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Abstract

Imaging genetics analyses use neuroimaging traits as intermediate phenotypes to infer the degree 

of genetic contribution to brain structure and function in health and/or illness. Coefficients of 

relatedness (CR) summarize the degree of genetic similarity among subjects and are used to 

estimate the heritability – the proportion of phenotypic variance explained by genetic factors. 

The CR can be inferred directly from genome-wide genotype data to explain the degree of 

shared variation in common genetic polymorphisms (SNP-heritability) among related or unrelated 

subjects. We developed a central processing and graphics processing unit (CPU and GPU) 
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accelerated Fast and Powerful Heritability Inference (FPHI) approach that linearizes likelihood 

calculations to overcome the ~N2–3 computational effort dependency on sample size of classical 

likelihood approaches. We calculated for 60 regional and 1.3 × 105 voxel-wise traits in N = 

1,206 twin and sibling participants from the Human Connectome Project (HCP) (550 M/656 

F, age = 28.8 ± 3.7 years) and N = 37,432 (17,531 M/19,901 F; age = 63.7 ± 7.5 years) 

participants from the UK Biobank (UKBB). The FPHI estimates were in excellent agreement 

with heritability values calculated using Genome-wide Complex Trait Analysis software (r = 0.96 

and 0.98 in HCP and UKBB sample) while significantly reducing computational (102–4 times). 

The regional and voxel-wise traits heritability estimates for the HCP and UKBB were likewise 

in excellent agreement (r = 0.63–0.76, p < 10−10). In summary, the hardware-accelerated FPHI 

made it practical to calculate heritability values for voxel-wise neuroimaging traits, even in very 

large samples such as the UKBB. The patterns of additive genetic variance in neuroimaging 

traits measured in a large sample of related and unrelated individuals showed excellent agreement 

regardless of the estimation method. The code and instruction to execute these analyses are 

available at www.solar-eclipse-genetics.org.
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1. Introduction

Big data research initiatives - including the Human Connectome Project (HCP) and UK 

Biobank (UKBB) - collect comprehensive multimodal neuroimaging datasets and allow 

researchers to quantify genetic and environmental risk and protective factors that affect 

human brain in health and illness (Glasser et al., 2013; Van Essen et al., 2013). Genetic 

variance accounts for a significant proportion (20–90%) of functional and structural 

variability in human brain (Adhikari et al., 2017; Hulshoff Pol et al., 2006; Pennington 

et al., 2000; Pfefferbaum et al., 2000; Thompson et al., 2010). Heritability (h2) is defined 

as the degree of phenotypic variance explained by the additive genetic variance among 

participants. Classically, heritability is calculated using variance component models that 

use coefficients of relatedness (CR) to represent the shortest self-reported ancestral path 

for a pair of individuals as the degree of genetic variance shared among individuals. CR 

can also be calculated empirically from high-throughput genome-wide single nucleotide 

polymorphism (SNP) data, in which case the heritability measures the proportion of 

the observed variation explained by common SNPs (SNP-h2) (Kochunov et al., 2019a; 

Ramstetter et al., 2017; Speed et al., 2017; Toro et al., 2014; Wood et al., 2014; Yang 

et al., 2010). In family samples, the empirical CR tracks closely with self-reported values 

but provides more accurate estimates of heritability (Kochunov et al., 2019a). The SNP-

h2 can also be calculated in samples of unrelated individuals based on the phenotypic 

variance explained by small amounts of genetic similarity shared among participants 

(Yang et al., 2010). Here, we performed two sets of analyses: We first evaluated a 

novel Fast and Powerful Heritability Inference (FPHI) approach that accelerates classical 

variance component models using algorithmic and hardware approaches and compared the 

measurements to that of a commonly used SNP-h2 approach implemented in the Genome-
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wide Complex Trait Analysis (GCTA) software (https://cnsgenomics.com/software/gcta/). 

We compared heritability estimates for complex polygenic neuroimaging traits in a twin-

and-siblings sample collected by HCP and mainly unrelated sample provided by UKBB. 

We finally showed a good agreement in heritability estimates measured in UKBB and these 

reported by large meta-and-mega analyses performed by Enhancing Neuro Imaging Genetics 

through Meta-Analysis (ENIGMA) studies (Jahanshad et al., 2013; Kochunov et al., 2014).

We first set out to study an agreement in heritability estimates using empirical CR 

values by our novel FPHI approach implemented within the SOLAR-Eclipse software 

(www.solar-eclipse-genetics.org) and SNP-heritability measured using the GCTA software 

which pioneered the SNP-h2 measurements. SNP-h2 refers to the proportion of phenotypic 

variance explained by the individual variances in the SNP data collected from genotyping 

arrays. SNP-h2 values can be calculated using classical variance component such as 

these implemented in FPHI or fitting the linear model across all SNP as implemented 

in GCTA. It can also be calculated using linkage disequilibrium (LD) score regression 

(LDSR) approaches that use summary statistics for trait from a genome-wide association 

study analysis (GWAS) (Speed et al., 2012, 2017). All approaches have advantages and 

shortcomings regarding estimation bias, robustness, and computational efficiency. In this 

study, we did not consider LDSR because these analyses require performing GWAS analysis 

for a trait. LDSR analyses are practical when the summary statistics are already available. 

However, performing GWAS while correcting for the relatedness within a sample is a 

computationally formidable task, especially for voxel-wise traits. Both FPHI and GCTA uses 

algorithmic accelerations to make SNP-h2 calculation practical in the absence of GWAS 

summary statistics.

Classical heritability analyses use variance models that partition the phenotypic variance into 

the additive genetic and environmental components (See supplement for details) (Nayor et 

al., 2021). These models rely on the N × N matrix of CR values (where N is the sample 

size), known as the pedigree or kinship matrix to map the sharing of genetic variance 

among subjects. Traditionally, CR values were fixed to the theoretical values of the expected 

degree of autosomal genomic sharing for a given kinship type: 1 for the similarity with 

oneself, or with a monozygotic twin; 1
2  for parents, full siblings and dizygotic twins; 1

4
for grandparents or half-siblings; 1/8 for cousins; and 0 for unrelated individuals. However, 

with the development of genome-wide genotyping technologies, CR values can also be 

measured empirically by quantifying the similarity across genome or chromosomal SNP 

sets among the study participants. Comparisons of traditional versus empirical CR values 

show that there is variation in shared genetic variance around the traditional estimates and 

that seemingly unrelated individuals can have a non-zero degree of shared genetic variance 

(Kochunov et al., 2019a; Visscher et al., 2006, 2007). Neuroimaging traits have a complex 

polygenic architecture, and more precise estimation of the CR values can improve statistical 

power for genetic analyses (Kochunov et al., 2019a).

The general formulation of the classical variance component model, such as implemented 

in SOLAR-Eclipse/FPHI software, allows for the use of empirical CR matrix estimates of 

the genetic relatedness across a wide-range of related individuals (Kochunov et al., 2019a; 
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Zaitlen et al., 2013). Here, we evaluated the agreement among SNP-h2 values calculated by 

FPHI and by the GCTA software that was specifically developed for SNP-based heritability 

(Visscher et al., 2006, 2007). Our goal was to show that heritability values derived by FPHI 

and GCTA closely agree using data from samples such as the HCP and UKBB. However, 

the GCTA approach may not scale readily to large samples such as the UKBB due to its 

computational complexity and non-linear dependance of computational time versus pedigree 

size. The SOLAR-Eclipse FPHI approach uses software and hardware optimizations, 

including parallel CPU/GPU computing, to linearize likelihood estimation and achieves 

~105–6 performance improvement versus classical iterative likelihood approaches (Nayor et 

al., 2021). Here, we show that FPHI approach makes practical calculation of SNP-h2 values 

for calculation of high-resolution voxel-wise heritability maps.

SOLAR-Eclipse uses a Weighted Allelic Correlation (WAC) approach to calculate the 

empirical CR. The WAC–CR values provided more stable empirical heritability measures 

than those from other methods, including self-reported CR, although the differences were 

minor (Kochunov et al., 2019a). The WAC was developed to study the “missing heritability” 

of complex phenotypes and produces CR values that are weighted by minor allele frequency 

(MAF) using a parameter, α, with assigned values of 1, −1, or 0 (Speed et al., 2012, 

2017). A weighting of α = 1 calculates CR by up-weighting on common variants, whereas 

a weighting of α = −1 up-weights CR on the low MAF variants. The weighting of α = 

−1 was recommended for human studies based on empirical findings and simulations that 

show that it up-weights CR on the low MAF variants, reduces the bias and increases the 

precision of heritability estimation, while other α were found more appropriate for animal 

or plants genetics studies (Speed et al., 2012, 2017). However, in our prior research, we 

found very minor differences in the heritability estimates obtained with different α settings 

in imaging genetics analyses (Kochunov et al., 2015). The WAC approach produces a very 

dense N × N (where N is the sample size) pedigree matrix (Fig. 1). This is a computational 

challenge for traditional maximum likelihood estimate (MLE) calculation approaches. The 

MLE procedure requires multiple inversions of this matrix leading to an N2–3 computational 

complexity problem which makes Big Data analyses a formidable challenge (Blangero et al., 

2013).

In this study we present novel algorithmic developments that address a major roadblock to 

enable imaging genetics analyses in datasets as large as N > 35,000 based on our previous 

work on linearizing likelihood calculation (Blangero et al., 2013). We demonstrate that the 

classical quantitative genetics analyses can now be practical in large and inclusive datasets 

of unrelated individuals. We describe algorithmic solutions to take advantage of Central 

and Graphics Processing Units (CPU and GPU) computing. Our proposed method leads 

to improvements in the computational times while maintaining excellent agreement with 

results from other software (Blangero et al., 2013; Kochunov et al., 2019a, 2019b). Here, 

we demonstrated that empirical heritability measurement can be achieved in seconds using 

modern computational hardware, even in samples as large as the UKBB.
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2. Materials and methods

2.1. Participants

Human Connectome Project.—Heritability and genetic correlation analyses were 

performed on brain MRI scan data from N = 1206 (550 M/656 F; age = 28.8 ± 3.7 years) 

healthy individuals in the Human Connectome Project (HCP) (humanconnectome.org) 

for whom imaging and genetic data were released after passing the HCP quality 

control and assurance standards (Marcus et al., 2013). Details of this release may 

be found at (https://www.humanconnectome.org/study/hcp-young-adult/document/1200-

subjects-data-release). Participants in the HCP study were recruited from the Missouri 

Family and Twin Registry of individuals born in Missouri (Van Essen et al., 2013). The 

full set of inclusion and exclusion criteria are detailed elsewhere (Van Essen et al., 2013). 

All participants provided written informed consent on forms approved by the Institutional 

Review Board of Washington University in St. Louis.

UK BioBank.—The UK BioBank (UKBB) dataset included N = 37,432 individuals 

(17,531 M/19,901 F; age = 63.7 ± 7.5 years) whose imaging and genetic data were released 

from 2015 to 2021. The full set of inclusion and exclusion criteria are detailed elsewhere 

(Manolio et al., 2012). All participants provided written informed consent.

2.2. Genotyping

We used genotyping data provided by HCP and UKBB projects with minimal post-

processing as recommended by GCTA software manual. The genotyping data for the HCP is 

available through the dbGAP database (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs001364.v1.p1). Briefly, all participants were genotyped using the 

Illumina Multi-Ethnic Global Array (MEGA) SNP-array. This array provides extended 

coverage for European, East Asian, and South Asian populations. Overall, 1,580,642 SNPs 

satisfied the following quality control exclusion criteria: MAF < 1%, genotype call rate < 

95%, and Hardy–Weinberg equilibrium < 1 × 10−6.

Genotyping data for the UKBB was downloaded as version 3 imputed data from the 

UKBB showcase website. The protocol for genotyping, imputation and quality control 

is described in sections of the UK Biobank documentation (https://biobank.ndph.ox.ac.uk/

showcase/showcase/docs/genotyping_qc.pdf) and (https://biobank.ndph.ox.ac.uk/showcase/

showcase/docs/impute_ukb_v1.pdf). In summary, all participants were genotyped using the 

UKBB Axiom array from Affymetrix and imputed using Haplotype Reference Consortium 

(HRC) and UK10K haplotype resource. Overall, there were 8,521,984 SNPs remaining after 

the same exclusion criteria as used for HCP data.

2.3. Neuroimaging traits

We selected traits from four neuroimaging domains: cortical gray matter thickness, 

subcortical gray matter volumes, fractional anisotropy FA values of water diffusion 

measured for regions of interest (Table S1), and voxel-wise FA values for the whole-brain 

skeleton.
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HCP imaging data collection and preprocessing.—The HCP data was collected 

at Washington University, St. Louis, using a customized Siemens Magnetom Connectome 

3 Tesla scanner with a 100 mT/m maximum gradient strength and a 32-channel head 

coil. Details on the scanner, image acquisition, and reconstruction are provided elsewhere 

(Ugurbil et al., 2013) and found online at (https://www.humanconnectome.org/study/hcp-

young-adult/document/1200-subjects-data-release). Diffusion data was collected using a 

single-shot, single refocusing spin-echo, echo-planar imaging sequence with 1.25 mm 

isotropic spatial resolution (TE/TR = 89.5/5520 ms, FOV = 210 × 180 mm). Three gradient 

tables of 90 diffusion-weighted directions and 6 b = 0 images each, were collected with 

right-to-left and left-to-right phase encoding polarities for each of the three diffusion 

weightings (b = 1000, 2000, and 3000 s/mm2). The diffusion data were then processed 

using the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) pipeline 

for structural and diffusion tensor imaging, including skeletonized voxel-wise FA values 

(Jahanshad et al., 2013).

UKBB imaging data collection and preprocessing.—The UKBB imaging data 

were collected using three sites each equipped with a Siemens Skyra 3T scanner and 

32-channel RF head coil with high resolution T1-weighted (resolution = 1 × 1 × 1 mm, 

FOV = 208 × 256 × 256, duration = 5 min, 3D MPRAGE, sagittal, in-plane acceleration 

iPAT = 2, prescan-normalize). Diffusion data was acquired with the following parameters: 

a resolution = 2 × 2 × 2 mm and two diffusion-weighted shells with all 100 distinct 

diffusion-encoding directions, 5 b = 0 images, 50x b = 1000 and 2000 s/mm2, FOV = 

104 × 104 × 72, and a 7-minute duration. The data were extracted using the UKBB 

workflow and processed using the UKBB processing pipeline (https://git.fmrib.ox.ac.uk/

falmagro/UK_biobank_pipeline_v_1).

We used average regional and skeletonized imaging data provided by the UKBB. The 

skeletonized data were extracted using the UKBB workflow. More information on 

the scanner, image acquisition, and processing are all recorded in the UKBB Brain 

Imaging Documentation (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) 

(Alfaro-Almagro et al., 2018; Miller et al., 2016). All data were preprocessed prior to FPHI 

and GCTA analyses to reduce potential confounding of different approaches these tools 

may use for regression the effects of covariates. We used SOLAR-Eclipse mega-analysis 

data normalization pipeline to regress effects of age, sex and scan site (for UKBB data) 

and saving the residuals (Kochunov et al., 2014). This was followed with the inverse 

normal transformation was used to ensure the multivariate normal distribution of the traits 

(Kochunov et al., 2014, 2019a).

2.4. Assessment of empirical relatedness

SOLAR-Eclipse uses CR (ri,j) (twice the coefficients of kinship) to represent the probability 

that two alleles from individuals i and j are identical by descent. The coefficient of 

relationship is a function of identity by descent sharing statistics, ri,j = π1i,j/2 + π2i,j, 

where π1i,j and π2i,j are the probabilities that two individuals share one and two alleles 

through a common ancestry. Empirical ri,j were calculated using methods implemented in 

the SOLAR-Eclipse software (www.solar-eclipse-genetics.org). The pedifromsnps function 
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uses the allelic data stored in a PLINK file as the input and produces a pedigree file. We 

calculated empirical ri,j using weighted allelic correlation (WAC) (Hayes et al., 2009). This 

function is implemented for GPU computing in the gpu_pedifromsnps function. Relatedness 

was calculated using Eq. (1):

ϕij = 1
m ∑

k = 0

m SN Pik − 2μk SN Pjk − 2μk
2μk 1 − μk

(1)

where ϕij is the genetic relationship matrix (GRM)/empirical kinship matrix value between 

individual i and individual j. m is the total number of SNP loci that are not missing values 

for both individual i and individual j. SNPik and SNPjk are allelic scores (0, 1 or 2) for the 

k-th SNP in individuals i and j. μk is the frequency of the k-th major allele.

2.5. Comparison of pedigree power: expected likelihood ratio test (ELRT)

The ELRT method is used by SOLAR-Eclipse software to evaluate the statistical power 

of a pedigree for heritability analysis and to compare power between two pedigrees. This 

function is based on the functionality proposed by (Blangero et al., 2013) and further 

generalized by (Raffa and Thompson, 2016). The ELRT is defined as the expectation of 

twice the difference of the log-likelihoods evaluated at the true parameter and several 

different null-parameter values, respectively (Raffa and Thompson, 2016). It uses Taylor 

series approximations to summarize the relatedness in a pedigree to accurately approximate 

the expectation of the likelihood ratio test and expected confidence interval widths (Raffa 

and Thompson, 2016).

2.6. Analysis of additive genetic variance: heritability

The algorithms used to estimate variance components employ a variance decomposition 

approach based on an extension of the strategy developed by (Amos, 1994) and optimized 

for parallel computing and coded as the fphi function. The multivariate normal covariance 

matrix Ω for a pedigree of individuals is given by Eq. (2):

Ω = 2σg2Φ + σe2I (2)

where Φ is the empirical kinship matrix among all participants, σe
2 is the variance caused 

by environmental effects and measurement errors, and I is an identity matrix under the 

assumption that all environmental effects are uncorrelated among family members.

Heritability (h2) is the proportion of the total phenotypic variance (σp
2) that can be explained 

by the additive effects of genes (σg
2):

ℎ2 = σg2

σP
2 (3)

The fphi function uses algorithmic developments to reduce the computational burden of 

heritability measurements (see supplement). This approach uses eigenvalue decomposition 

of the empirical kinship matrix, Φ (Blangero et al., 2013), and then performs one-step 
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asymptotically unbiased MLE estimation (Ganjgahi et al., 2015). The variance parameters 

are estimated by comparing the observed phenotypic covariance matrix with the covariance 

matrix predicted by kinship (Almasy and Blangero, 1998). Significance of heritability is 

assessed using a likelihood-ratio test, which compares the maximum likelihood with the 

likelihood estimation in which σg
2 is constrained to zero in the model. Twice the difference 

between the log-likelihoods of these models yields a test statistic, which is a 1/2:1/2 mixture 

of an asymptotic χ2 distribution with 1°-of-freedom and a point mass at zero.

2.7. GCTA analysis

We compared the heritability values estimated using FPHI to those estimates using the 

restricted MLE approach used within GCTA (Lee et al., 2011; Yang et al., 2010). The GCTA 

approach estimates the proportion of the variance of the phenotype that is explained by the 

genome-wide genotypic data, or in this case, SNPs. Specifically, the variance is estimated by 

fitting the following linear mixed model, in Eq. (4):

y = Xβ + Φu + ε (4)

υar(y) = σg2G + σε2I (5)

where y is the vector of phenotypes, β is the vector of fixed effects of covariates to be 

adjusted, Φ is the matrix of the coefficients of relatedness and u is the vector of random 

effects from SNPs with u n 0, σu2I , ε is the vector of residual effects with ε n 0, σε2I , G = 

ϕϕ′/m, where m is the number of SNPs.

GCTA also estimates the GRM using the WAC approach (Eq. (1)). The variance explained 

by the genotypic data used in the analyses, σg2 = mσu2, is estimated using the genomic-

relatedness-based restricted maximum likelihood (GREML) approach. The heritability can 

then be estimated as: ℎ2 = σg2/ σg2 + σε2 , the proportion of total phenotypic variance that is 

due to additive genetic effects. The iterative REML approach performs an inversion of the 

Φ matrix at every iteration. Φ is a dense matrix and the computational complexity of this 

operation is a function of ~N2–3, where N is the number of subjects. This computational 

effort of iterative likelihood calculations becomes non-trivial for very large-scale studies 

such as the UKBB (N = 500,000 and growing).

2.8. Timing analysis: FPHI versus GCTA and FPHI CPU versus FPHI GPU

Large-scale imaging genetic analyses such as voxel-wise heritability calculations in large 

datasets, such as the UKBB, may benefit from modern computational hardware. The highly 

parallel and non-iterative nature of the SOLAR-Eclipse FPHI algorithms calls for efficient 

implementation using modern hardware optimized for massively parallel computations (see 

supplement). Here, we tested the timing of trait-wise analyses for FPHI and GCTA, and the 

voxel-wise analysis between CPU and GPU versions of the FPHI. The voxel-wise analyses 

were not tested with GCTA due to very long (estimated several years) calculation times. We 

used a Lenovo computer with 256 GB of RAM and equipped with a dual Intel Xeon Gold 
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6150 processor with 18 cores running at 2.7 GHz (36 cores in total) and a Tesla P100 GPU 

card with 3584 cores and 16 GB of GPU RAM.

3. Results

3.1. Empirical pedigrees: HCP and UKBB

As expected, the HCP pedigree had a higher average CR than that of the UKBB (Fig. 1A). 

However, ELRT analysis indicated that the UKBB pedigree had higher statistical power for 

heritability studies. The power of a pedigree is proportional to both the average relatedness 

among the subjects and the N and therefore the large UKBB sample provided more power 

than the HCP sample (Fig. 1B).

3.2. SOLAR-Eclipse vs GCTA

The scatter plots of the heritability estimates showed an excellent agreement (overall 

regression r = 0.96 and 0.98, p < 10−10) between the h2 values estimated from FPHI and 

GCTA in both the HCP and UKBB samples (Fig. 2A and B, Table S1; see supplement). 

The heritability estimates by FPHI and GCTA showed no significant differences in the HCP 

(average h2 = 0.72 ± 0.15 versus. 0.70 ± 0.18, paired t-test p = 0.1). However, the average 

FPHI h2 estimates were higher than GCTA-derived h2 values in the UKBB (average h2 = 

0.36 ± 0.08 versus 0.29 ± 0.07, paired t-test p < 10−10).

3.3. Regional and voxel-wise heritability in the HCP versus UKBB

The regional heritability analyses showed good agreement between HCP and UKBB (Fig. 

2C and D) when calculated using FPHI (overall linear regression r = 0.76, p < 10−10) and 

GCTA (overall linear regression r = 0.75, p < 10−10). However, the heritability estimates in 

UKBB were approximately 50% lower than those for HCP (average h2 = 0.36 ± 0.08 versus 

0.72 ± 0.15, paired t-test p < 10−10).

The plot of voxel-wise heritability values of skeletonized FA values for 32,215 voxels that 

overlapped between UKBB and HCP skeletons is shown in Fig. S1 (see supplement). 

Overall, the regional pattern of heritability showed a good agreement (overall linear 

regression r = 0.76, p < 10−10). However, the voxel-wise heritability estimates in the UKBB 

sample were lower than those for HCP (average h2 = 0.16 ± 0.08 versus h2 = 0.25 ± 0.16, 

paired t-test p < 10−10 for UKBB and HCP, respectively).

3.4. Regional white matter heritability: UKBB versus. ENIGMA

ENIGMA has published regional white matter heritability meta- and mega- analytical 

multi-site estimates from a multi-site heritability analysis. The FPHI and GCTA heritability 

estimates for white matter tracts in UKBB showed good agreement with the published 

values (linear regression r = 0.76–0.82, p < 0.01) (Fig. 3A and B). The heritability estimates 

in the UKBB were approximately 60% of the h2 values reported in ENIGMA (average h2 

= 0.42 ± 0.05 versus h2 = 0.67 ± 0.09, paired t-test p < 10−10 for UKBB and ENIGMA, 

respectively).
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3.5. Timing of heritability analyses

FPHI-CPU analyses in the HCP required ~0.02 ± 0.01 s per trait versus 3.0 ± 0.10 s per trait 

for GCTA. The heritability analyses of regional phenotypes in the UKBB took about 1.1 ± 

0.10 s per trait using FPHI-CPU and 2046 ± 470 s for GCTA.

The timing of voxel-wise analyses was limited to FPHI due to the long execution time of 

GCTA (estimated ~7 years for UKBB analyses). We performed a timing analysis for the 

CPU and GPU versions of FPHI in SOLAR-Eclipse. The FPHI-CPU voxel-wise heritability 

analyses took approximately 2 min for HCP and 22 h for UKBB. The FPHI-GPU version 

took approximately 36 s for HCP and 58.33 min for UKBB. The scaling of computational 

burden with respect to the number of participants (N) was approximately linear for both 

CPU and GPU versions of FPHI versus ~N2–3 for GCTA.

4. Discussion

We compared the estimates of SNP-heritability (SNP-h2) derived using a classical variance 

component model and empirical coefficients of relatedness (CR) with the SNP-h2 estimated 

from an independent analytic approach using samples of related (Human Connectome 

Project) and unrelated (UK Biobank) genetic imaging datasets. We showed that heritability 

estimates obtained using the SOLAR-Eclipse Fast and Powerful Heritability Inference 

(FPHI) method that was developed to linearize the calculations of the classical heritability 

model were in good agreement with the estimated provided by the established SNP-h2 

software - Genome-wide Complex Trait Analysis (GCTA) (Visscher et al., 2006, 2007). 

We demonstrated an excellent agreement between SNP-h2 values calculated using the FPHI 

and GCTA and between the results from the HCP and UKBB cohorts, as well as estimates 

in the UKBB and these reported by the meta-and-mega analysis of heritability studies 

performed by Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) 

consortium. Overall, our findings demonstrated good agreement among genetic contribution 

to neuroimaging traits regardless of the study/sample design. The small degree of shared 

genotypic variance in sufficiently large samples such as UKBB can enable standard 

heritability analyses. We discussed the finding of lower heritability estimates in UKBB 

versus HCP and attributed it to several well-known factors. Nonetheless, the patterns of 

additive genetic contribution across the brain were consistent and readily replicable across 

diverse samples and study designs.

Modern, genetic panels provide the opportunity to directly measure the genetic sharing 

between any two individuals in a study and calculate the relatedness matrix using empirical, 

rather than self-reported coefficients of relatedness (CR). Prior work demonstrated that 

heritability values derived using the empirical CR had better confidence intervals and 

lower p-values as compared to those from analyses using self-reported CR and recommend 

this approach for genetic analyses in related samples (Kochunov et al., 2019a). GCTA 

approaches were specifically developed to estimate SNP-h2 using from unrelated individuals 

(Visscher et al., 2006, 2007). However, the SNP-h2 estimates by GCTA were shown to be 

accurate for related samples (Zaitlen et al., 2013). Here, we confirmed that the two methods 

provided highly consistent (r ~0.9) heritability estimates in datasets of related and unrelated 

individuals.
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We demonstrated significant heritability for a series of neuroanatomical phenotypes that 

cover structural and diffusion properties of the human brain. We observed an excellent 

(r = 0.7–0.8) agreement in the regional genetic variance across the brain between the 

HCP and UKBB datasets despite the differences in the study design (twin-siblings versus 

unrelated), sample size (N = ~1000 versus ~37,000) and sample characteristics such as 

differences in average age (28.8 ± 3.7 versus 63.7 ± 7.5 years for HCP and UKBB 

respectively) and imaging protocols. The HCP imaging protocol was focused on collecting 

data at twice (structural) to four (diffusion) times higher spatial resolution than the UKBB 

images. Despite the differences in protocols, we observed good agreement in the patterns 

of heritability values among the HCP, UKBB, as well as data published by ENIGMA. This 

demonstrates that the substantial genetic variance influencing individual differences in brain 

structure can be readily and consistently measured across diverse samples, study designs, 

imaging protocols, and software approaches. Importantly, the agreement in the patterns of 

heritability between UKBB and HCP data provides an opportunity to exploit the greater 

statistical power of large and inclusive samples such as UKBB for the classical genetic 

analyses that were previously limited to twins, siblings, and extended pedigree samples.

Despite the excellent agreement in regional patterns, the heritability estimates for the 

neuroimaging traits in the HCP cohort were approximately twice those (average h2 = 

0.72 versus 0.36) observed in the UKBB sample, and for white matter approximately 

40% smaller than ENIGMA (average h2 = 0.42 versus 0.67). Likewise, the voxel-wise 

heritability estimates for the HCP cohort were ~60% higher than those calculated in the 

UKBB. These absolute differences were independent of the software used to estimate 

heritability. The SNP-h2 values depend on study design, sample characteristics, and the 

fidelity and ‘closeness’ of the trait to underlying genetic processes. The higher heritability of 

the neuroimaging traits in the HCP cohort is likely to be the product of three factors: study 

design, sample differences, and quality of the imaging data. Heritability is the proportion of 

the variance attributed to the additive genetic variance after correction for covariates. In the 

HCP sample, we found that sex was the only significant covariate. The HCP sample was 

designed to reduce the effects of age on the brain measurements by limiting recruitment to 

an age range that corresponds to a plateau in the brain-aging-versus-development trend (22–

35 years) (Kochunov et al., 2011; Van Essen et al., 2013). The focus of UKBB study is on 

the aging-related disorders, and the age effects were highly significant for all neuroimaging 

traits in this sample. The lack of aging effects in HCP subjects is the first likely contributor 

to the higher heritability estimates. The genotype-by-age interaction during aging observed 

in studies that recruit subjects across the lifespan, can significantly reduce heritability 

estimates (Batouli et al., 2013; Brouwer et al., 2012, 2020; Glahn et al., 2013).

The HCP study used a twin-sibling recruitment design. Heritability estimates obtained using 

this study design are typically higher than heritability estimates obtained other study designs 

such as extended-family-based pedigrees or unrelated samples (Kochunov et al., 2014; 

Manolio et al., 2009). For instance, heritability measurements of regional white matter traits 

using self-reported CR HCP were ~20% higher than these estimates reported by ENIGMA 

studies that combined heritability estimates for cerebral white matter across several world-

wide cohorts using meta-analytical and mega-analytical aggregation (Jahanshad et al., 2013; 

Kochunov et al., 2015). One potential explanation is that the phenotypic variance in complex 
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polygenic traits such as neuroanatomical measurements is also controlled by the heritable 

epigenetic regulation. This variance is accounted for via study design in the twin-siblings 

design but less so in extended family and cannot be accounted for in the unrelated sample 

design (Manolio et al., 2009). One other potential cause of missing heritability is shared 

early life environment that may shape neuroanatomical traits (Workalemahu et al., 2018). 

In addition, though there is little variance in age between siblings and none within twin 

pairs, there is a large variation in the differences in age between pairs of individuals 

in samples such as the UKBB. Although age is included as a covariate in the model, 

this correction does not correct for the difference in age between individuals and the 

impact of this on phenotypic covariance. There is also a possibility that the difference in 

dataset demographics influences the heritability measures. While there is some variance in 

ancestry within the UKBB dataset it is a much lower proportion than in the HCP data. The 

difference in minor allele frequencies between datasets due to these ancestral differences 

could contribute to the higher heritability within the HCP results, however, this is likely 

a small contribution as the heritability estimates using self-reported and empirical values 

showed only minor differences (Kochunov et al., 2015). Lastly, the higher quality of the 

HCP imaging data likely reduces the measurement error and thus contributes to higher 

heritability estimates. We note the remarkable agreement in the overall patterns of the 

regional heritability estimates between the UKBB, HCP, and ENIGMA samples, which 

argues for the suitability of the UKBB for next-generation genetic analyses focused on 

understanding imaging genetic networks in complex illnesses.

The SOLAR-Eclipse FPHI is an extension of the standard variance component model that 

has served the biomedical genetics community for over seven decades. Empirical relatedness 

is a logical extension of this method, allowing the estimation of additive genetic variation 

captured by SNP arrays and informative of the genetic architecture of complex traits (Yang 

et al., 2010). The highly parallel nature of the FPHI algorithm allows for implementation 

using modern hardware optimized for massively parallel computations of voxel-wise 

datasets in samples as large as the UKBB. The FPHI code was implemented using linear 

algebra software libraries that optimize the code for parallel scientific computing in CPU 

and GPU environments (see supplement section for algorithmic details). This provided a 

102–4 -fold acceleration in heritability analyses versus GCTA, which makes the approach 

especially valuable for studies using data from the UKBB (N = 500,000 and growing). The 

progress of methodological developments in imaging genetics enables the transition from an 

interrogation of only a few traits to massive voxel-wise analyses in order to study regional 

variations in genetic influences across the brain.

5. Limitations

Empirical CR methods also have a few limitations. The threshold for empirical CR was 

set at 0 because WAC can produce negative CR values for some unrelated individuals. The 

negative CR reflect violations of Hardy-Weinberg equilibrium, i.e. ancestral differences 

in linkage disequilibrium structures, overlapping generations, and deviations from the 

assumption that genotype frequencies in a population will remain constant from generation 

to generation (Visscher et al., 2007). GCTA, conversely, retains negative values in the 

analysis to prevent biases in the iterative likelihood calculations (Visscher et al., 2007). 
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However, we believe that this is a minor limitation, as both methods provided very similar 

heritability estimates. Empirical CR estimation is sensitive to both the content and quality 

of genotyping, and this may alter the heritability results. For instance, allowing for more 

rare variants in the GCTA software led to failure of algorithmic convergence for many traits. 

Another limitation of this study was the large difference in the number of SNPs between the 

dataset, as the HCP data were not imputed in accordance with the GCTA guidelines while 

the only available data from the UKBB had already been imputed. However, we feel that this 

had little impact on our results and further exemplifies how well the SOLAR FPHI methods 

agree with the established GTCA methods.

6. Conclusion

We show that heritability measurements for complex neuroimaging traits based on 

empirically measured genetic variance among the largely unrelated participants in the 

UKBB sample were in agreement with those measured in the twin- and family-based 

HCP sample. This agreement was observed for both region-based and voxel-wise traits. We 

likewise observed an excellent agreement between empirical heritability values derived by 

SOLAR-Eclipse and SNP-h2 values calculated by the GCTA software, suggesting stability 

of these estimates independent of the analytic methods. Overall, this suggests that large and 

inclusive samples of unrelated individuals such as data collected by the UKBB can be used 

to estimate the proportion of phenotypic variance explained by additive genetic factors.
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Refer to Web version on PubMed Central for supplementary material.
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CPU central processing unit

GPU graphics processing unit

FPHI Fast and Powerful Heritability Inference

GCTA Genome-wide Complex Trait Analysis

UKBB UK Biobank

HCP Human Connectome Project

h2 heritability

SNP single nucleotide polymorphism

WAC weighted allelic correlation

MAF minor allele frequency

MLE maximum likelihood estimation

MEGA Multi-Ethnic Global Array

FA fractional anisotropy

GRM genetic relationship matrix

ELRT expected likelihood ratio test

ENIGMA Enhancing Neuro Imaging Genetics through Meta-Analysis

GREML genomic-relatedness-based restricted maximum likelihood
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Fig. 1. 
A. Heatmaps of the UKBB and HCP pedigrees.

The heatmaps present CR values between individuals in pedigrees. The color bar reflects 

negative and positive CR values in the heatmaps. The diagonal is CR between the same 

individual.

B. The ELRT power curves for the HCP and UKBB samples.

The blue and red dots indicate expected likelihood ratio test (ELRT) at specific null-

heritability values for the UKBB and HCP, respectively.
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Fig. 2. 
A. Scatter plot of the HCP FPHI estimates calculated using empirical kinship versus HCP 

GCTA estimates calculated using GREML for 60 neuroimaging phenotypes.

Linear regression models were fitted to the HCP heritability estimates using the FPHI and 

GCTA methods, including fit lines, equations, and coefficient of determinations (R2). The 

blue solid line is an overall linear regression fit between two heritability methods across all 

phenotypes in the HCP. The green dashed lines, red dashed lines and orange dashed lines 

represent linear regression fits between two heritability methods in cortical thickness, white 

matter FA and subcortical volume, respectively. The black dashed lines are identity lines.

B. Scatter plot of the UKBB FPHI estimates calculated using empirical kinship versus 

UKBB GCTA estimates calculated using GREML for 60 neuroimaging phenotypes.
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Linear regression models were fitted to the UKBB heritability estimates using the FPHI and 

GCTA methods, including fit lines, equations, and coefficient of determinations (R2). The 

blue solid line is an overall linear regression fit between two heritability methods across all 

phenotypes in the UKBB. The green dashed lines, red dashed lines and orange dashed lines 

represent linear regression fits between two heritability methods in cortical thickness, white 

matter FA and subcortical volume, respectively. The black dashed lines are identity lines.

C. Scatter plot of the UKBB FPHI estimates calculated using empirical kinship versus the 

HCP FPHI estimates calculated using empirical kinship for 60 neuroimaging phenotypes.

Linear regression models were fitted to the UKBB and HCP heritability estimates using 

the FPHI method, including fit lines, equations, and coefficient of determinations (R2). The 

blue solid line is an overall linear regression fit between two groups across all phenotypes. 

The green dashed lines, red dashed lines and orange dashed lines represent linear regression 

fits between two groups in cortical thickness, white matter FA and subcortical volume, 

respectively. The black dashed lines are identity lines.

D. Scatter plot of the UKBB GCTA estimates calculated using GREML versus the HCP 

GCTA estimates calculated using GREML for 60 neuroimaging phenotypes.

Linear regression models were fitted to the UKBB and HCP heritability estimates using 

the GCTA method, including fit lines, equations, and coefficient of determinations (R2). 

The blue solid line is overall linear regression between two groups across all tracts. The 

blue line is an overall linear fits regression between two groups across all phenotypes. The 

green dashed lines, red dashed lines and orange dashed lines represent linear regression 

fits between two groups in cortical thickness, white matter FA and subcortical volume, 

respectively. The black dashed lines are identity lines.
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Fig. 3. 
A. Scatter plot of the UKBB FPHI estimates versus ENIGMA for 16 white matter FA.

Linear regression models were fitted to the heritability estimates from the FPHI and 

published heritability estimates from ENIGMA for 16 white matter phenotypes in 

the UKBB. The linear regression fits include fit lines, equations, and coefficient of 

determinations (R2). The black dashed lines are identity lines.

B. Scatter plot of the UKBB GCTA estimates versus ENIGMA for 16 white matter FA.

Linear regression models were fitted to the heritability estimates from the GCTA and 

published heritability estimates from ENIGMA for 16 white matter phenotypes in 

the UKBB. The linear regression fits include fit lines, equations, and coefficient of 

determinations (R2). The black dashed lines are identity lines.
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