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Abstract
Purpose: Spermatogenesis	requires	a	large	amount	of	energy,	which	is	primarily	pro-
duced	 by	 the	mitochondrial	 electron	 transfer	 chain.	Mitochondrial	 dysfunction	 af-
fects male infertility, suggesting a relationship between the electron transfer chain 
and	male	 infertility.	COXFA4L3	 (C15ORF48)	 is	 an	 emerging	 subunit	 protein	 of	 cy-
tochrome	oxidase	 specifically	expressed	 in	germ	cells	during	 spermatogenesis,	 and	
it	may	be	 involved	 in	male	 infertility.	Therefore,	 to	 investigate	whether	COXFA4L3	
could	be	a	marker	of	mitochondrial	dysfunction	in	the	sperm,	this	study	examined	the	
protein	expression	and	localization	profile	of	COXFA4L3	in	the	sperm	of	male	patients	
with infertility.
Methods: Twenty-	seven	 semen	 samples	 from	 a	 male	 infertility	 clinic	 at	 the	
Reproductive	 Center	 of	 Yokohama	 City	 University	 Medical	 Center	 were	 used	 to	
analyze	 sperm	 quality	 parameters	 and	 the	 expression	 and	 localization	 of	 energy	
production-	related	proteins.	These	data	were	compared	with	the	outcomes	of	infer-
tility treatment.
Results: The	expression	 levels	of	COXFA4L3	varied	significantly	between	samples.	
Furthermore,	COXFA4L3	was	ectopically	localized	to	the	acrosome.
Conclusions: Ectopic	expression	of	COXFA4L3	and	PNA-	stained	acrosomes	may	be	
useful	parameters	for	fertility	treatment	selection.	Assessing	the	acrosomal	localiza-
tion	of	COXFA4L3	will	expedite	pregnancy	treatment	planning.
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1  |  INTRODUC TION

Infertility,	 defined	 as	 the	 inability	 to	 conceive	 despite	 1 year	 of	
regular unprotected intercourse, is a severe problem affecting ap-
proximately	15%	of	couples	worldwide.1,2	Approximately,	50%	of	
cases involve male partners3 with impaired spermatogenesis, in-
cluding	oligozoospermia,	asthenozoospermia,	and	azoospermia.4	A	
distinguishing	feature	of	 infertility	 is	 that	 its	 frequency	of	occur-
rence does not vary by region or income.5 The prevalence of male 
infertility	has	increased	by	0.291%	per	year	globally	from	1990	to	
20176; therefore, infertility should be a “global health problem” 
that must be urgently addressed.

Various etiologies have been proposed for male infertility, but 
idiopathic	male	infertility,	for	which	no	exact	cause	can	be	iden-
tified,	accounts	for	30%–40%	of	all	male	infertility	cases.7 These 
patients often have abnormal semen parameters despite no his-
tory of diseases affecting fertility and normal findings on phys-
ical	 examination	 and	 endocrine,	 genetic,	 and	 biochemical	 tests.	
However,	it	is	difficult	to	obtain	information	on	the	cause	of	male	
infertility	using	conventional	semen	examination,	and	there	is	an	
urgent need to establish testing methods for the analysis of sperm 
function.7

Mitochondria	 play	 a	 central	 role	 in	 cellular	 metabolism,	 sig-
naling,	 energy	 production,	 and	 oxidative	 stress	 induction.	
Many	 studies	 have	 shown	 that	 defects	 in	 mitochondrial	 func-
tions,	 such	 as	 the	 electron	 transport	 chain	 (ETC),	 reactive	 oxy-
gen	 species	 (ROS),	 mtDNA	 integrity,	 calcium	 homeostasis,	 and	
apoptotic pathways, are correlated with sperm parameters.7–11 
Therefore, the assessment of mitochondrial dysfunction as a 
driver	 of	 male	 infertility	 is	 critical	 to	 understanding	 the	 exact	
mechanisms underlying mitochondrial dysfunction in sperm and 
is an essential step toward developing a primary remedy for male 
infertility.12,13

The	 ETC	 is	 composed	 of	 four	 complexes	 and	 an	 ATP	 syn-
thase.	The	terminal	enzyme	cytochrome	c	oxidase	(COX)	contains	
tissue-	specific	 isoforms	 that	modulate	 its	 activity7 and regulate 
the	 total	 activity	 of	 ETC	 as	 a	 rate-	limiting	 enzyme.14–16	 Proper	
functionality	 of	 the	 ETC	 is	 essential	 for	 mitochondrial	 perfor-
mance, such as motility and vigor,10,11,17 and its dysfunction is 
associated with male infertility.18	 For	 example,	 mitochondrial	
membrane	potential,	a	measure	of	mitochondrial	ETC	activity,	is	
positively correlated with sperm motility and viability.19	The	ex-
pression	 levels	 of	 COX	 subunit	 proteins	 (MT-	CO1	 and	 COX6C)	
are	positively	correlated	with	sperm	quality	and	sperm	morphol-
ogy.20,21	Therefore,	it	is	reasonable	to	analyze	the	expression	dy-
namics	of	ETC	proteins	to	identify	new	prognostic	indicators	for	
male infertility.

Human	 ejaculated	 semen	 contains	 somatic	 cell	 components	
(e.g.,	 white	 blood	 cells)	 in	 addition	 to	 sperm.	 Therefore,	 sperm-	
specific	ETC	proteins	are	suitable	markers	for	analyzing	mitochon-
drial	 protein	 dynamics	 in	 semen	 samples.	 Coxfa4l3	 (also	 called	

C15orf48,	 Nmes1,	MISTRAV,	 and	MOCCI)	 is	 a	 novel	 isoform	 of	
COX	and	is	expressed	in	mouse	male	germ	cells	and	inflammation-	
induced immune cells.21–25	During	spermatogenesis,	Coxfa4	is	ex-
pressed	 in	spermatogonia,	and	 isoform	conversion	to	COXFA4L3	
occurs during late spermatogenesis,23	suggesting	that	Coxfa4l3	is	
involved in the regulation of mitochondrial activity during sper-
matogenesis.	 Therefore,	 COXFA4L3,	 human	 homolog	 of	 mouse	
Coxfa4l3,	is	considered	an	excellent	marker	of	mitochondrial	dys-
function in sperm.

As	 the	 first	 step	 in	 elucidating	 the	 link	 between	 the	 regu-
lation	 of	 ATP	 production	 and	male	 infertility,	 we	 examined	 the	
protein	 expression	 profile	 of	 COXFA4L3	 in	 the	 sperm	 of	 male	
patients	with	 infertility.	The	results	showed	that	COXFA4L3	ex-
pression levels differ significantly in sperm from male infertile 
patients	and	that	this	protein	is	expressed	ectopically	in	the	acro-
some and the middle part of the sperm. Furthermore, we report 
that	the	ectopic	expression	of	COXFA4L3	as	a	new	sperm	param-
eter could provide a new clue for selecting infertility treatment 
options for patients.

2  |  MATERIAL S AND METHODS

2.1  |  Participants

We	 examined	 27	 semen	 samples	 obtained	 from	 a	 male	 infertil-
ity	clinic	at	 the	Reproductive	Center	of	Yokohama	City	University	
Medical	Center	between	February	and	July	2023.

2.2  |  Sperm preparation

The	 human	 semen	was	 then	 pipetted	 and	 liquefied.	 The	 samples	
were	washed	twice	with	phosphate-	buffered	saline	(PBS)	 (137 mM	
NaCl,	2.68 mM	KCl,	10 mM	Na2HPO4,	and	2 mM	NaH2PO4,	pH 7.4)	
and	 resuspended	 in	 PBS	 as	 a	 sperm	 suspension	 for	 subsequent	
experiments.

2.3  |  Parameter assessment and fertility treatment 
outcome study

The sperm concentration, motility rate, and motility velocity were 
measured	 using	 a	 Sperm	 Motility	 Analysis	 System	 (SMASTM;	
DITECT	Ltd.,	Tokyo,	Japan).	Sperm	static	oxido-reduction	poten-
tial	 was	measured	 using	 the	MiOXSYS™	 system.	 In	 addition,	 17	
samples were followed up to determine the effectiveness of the 
infertility treatment and classified as spontaneous pregnancy, in-
trauterine	insemination	(IUI),	in	vitro	fertilization	(IVF),	intracyto-
plasmic	 sperm	 injection	 (ICSI),	 and	 unsuccessful	 pregnancy.	 The	
experimental	data	for	all	samples	are	listed	in	Table S1.
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2.4  |  Immunostaining analysis

Immunostaining was performed using a standard method.26	Briefly,	
the	sperm	suspension	was	adjusted	to	1 × 106 sperm/mL, placed on 
MAS-	coated	glass	slides	(Matsunami	Glass,	Osaka,	Japan)	equipped	
with	a	 flexiPERM	 (Sarstedt,	Nümbrecht,	Germany),	 and	 incubated	
at	 37°C	 for	 3 h	 to	 attach	 the	 sperm.	 The	 sperms	were	 fixed	with	
4%	paraformaldehyde,	permeabilized	with	0.3%	Triton	X-	100,	and	
blocked	 with	 5%	 skim	 milk	 for	 1 h	 at	 25°C.	 A	 monoclonal	 anti-
body	 (mAb)	and	Alexa	Fluor	546	goat	anti-	mouse	 IgG	 (H + L)	 (Life	
Technologies)	were	used	as	primary and secondary antibodies, re-
spectively.	 For	 acrosome	 detection,	 Alexa	 Fluor	 488-	conjugated	
peanut	agglutinin	(PNA)	(3 μg/mL;	Invitrogen)	was	used,	and	for	nu-
clear staining, 4′,6-	diamidino-	2-	phenylindole	(DAPI)	was	used	(1 μg/
mL;	Fujifilm	Wako	Pure	Chemical	Co.	Japan).	Slides	were	examined	
using	a	confocal	microscope	(LSM5;	ZEISS,	Jena,	Germany),	and	30–
200 sperms per coverslip were counted in at least five fields. The 
experimental	data	for	all	samples	are	listed	in	Table S1.

2.5  |  Antibodies

The	mAbs	used	in	this	study	were	established	in	our	laboratory	using	
MIHS	methods27,28 and are listed in Table S2. The specificity of each 
antibody	was	 confirmed	using	western	 blotting	 (WB)	 by	 recombi-
nant	proteins	(Figure 1A).

2.6  |  Transfection of eukaryotic expression vectors 
into HeLa cells

Coxfa4,	 Coxfa4l2,	 and	 Coxfa4l3	 genes	 were	 overexpressed	 by	
transfecting	HeLa	cells	using	a	previously	reported	method	and	ex-
pression vectors.23	Briefly,	plasmids	used	for	cell	transfection	were	
obtained using a silica purification protocol.29	Plasmids	were	trans-
fected	 into	 exponentially	 growing	 HeLa	 cells	 via	 electroporation	
(NEPA21;	NepaGene	Co.,	Chiba,	Japan).	After	48 h	of	cultivation,	the	
cells	were	used	for	the	experiments.

2.7  |  Protein expression using Escherichia coli 
expression vector

The	 target	 sequence	was	 introduced	 into	 the	pCold	 vector	 to	 ex-
press	the	maltose-	binding	protein	(MBP)	tag	sequence	using	restric-
tion	enzyme	processing.

2.8  |  Western blotting

Sperm	suspended	in	PBS	were	centrifuged	at	700 g, and the pellet 
was	 resuspended	 in	 8 M	urea	 in	 PBS.	 The	 sperms	were	 sonicated	
and	then	centrifuged	at	11400 g	 for	3 min	at	4°C.	The	supernatant	
was	used	for	WB.	Cells	collected	from	culture	dishes	(HEK293T	and	

F I G U R E  1 Confirmation	of	specificities	of	mAbs	used	in	this	study.	(A)	Western	blot	of	exogenously	expressed	Coxfa4	isoforms	in	HeLa	
cells	using	anti-	Coxfa4l3	mAb.	(B)	Protein	expression	analysis	using	Western	blot	in	human	cell	lines	(HEK293T	and	HeLa)	and	human	sperm.	
(C)	Localization	of	Coxfa4l3	in	mouse	sperm.	Nuclei	were	stained	with	DAPI	and	apical	parts	with	PNA-	Alexa	Fluor	488,	and	Coxfa4l3	was	
visualized	using	corresponding	mAbs	labeled	with	Alexa	Fluor	546.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/alexa-fluor
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/primary-and-secondary-antibodies
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https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/primary-and-secondary-antibodies
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/primary-and-secondary-antibodies


4 of 9  |     FUJISAWA et al.

HeLa	cells)	were	processed	as	previously	described.27	WB	was	per-
formed according to the standard protocol.30

2.9  |  Statistical analysis

Unpaired	 Student's	 t-	test	 was	 performed	 using	 descriptive	 statis-
tics	in	Microsoft	Office	365	Excel	(Microsoft,	Redmond,	WA,	USA).	
Statistical	significance	was	set	at	p < 0.05.

3  |  RESULTS

The semen parameters of the 27 samples used in this study were 
analyzed	 using	 a	 Sperm	 Motility	 Analysis	 System	 and	 MiOXSYS	
(Table 1 and Table S1).	The	mean	values	of	most	semen	parameters	
were closer to the abnormal values than to the average values re-
ported in the literature values,31	indicating	low	sperm	quality.	Thus,	
these patients were identified as eligible for infertility treatment ac-
cording	to	the	guidelines.	However,	there	was	a	large	gap	between	
the	maximum	and	minimum	values	in	each	patient's	data,	indicating	
a significant variation in semen parameters.

A	 human	 anti-	COXFA4L3	 mAb	 was	 established	 to	 analyze	
COXFA4L3	 protein	 expression	 (clone	 5A10).	 The	 binding	 spec-
ificity	 of	 the	 mAb	 was	 confirmed	 using	 HeLa	 cell	 extracts	 over-
expressing	 COXFA4L3	 fused	 to	 glutathione	 S-	transferase	 (GST)	
(Figure 1A).	Tubulin	and	COXFA4I1	proteins,	ubiquitously	expressed	
in	HEK293T	and	HeLa	cells,	were	detected	using	 the	correspond-
ing	mAbs.	 In	 contrast,	 the	 anti-	GAPDS	and	anti-	COXFA4L3	mAbs	
used	 in	 this	 study	 reacted	only	with	protein	extracts	 from	sperm,	
confirming	 that	 these	 two	mAbs	have	germ	cell-	specific	 reactivity	
(Figure 1B).	Immunohistochemistry	using	anti-	COXFA4L3	and	anti-	
GAPDS	mAbs	stained	only	 the	sperm	midpiece	and	 tail	 regions	of	
the	mouse	(C57BL/6J)	sperm,	respectively	(Figure 1C).	These	results	
indicate	that	this	mAb	is	a	valuable	antibody	for	specifically	detect-
ing	mitochondrial	COXFA4L3	for	immunostaining.

As	the	specificity	of	the	anti-	COXFA4L3	mAb	was	confirmed,	
proteins	from	the	sperm	of	six	patients	(YN1-	YN6)	were	subjected	
to	WB	to	examine	COXFA4L3	expression	(Figure 2A).	To	rule	out	
the possibility of contamination with somatic cells, such as leu-
kocytes,	 in	 the	 semen	 samples,	 the	 expression	 level	 of	 glyceral-
dehyde	 3-	phosphate	 dehydrogenase	 (GAPDS),	 a	 sperm-	specific	
glycolytic	 protein,	 was	 analyzed	 using	 WB.	 Both	 bands	 were	
quantified,	 and	 the	 ratio	 of	 expression	 levels	 was	 calculated	 as	
COXFA4L3	 expression/GAPDS	 expression	 (Figure 2B).	 We	 nor-
malized	 COXFA4L3	 expression	 to	 GAPDS	 expression	 levels	 in	
human	semen	and	observed	significant	differences	in	COXFA4L3	
expression.	When	quantified	and	graphed	relative	to	YN-	1,	YN-	2	
was	the	lowest,	with	a	maximum	difference	of	approximately	20-	
fold,	 indicating	 that	 COXFA4L3	 expression	 varied	 considerably	
between patients.

To	 determine	 the	 cause	 of	 the	 variation	 in	 COXFA4L3	 ex-
pression,	COXFA4L3	protein	 expression	 in	 sperm	was	 examined	

immunohistochemically.	 Sperms	 from	 21	 patients	 (YN7-	YN27)	
were	subjected	 to	both	PNA	staining	and	 immunocytochemistry	
using	an	anti-	COXFA4L3	mAb,	and	at	least	30	sperm	staining	for	
one	patient	was	analyzed	(Figure 3A).	As	expected,	we	confirmed	
that	GAPDS	was	 localized	to	the	sperm	tail,	and	COXFA4L3	was	
located in the basal region of the sperm flagellum, called the mid-
piece.	COXFA4L3	was	detected	ectopically	near	the	acrosome	in	
addition to the sperm midpiece, as shown in Figure 3A.	Staining	for	
PNA,	which	 specifically	 stains	 functional	 apical	 bodies,	 revealed	
that	COXFA4L3	exhibits	dual	 localization	to	the	acrosome	in	ad-
dition	to	the	midpiece	because	the	COXFA4L3	signal	merged	with	
that	of	the	PNA	staining.	Although	there	have	been	reports	on	the	
acrosomal	localization	of	mitochondrial	proteins	in	mice,32,33 this 
is	 the	first	report	of	such	dual	and	ectopic	 localization	 in	human	
sperm.	Furthermore,	the	frequency	of	sperms	with	dual	 localiza-
tion	varied	among	patients	 (Figure 3B).	Based	on	these	observa-
tions,	the	variation	in	COXFA4L3	expression	observed	in	the	WB	
may	be	due	to	the	ectopic	acrosomal	localization	of	COXFA4L3,	in	
addition to the sperm midpiece.

We	 examined	 whether	 COXFA4L3	 is	 involved	 in	 acrosome	
function.	 COXFA4L3	 is	 incorporated	 into	 the	 COX	 complex.	 If	
COXFA4L3	 is	 involved	 in	 energy	 production,	 other	 COX	 subunit	
proteins,	such	as	COX4I1,	should	be	localized	in	the	acrosome.34 The 
data demonstrated that COX4I1 was observed in the midpiece of 
the	sperm	of	the	patients,	but	no	localization	to	the	acrosome	was	
observed	(Figure 4).	Thus,	the	COX	complex	was	not	observed	in	the	
acrosome,	and	COXFA4L3	was	localized	as	a	free	protein.	As	individ-
ual COX subunit proteins are thought to have no independent func-
tions,35	COXFA4L3	 localized	within	 the	 acrosome	 is	 not	 expected	
to contribute to acrosome function. The results showed that sperm 

TA B L E  1 Semen	parameter	values	obtained	from	the	current	
study.

Outcome of infertility treatment 
(N = 16)

1 + 2 (N = 5)
3 + 4 + 5 
(N = 11)

Semen

Sperm	density	(×106/mL) 17.0 ± 10.7 16.2 ± 13.0

Semen	volume	(mL) 1.9 ± 1.0 2.6 ± 1.2

Total number of sperm 
(×106/ejaculate)

39.5 ± 49.4 38.9 ± 21.5

Sperm	motility

Total	motility	(%) 27.3 ± 20.1 29.2 ± 19.9

Progressive	motility	(%) 45.4 ± 3.8 45.0 ± 7.1

Oxidative	stress

ORP	(mV/106	sperm/mL) 1.3 ± 2.1 4.6 ± 3.9

Note:	All	values	were	represented	as	“value ± standard	deviation.”	
No	correlation	exists	between	the	semen	parameters	and	pregnancy	
outcomes after fertility treatment. Fertility treatment pregnancy 
outcomes	were	categorized	as	1:	natural	pregnancy	(two	cases),	2:	IUI	
(three	cases),	3:	IVF	(one	case),	4:	ICSI	(three	cases),	5:	unsuccessful	
pregnancy	(seven	cases).
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formed	 acrosomes	 even	 in	 the	 absence	 of	 COXFA4L3,	 indicating	
that	COXFA4L3	was	not	essential	for	acrosome	formation.	Thus,	the	
ectopic	expression	of	COXFA4L3	 in	the	acrosome	would	not	have	
the least beneficial effects on sperm.

In this study, 21 of 27 male patients were assessed for semen 
parameters.	The	results	were	classified	as	1:	natural	pregnancy	(two	
cases),	2:	 IUI	 (three	cases),	3:	 IVF	 (one	case),	4:	 ICSI	 (three	cases),	
5:	unsuccessful	pregnancy	(seven	cases),	and	UT:	untraceable	(five	
cases)	 and	 compared	 to	 the	 semen	 parameters	 of	 these	 patients.	
Higher	 fertility	 levels	 and	higher	oxidative	 stress	 (ORP)	were	 cor-
related,	although	the	difference	was	not	significant.	No	correlations	
were	observed	for	any	of	the	other	parameters.	Next,	16	samples	
for	which	 follow-	up	data	were	available	were	examined	 for	a	cor-
relation	between	 the	 two	new	parameters	 (ectopic	 localization	of	
COXFA4L3	and	PNA	positivity)	and	the	efficacy	of	infertility	treat-
ment	(Table 2).	None	of	the	parameters	of	PNA	staining	or	ectopic	
localization	of	COXFA4L3	correlated	with	the	efficacy	of	infertility	
treatment;	 however,	 the	 values	 of	 sperm	 that	were	 PNA-	positive	
and	 did	 not	 show	 ectopic	 localization	 decreased	 with	 increasing	
treatment	levels.	As	natural	pregnancy	and	IUI	were	approximately	
equal,	a	significant	difference	was	observed	when	both	were	com-
bined	and	compared	with	other	treatments	(p < 0.05).	This	suggests	
that	sperm	that	are	PNA-	positive	and	do	not	have	ectopic	localiza-
tion	may	be	considered	normal	sperm,	and	if	this	percentage	is	17%	
or	higher,	IUI	may	result	in	a	pregnancy	outcome.

4  |  DISCUSSION

In	patients	with	reduced	sperm	motility,	the	expression	levels	of	pro-
teins associated with energy and metabolism are higher than those 
associated with sperm motility and structure.36	 A	 positive	 correla-
tion	between	sperm	quality	and	MT-	CO1	and	COX6C	expression	has	

been reported.20	In	the	current	study,	the	expression	levels	of	sperm-	
specific	glycolytic	system	proteins	(GAPDS)	and	electron	transfer	sys-
tem	complex	4	protein	 (COXFA4L3)	were	 compared	using	WB,	 and	
significant	differences	in	expression	levels	were	observed	between	pa-
tient	samples.	However,	when	this	difference	in	expression	was	com-
pared with semen parameters, such as sperm motility, no correlation 
was	observed.	To	obtain	insights	into	these	differences,	we	examined	
protein	localization	of	COXFA4L3.	The	mouse	ortholog	was	detected	
only	in	the	sperm	midpiece	of	mice	but	not	in	the	acrosome	(unpub-
lished	data).	This	protein	was	ectopically	localized	to	the	acrosome	of	
the	patient's	sperm.	To	the	best	of	our	knowledge,	this	is	the	first	study	
to	 show	 that	 a	 respiratory	 chain	 complex	 protein	 is	 localized	 in	 the	
human	acrosome.	However,	Coxfa4l3	does	not	show	acrosome	locali-
zation	in	mice.	Acrosome	localization	is	diverse	in	the	sperm	of	infertile	
patients, and infertile patients with more sperm that do not show acro-
some	localization	are	more	likely	to	achieve	a	good	outcome	by	natural	
pregnancy	or	IUI.	These	findings	suggest	that	ectopic	 localization	to	
the	acrosome	is	expected	to	be	an	aberrant	trait.	Thus,	COXFA4L3	can	
be used as a protein marker to evaluate abnormal sperm.

The sperm acrosome is essential for sperm binding and entry into 
oocytes.	Functional	acrosome-	deficient	sperm	result	in	very	low	fer-
tilization	rates	after	 ICSI37; therefore, a functional acrosome is es-
sential	for	fertilization	of	the	egg.	Acrosome	biogenesis	is	subdivided	
into four phases: Golgi, cap, acrosome, and maturation.38	 Several	
models	have	been	proposed	to	explain	the	origin	of	the	membrane	
components of the acrosome, either as direct Golgi derivatives39 or 
secretory granules.40	 However,	 the	 leading	 hypothesis	 is	 that	 the	
acrosome	 is	 a	 lysosome-	associated	 organelle.32,40 Recently, it was 
reported	that	the	mitochondrial	 inner	membrane	protein	ANT4	lo-
calizes	to	the	acrosome	in	mouse	spermatozoa.32 Together with our 
observations,	it	is	expected	that	the	inner	mitochondrial	membrane	
may contribute to acrosome formation, although its functional rel-
evance remains unclear.33	 MT-	CO1,	 COX6C,	 and	 COX4I1	 do	 not	

F I G U R E  2 Expression	of	COXFA4L3	
and	GAPDS	in	human	sperm	from	infertile	
patients.	(A)	GAPDS	and	COXFA4L3	
protein	expression	in	male	infertile	human	
sperm	samples	(YN-	1	to	YN-	6).	Glycolytic	
GAPDS	proteins	were	used	to	normalize	
their	protein	levels.	(B)	Relative	expression	
of	COXFA4L3	and	GAPDS	proteins	in	
human	sperm	samples	(based	on	YN1	
ratio).
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F I G U R E  3 COXFA4L3	and	GAPDS	localization	in	human	sperm.	(A)	Nuclei	were	stained	with	DAPI	and	acrosome	with	PNA-	Alexa	Fluor	
488.	GAPDS	and	COXFA4L3	were	visualized	using	the	corresponding	mAbs	labeled	with	Alexa	Fluor	546.	(B)	The	proportion	of	spermatozoa	
with	COXFA4L3	localized	in	the	acrosome	(N = 21).

F I G U R E  4 COX4I1	localization	in	human	sperm.	Nuclei	were	stained	with	DAPI	and	acrosome	with	PNA-	Alexa	Fluor	488.	COX4I1	was	
visualized	using	corresponding	monoclonal	antibodies	labeled	with	Alexa	Fluor	546.
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localize	 to	 the	 acrosome41	 and	 this	 report,	 whereas	 COXFA4L3	
does, suggesting that functional differences between these sub-
unit	proteins	may	influence	their	localization	to	the	acrosome,	even	
though	they	are	the	same	ETC	complex	4	proteins.

In recent years, the use of assisted reproductive technologies as 
a treatment for male infertility has increased year by year.42 These 
options	include	intrauterine	insemination	(IUI),	IVF,	and	ICSI.	Among	
them,	IUI	is	the	first	choice,	as	it	is	generally	noninvasive	and	safer.42 
IUI,	 which	 has	 been	 applied	 to	 infertility	 treatment	 since	 1957,43 
usually	 involves	 three	 to	 six	 cycles,	 making	 it	 time-	consuming	 to	
decide whether to proceed with alternative therapies. Therefore, 
several	 acceptable	 initial	 sperm	 qualities	 for	 IUI	 implementa-
tion, such as progressive motility rate44,45 and total motile sperm 
count,46–48	 have	 been	 proposed.	 A	 few	 reports	 have	 linked	 total	
sperm count47 and sperm morphology49	 to	 outcomes.	 Minimum	
sperm	quality	criteria	for	artificial	 insemination	and	IVF	treatment	
have been proposed; however, there is a high degree of variability,50 
and no reliable criteria have been established to date.51 Therefore, 
to avoid ineffective treatment, it is essential to know the relation-
ship	between	sperm	quality	and	pregnancy	before	IUI	and	to	decide	
whether to implement more advanced fertility treatments, such as 
artificial	 insemination	or	 ICSI.42,51 The current study showed that 
if	 the	proportion	of	 normal	 sperm	 (PNA-	positive	 and	COXFA4L3-	
negative	acrosomes)	is	more	significant	than	17%,	an	excellent	ther-
apeutic	 response	can	be	expected	during	spontaneous	pregnancy	
or	IUI.	These	results	may	be	useful	as	critical	prognostic	indicators	
of	IUI	success	and	as	early	indicators	for	deciding	whether	to	per-
form	more	invasive	and	costly	IVF	or	ICSI.

One limitation of this study was that only sperm specimens from 
infertile	male	patients	were	analyzed.	To	elucidate	the	cause	of	the	
acrosome	with	COXFA4L3,	it	is	necessary	to	compare	the	sperm	lo-
calization	between	infertile	and	normal	male	samples.	Moreover,	it	
may be possible to obtain statistically significant results by increas-
ing	the	sample	size.

5  |  CONCLUSION

This	study	confirmed	that	the	mitochondrial	protein	COXFA4L3	was	
ectopically	localized	in	the	human	sperm	acrosome.	This	combined	
sperm	parameter	of	 ectopic	 localization	and	acrosome	 functional-
ity may be helpful as a good prognostic indicator for patient selec-
tion	for	IUI	and	IVF/ICSI.	This	study	provides	a	novel	perspective	on	
human sperm formation and may facilitate the development of novel 
therapeutic strategies.
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