stress levels. According to the current findings, CS
can also induce osteoporosis through direct action on the skeletal system: (1) the RANKL-
RANK-OPG pathway exerts a crucial role in the regulation of osteoclastogenesis in bone
cells exposed to CS; (2) the Wnt signaling pathway may be the potential mechanism that
directly engaged in osteogenic differentiation and indirectly participates in the RANKL-
RANK-OPG pathway to regulate osteoclastic differentiation under CS exposure, and as a
result, the activation of the Wnt signaling pathway may be a novel therapeutic approach
for smokers with CS-induced osteoporosis; and (3) various components of cigarette smoke
specifically activate the AhR of BMMs, which lead to excessive osteoclastic differentiation
and bone resorption. The inhibition of the AhR pathway could be a promising strategy
for CS-induced osteoporosis. Furthermore, there appears to be a very strong relationship
between CS and genetic alterations associated with the development of osteoporosis, which
is an exciting direction for future research into the mechanisms of CS-induced osteoporosis.
This review summarizes the latest research findings on the mechanisms between CS and
bone metabolism, with the aim of providing new targets and ideas for the prevention of
CS-induced osteoporosis, as well as providing theoretical directions for further research in
the future.
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