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Abstract

Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal  tissues. In vitro, MSCs have the capac-
ity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by
modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biolo-
gy of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-
mediated autoimmune destruction of pancreatic �-cells. While insulin replacement remains the cornerstone treatment for type 1 dia-
betes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by
the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand,
MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by
genetic modification and/or defined culture conditions in vitro. On the other hand, MSCs are able to serve as a cellular vehicle for the
expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from
stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next,
we consider MSCs as surrogate �-cell source for islet transplantation, and present some basic requirements for these replacement cells.
Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed. 
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Introduction
Mesenchymal stem cells (MSCs) were first identified by
Friedenstein and his colleagues [1], who described bone-forming
progenitor cells from rat bone marrow. In addition to postnatal
bone marrow, MSCs can also be isolated from adipose tissues,
foetal  liver, blood, bone marrow, lung, cord blood, placenta and
umbilical cord [2–7]. Several lines of evidence have shown that 

under appropriate environments, MSCs are able to differentiate into
mesodermal, endodermal and even ectodermal cells. Another
intriguing feature of MSCs is that they escape immune recognition
and inhibit immune responses, consequently are called hypoim-
munogenic cells. Therefore, MSCs appear to be a very promising
tool for regenerative and immunoregulatory cell therapy.
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Diabetes mellitus is a devastating metabolic disease, which
falls into two categories. Type 1 diabetes results from autoim-
mune-mediated destruction of � cells in the islets of Langerhans
of the pancreas, while type 2 diabetes is due to systemic insulin
resistance and reduced insulin secretion by islet � cells. In com-
parison with conventional or intensive insulin treatment, islet
transplantation is the only therapy for type 1 diabetes that
achieves an insulin-independent, constant normoglycemic state
and avoids hypoglycemic episodes. However, the application of
this treatment is restricted by the limited availability of primary
human islets from heart-beating donors. Some recent studies
indicate that MSCs can differentiate into insulin-producing cells by
genetic and/or microenvironmental manipulation in vitro. Thus,
MSCs provide an alternative �-cell source for islet transplantation. 

In this review, we will summarize the major biological features
of MSCs, and their possible applications in the treatment of type 1
diabetes.

Biological characterization of 
mesenchymal stem cells

Isolation and culture of human MSCs

Standard conditions for generation of bone marrow derived mes-
enchymal stromal cultures have been reported [8, 9]. However, the
property of plastic adherence itself is not sufficient to obtain puri-
fied MSCs, some investigators have tried different methods for iso-
lation of homogenous cell populations [10, 11]. Besides adult bone
marrow, researchers in our laboratory have also successfully iso-
lated MSCs from other origins such as foetal  lung [12], pancreas,
skin, muscle, bone marrow, cord blood and umbilical cord [13].
MSCs in culture have a fibroblastic morphology and adhere to the
tissue culture substrate. Under current in vitro culture conditions
MSCs obtained from young donors can grow to 24–40 population
doublings and the proliferative potential of the cells obtained from
older donors is more compromised [14]. Afterwards, MSCs enter
growth arrest, a phenomenon termed replicative senescence [15].
Replicative senescence is a common characteristic of cultured
diploid cells, it is caused by several factors including progressive
telomere shortening during continuous subculture in vitro [14, 16]
due to absence of telomerase activity [17, 18]. Some studies have
demonstrated that forced ectopic expression of human telomerase
reverse transcriptase (hTERT) in MSCs can dramatically extend
their lifespan to �260 population doublings, while maintaining
their osteogenic, chondrogenic, adipogenic, neurogenic and stro-
mal differentiation potential [17, 19, 20]. Thus, telomerase activa-
tion is a potential strategy for obtaining large number of biological-
ly competent MSCs for clinical application. Unexpectedly, the
extensive cell proliferation in vitro led to genetic instability and
resulted in MSCs transformation [21]. It seems that controllable
expression of hTERT gene is very necessary.

Phenotypic properties of MSCs

Considerable progress has been made towards characterizing the
cell surface antigenic profile of human bone marrow-derived MSC
populations using fluorescence activated cell sorting (FACS) and
magnetic bead-sorting techniques. Nevertheless, to date there is
no specific marker or combination of markers that specifically
identifies MSCs. Therefore, MSCs have been defined by using a
combination of phenotypic markers and functional properties. It is
generally agreed that adult human MSCs express Stro-1 [10,
22–23], CD105 (SH2) [24] and CD73 (SH3/4) [25] as well as
some cell adhesion molecules including integrins (�1, �2, �3, �5,
�6, �V, �1, �3, �4) [26], intercellular adhesion molecule-1, -2
(ICAM-1,-2), vascular cell adhesion molecule-1 (VCAM-1), lym-
phocyte function-associated antigen 3 (LFA-3), CD72, and activat-
ed leucocyte-cell adhesion molecule (ALCAM) [9, 27, 28–30].
They also express human leucocyte antigen (HLA) class I but not
class II molecules on cell surface [31]. Additionally, MSCs lack the
expression of typical haematopoietic  antigens CD45, CD34 and
CD14 [27]. (See Table 1 for details).

Multi-potent differentiation of MSCs

A large number of studies demonstrate that bone marrow-derived
MSCs from human, canine, rabbit, rat and mouse have the capac-
ity to differentiate into mesenchymal tissues both in vitro and in
vivo, including bone [8, 32], cartilage [33], fat [34, 35], tendon
[36, 37], muscle [38, 39] and haematopoietic supporting stroma
[35]. In addition, MSCs can differentiate into tissues of ectodermal
(e.g. neurons) [40] and endodermal (e.g. hepatocytes) origin [41]. 

Individual colonies derived from single MSC precursors have
been reported to be heterogeneous in terms of their multi-lineage
differentiation potential [27, 42]. The heterogeneity of adult MSCs
could be explained by the notion that in bone marrow, the MSC
pool comprises not only putative MSCs, but also subpopulations
at different stages of differentiation. Notwithstanding the multi-
potentiality of MSCs is a basis for using them to generate differ-
ent cells and tissues for replacement therapy, the molecular mech-
anisms that govern MSCs differentiation are incompletely under-
stood. Based on the genetic and genomic information provided by
various studies, Baksh et al. [43] propose a model for the regula-
tion of adult stem cell differentiation, which incorporates two con-
tinuous yet distinct compartments (‘stem cell compartment’ and
‘commitment compartment’). The commitment and differentiation
of MSCs to specific mature cell types is a tightly and temporally
controlled process, involving the activities of various transcription
factors, cytokines, growth factors, and extracellular matrix mole-
cules. Global gene expression profiling using DNA microarray
technology has already been used successfully to identify genes
that regulate osteogenic, adipogenic and chondrogenic differenti-
ation of MSCs [44, 45], which has greatly facilitated our effort to
elucidate the mechanism controlling adult stem cell differentiation.
The traditional view of linear hierarchical progression of stem cells
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from one differentiation stage to the next during their phenotypic
determination has been challenged by the recent findings [46–48].
Using an in vitro differentiation strategy, Song et al. [49] showed
that MSC-derived, fully differentiated osteoblasts, adipocytes and
chondrocytes can switch their phenotypes to other mesenchymal
lineages in response to specific extracellular stimuli. Taken together,
it could be concluded that both pre-committed progenitor cells
and terminally differentiated cells retain the multi-potency, and
that their plasticity can be preserved during differentiation and
be required under defined, appropriate microenvironmental 
circumstances. 

Immunomodulatory effects of MSCs

MSCs have been shown to suppress immune reactions both in
vitro and in vivo in a non-MHC  restricted manner [50]. These
stem cells are considered to be hypoimmunogenic, displaying
low expression levels of HLA class I and no expression of costim-
ulatory molecules, such as B7-1 (CD80), B7-2 (CD86) and CD40
[26, 51, 52]. In vitro, MSCs are able to suppress T lymphocyte
proliferation induced by alloantigens [50, 51, 53, 54], mitogens
[50, 55–58], as well as activation of T cells by CD3 and CD28
antibodies [51, 59, 60]. Suppression of T cell proliferation by
MSCs has no immunological restriction, similar suppressive
effects being observed with cells that were autologous or allo-
geneic to the responder cells [50, 52, 53, 61]. Another level at
which MSCs modulate immune responses is through the induc-
tion of regulatory T cells. MSCs have been reported to induce for-
mation of CD8� regulatory T cells that were responsible for inhi-
bition of allogeneic lymphocyte proliferation [58]. Furthermore,
an increase in the population of CD4�CD25� regulatory T cells
has been demonstrated in mitogen-stimulated peripheral blood
mononuclear cell (PBMCs) cultures in the presence of MSCs
[60–61]. However, depletion of CD4�CD25� regulatory T cells
had no effect on the suppression of T cell proliferation by MSCs
[59]. Apart from naive and memory T cells [59], MSCs can also
inhibit several functions of B cells [62], natural killer cells [63, 64]
and monocyte-derived dentritic cells [65, 66]. Although the exact
mechanism underlying the immunosuppressive effects of MSCs
has not been fully clarified, most studies supported that soluble
factors are involved. These factors include transforming growth
factor (TGF)-�1 [56, 67], hepatocyte growth factor (HGF) [56,
63], prostaglandin E2 (PGE2) [60, 63] and indoleamine 2,3-
dioxygenase (IDO) [68–70]. Additionally, it is well-established
that IFN-� plays an important role in the enhancement of MSCs’
suppressive activity [31, 60, 68, 69]. 

The immunomodulatory capacity of MSCs has also been eval-
uated in vivo. First, intravenous administration of MSCs derived
from BM of baboons prolonged the survival of allogeneic skin
grafts [53]. Subsequently, murine MSCs have been demonstrated
to prevent experimental autoimmune encephalomyelitis (EAE) in
mice [71]. In phase I studies, Lazarus et al. [72, 73] estimated the
feasibility of transplanting autologous or allogeneic MSCs to

improve engraftment of HSCs, as well as to reduce graft-versus-host
disease (GVHD). Another clinical trial also displayed that third party
haplo-identical (mother-derived) MSCs can be safely infused to treat
severe acute GVHD that is refractory to conventional immunosup-
pressive therapy [74]. In contrast, infusion of MSCs had no beneficial
effects on collagen-induced arthritis (CIA) as tested in a murine
model of rheumatoid arthritis (RA) [75]. Grinnemo et al. [76]
observed that after transplantation of human MSCs into experimen-
tally induced ischaemic rat myocardium, MSCs induced significant
lymphocyte proliferation in PBMC cultures of immunized rats.
Moreover, there was prominent infiltration of macrophages in the
area of injection in immunocompetent rats. Therefore, though MSCs
have been shown to be transplantable across allogeneic barriers,
xenogeneic transplant rejection may occur.
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Table 1 Phenotypic properties of mesenchymal stem cells

CD locus Other names Detection References

Stro-1 Positive [10, 22, 23]

CD105 SH2 Positive [24]

CD73 SH3/4 Positive [25]

CD49a �1 integrin Positive [26]

CD49b �2 integrin Positive [26]

CD49c �3 integrin Positive [26]

CD49e �5 integrin Positive [26]

CD49f �6 integrin Positive [26]

CD51 �V integrin Positive [26]

CD29 �1 integrin Positive [26]

CD61 �3 integrin Positive [26]

CD104 �4 integrin Positive [26]

CD54 ICAM-1 Positive [9, 27, 28–30]

CD102 ICAM-2 Positive [9, 27, 28–30]

CD106 VCAM-1 Positive [9, 27, 28–30]

CD58 LFA-3 Positive [9, 27, 28–30]

CD72 Positive [9, 27, 28–30]

CD166 ALCAM Positive [9, 27, 28–30]

HLA-I Positive [31]

HLA-II Negative [31]

CD45 Negative [27]

CD34 Negative [27]

CD14 Negative [27]
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Aetiology and current treatment of type 1 diabetes

In the year 2000, 150 million people worldwide were found to be
affected by diabetes mellitus, and this number is considered to
double in 2025 [77]. Type 1 diabetes is characterized by the selec-
tive destruction of pancreatic �-cells caused by an autoimmune
attack, and it accounts for 5–10% of all causes of diabetes melli-
tus. Autoimmune destruction of �-cells is due to multiple genetic
predispositions and is also related to environmental factors that
are still poorly defined [78]. When clinical symptoms are observed
the autoimmune process is markedly advanced. It is reported that
60–80% of the �-cell mass have been destroyed at the time of
diagnosis [79]. 

Since 1920s, insulin therapy has changed diabetes from a rapid-
ly fatal disease to a chronic disease associated with significant sec-
ondary complications, such as renal failure, cardiovascular disease,
retinopathy and neuropathy. It is now well-established that the risk of
diabetic complications is dependent on the degree of glycaemic con-
trol in diabetic patients. Long-term studies strongly suggest that
tight control of blood glucose achieved by conventional or intensive
insulin treatment, self blood glucose monitoring, and patient educa-
tion can significantly prevent the development and retard the pro-
gression of chronic complications of this disease [80–82]. While
aggressive insulin therapy that maintains glucose levels near the nor-
mal range reduces the risk of secondary complications, patients
often find such control difficult to achieve and suffer an increased
risk of hypoglycaemia [83]. This is caused by the fact that external
insulin injection can not mimic the physiological control that pancre-
atic � cell-derived insulin secretion exerts on the body’s glycaemia.
By contrast, replacement of a patient’s islets of Langerhans either by
whole pancreas transplantation or by isolated islet transplantation is
the only treatment of type 1 diabetes that achieves an insulin-inde-
pendent, constant normoglycaemic state and avoids hypoglycaemic
episodes [84, 85]. Nonetheless, due to shortage of organs and life-
long immunosuppression this therapy can be offered to a very limit-
ed number of patients. What is now required is an essentially infinite
supply of a physiologically competent substitute for primary human
pancreatic islets, and generation of insulin-producing cells from
stem cells represents an attractive alternative [86].

Mesenchymal stem cells in type 1 
diabetes therapy

MSCs with potential to differentiate into 
insulin-producing cells

Among adult stem cells, MSCs appear to have a particular devel-
opmental plasticity ex vivo that include their ability to adopt a pan-
creatic endocrine phenotype. It has been demonstrated that MSCs
residing in various tissues and organs are able to differentiate into
functional insulin-producing cells, such as MSCs from pancreas,

bone marrow, adipose tissue, cord blood and cord tissue. This will
help to meet the demand of � cells for islet transplantation, and
the goal of a permanent cure for type 1 diabetes will be realized.

The mature pancreas has two functional compartments: the
exocrine portion (99%), including acinar and duct cells, and the
endocrine portion (1%), including the islets of Langerhans. Islets
are composed of four cell types that synthesize and secrete distinct
peptidic hormones: �-cells (insulin), �-cells (glucagon), �-cells
(somatostatin) and PP-cells (pancreatic polypeptide). It has been
described that adult rat and human islets of Langerhans contain
nestin-positive progenitor cells, which can be differentiated into
insulin-expressing cells ex vivo [87]. In another study, Ramiya et
al. [88] displayed how pluripotent stem cells isolated from the pan-
creatic ducts of adult pre-diabetic non-obese diabetic (NOD) mice
differentiate to form glucose-responsive islets that can reverse
insulin-dependent type 1 diabetes after being implanted into dia-
betic NOD mice. Simultaneously, duct tissue from human pancreas
was expanded and directed to differentiate into functional islet tis-
sue in vitro [89]. Then, Bonner-Weir et al. [90] considered that duc-
tal epithelial cells are likely to be the pancreatic progenitors which
can add new � cells by the process of neogenesis. The clonal iden-
tification of multi-potent precursor cells from adult mouse pan-
creas that generate endocrine �-like cells were also performed
[91]. Recently, several studies have indicated that MSCs are likely
to exist within pancreatic duct and islet. Zhang et al. [92] showed
that nestin-positive cells isolated from human foetal  pancreas pos-
sess the characteristics of pancreatic progenitor cells since they
have highly proliferative potential and the capability of differentia-
tion into insulin-producing cells in vitro. Huang et al. [93] further
proved that after differentiation the islet-like cell clusters (ICCs)
displayed the ability to reverse hyperglycaemia in diabetic mice.
Additionally, these nestin-positive pancreatic progenitor cells share
many phenotypic markers with MSCs derived from bone marrow
[92]. In agreement with these findings, another group [94] suc-
cessfully isolated pancreatic stem cells from adult human pancre-
atic duct, these cells not only express nestin and pdx-1 but also
exhibit the identical markers of MSCs. Moreover, Seeberger and his
colleagues [95] reported the expansion of MSCs from adult human
pancreatic ductal epithelium. In addition to expression of the same
surface antigens as MSCs from human bone marrow, adipose and
umbilical cord blood [11, 96, 97], they demonstrated that pancre-
atic MSCs could be differentiated into mesodermal cells including
osteocytes, adipocytes and chondrocytes. Their preliminary data
also suggest that these cells have the potential to derive �-cells. An
earlier study has established that fibroblast-like precursor cells
derived from adult human islets are generated by epithelial-to-mes-
enchymal transition (EMT) [98]. However, in a recent paper,
researchers verified that EMT does not underlie the appearance of
fibroblast-like cells in mouse islet cultures, but that fibroblast-like
cells appear to represent MSC-like cells akin to MSCs isolated from
bone marrow [99]. More recently, it has been revealed that human
islet-derived precursor cells (hIPCs), which do not express the
insulin gene, nonetheless exhibit transcriptionally active epigenetic
marks. These findings in hIPCs may be an indication of the ‘com-
mitted state’ of hIPCs as endocrine pancreas precursor cells [100].
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In conclusion, MSCs in human pancreas could serve as a compe-
tent candidate for generating insulin-producing cells.

Bone marrow is an important source of easily accessible adult
stem cells, and bone marrow transplantation (BMT) is considered
to be effective for the treatment of autoimmune type 1 diabetes.
However, there is a great debate on the issue of the fate of trans-
planted bone marrow stem cells. Ianus et al. [101] showed that
mouse bone marrow-derived cells can differentiate into pancreatic
endocrine � cells with glucose-dependent and incretin-enhanced
insulin secretion when transplanted into lethally irradiated mice. By
using a CRE-LoxP system, the authors also ruled out cell fusion
events. Many controversial observations still exist. Hess et al.
[102] reported that transplantation of c-kit positive mouse bone
marrow-derived stem cells initiated endogenous pancreatic regen-
eration and improved blood glucose level in streptozocin (STZ)-
induced diabetic mice via enhanced endothelial proliferation by
donor cells. In a similar study, Lee et al. [103] demonstrated that
transplanted MSCs from human bone marrow lowered blood glu-
cose levels in diabetic immunodeficient mice by promoting repair
of mouse pancreatic islets. Furthermore, independent studies by
Choi et al. [104], Lechner et al. [105] and Taneera et al. [106]
showed little evidence for significant transdifferentiation of bone
marrow cells (BMCs) into pancreatic � cells, even in pancreatic
injury models of mice. Lately, cotransplantation of syngeneic BMCs
and syngeneic or allogeneic MSCs into diabetic mice resulted in
rapid recovery of blood glucose and serum insulin levels accompa-
nied with efficient tissue regeneration. Researchers suggested that
two aspects operate parallelly and synergistically in this model.
First, BMCs and MSCs induce the regeneration of recipient derived
pancreatic insulin-secreting cells. Second, MSCs inhibit T cell-
mediated immune responses against newly formed �-cells. Their
work offers a novel potential therapeutic protocol for type 1 dia-
betes [107]. On the other hand, recent studies illustrated that when
cultured in vitro, bone marrow derived-cells obtained from mice
[108] and rats [109] could be differentiated into insulin-producing
cells. Multi-potent adult progenitor cells (MAPCs) or MSCs within
bone marrow are intriguing candidates that can give rise to insulin-
positive cells. In 2002, Jiang et al. [110] proposed the existence of
pluripotent MSCs derived from adult marrow. Chen et al. [111] and
Wu et al. [112] isolated MSCs from rat bone marrow, and success-
fully induced their differentiation into islet-like cells. Moreover,
transplantation of these islet-like cells could alleviate the hypergly-
caemia in diabetic rats. Subsequently, a group of researchers [113]
proved that treatment of rat pancreatic extract can differentiate rat
marrow mesenchymal cells into insulin-producing cells in vitro. In
another study, Moriscot et al. [114] indicated that human bone
marrow MSCs are able to differentiate into insulin-expressing cells
by infection with adenoviruses coding for several transcription fac-
tors of the �-cell developmental pathway and coculture with islet
tissue or islet-conditioned medium. Recently, two studies [115,
116] have presented evidence that pancreatic duodenal homeobox-
1 (PDX-1) gene-modified human bone marrow-derived MSCs can
be induced to differentiate into functional insulin-producing cells.
In addition, Sun et al. [117] demonstrated that bone marrow-
derived MSCs from diabetic patients can differentiate into IPCs

under appropriate conditions in vitro. Their results provide the
direct evidence for the feasibility of using patient’s own BM-MSCs
as a source of IPCs for beta-cell replacement therapy. 

MSCs from human bone marrow and adipose tissue represent
very similar cell populations with comparable phenotypes [2, 96,
118–119]. Thus, MSCs with the potential to adopt a pancreatic
endocrine phenotype could also exist in human adipose tissue.
Timper et al. [120] isolated human adipose tissue-derived MSCs
and expanded them in basic fibroblast growth factor (bFGF) con-
taining culture medium. Proliferating MSCs expressed the stem
cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic
endocrine transcription factor Isl-1 mRNA. When subjected to
defined differentiation medium, a down-regulation of ABCG2 and
an up-regulation of transcription factors Isl-1, Ipf-1 and Ngn3
were observed together with induction of the islet genes insulin,
glucagon and somatostatin. Consequently, adipose tissue-derived
MSCs could be an alternative source of pancreatic �-cells.

Human umbilical cord blood (HUCB) is another source of stem
cells with the potential to develop into insulin-producing cells. A few
in vivo studies give support to this point. In one study [121], trans-
plantation of HUCB cells resulted in the improvement of blood glu-
cose levels and survival rate in type 2 diabetic mice. Furthermore, a
regression of glomerular hypertrophy and tubular dilatation, com-
mon complications attributed to diabetes, was observed in HUCB-
treated mice. In another study [122], transplantation of HUCB cells
into type 1 diabetic mice led to a dose-dependent reduction in blood
glucose levels and the degree of autoimmune insulitis. A recent
report [123] has focused on the in vivo capacity of HUCB-derived
cells to generate insulin-producing cells. Following transplantation
of HUCB cells into NOD/SCID/�2mnull mice, IPCs of human origin
were found in recipient pancreatic islets. Double FISH analysis using
species-specific probes further indicated that HUCB cells can give
rise to insulin-producing cells by fusion-dependent and -independ-
ent mechanisms. The number of HUCB cells that transdifferentiated
and the rate of such an event are critical aspects. The proportion of
HUCB-derived insulin-producing cells per total number of islet cells
[123] was less than in the case of BM-derived insulin-producing
cells [101]. However, under diabetic conditions, the demand for the
neogenesis of insulin-producing cells might increase and the rate of
HUCB cell differentiation could become higher in order to compen-
sate for the regeneration of �-cell mass. On the other hand, the
stem cell type in HUCB responsible for generation of insulin-produc-
ing cells remains unclear. Since MSCs have been identified in the
cord blood [124] and HUCB-derived USSC (unrestricted somatic
stem cell) share most of the cell markers and properties with
MAPCs [125], it should be considered that MSCs may take part in
the differentiation of HUCB cells towards a �-cell phenotype. In
addition to HUCB, the Wharton’s jelly of the human umbilical cord is
rich in mesenchymal stem cells (UC-MSCs) that fulfil the criteria for
MSCs. Recently, Chao et al. [126] successfully differentiated UC-
MSCs into mature ICCs, and these ICCs possess insulin-producing
ability in vitro and in vivo. Moreover, they indicated that UC-MSCs
seem to be the preferential source of stem cells to convert into IPCs,
because of the large potential donor pool, its rapid availability, no
risk of discomfort for the donor, and low risk of rejection.
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MSCs as cellular vehicle for insulin gene therapy

MSCs are a promising target population for cell-based gene ther-
apy against a variety of different diseases [127]. The apparently
high self-renewal potential makes them strong candidates for
delivering genes and restoring function of organs and tissues.
The ability to genetically modify MSCs provides a means for
durable expression of therapeutic genes. Following the develop-
ment of better assays for stem cells and improvements in vector
biology, gene transfer efficiencies into MSCs have increased
prominently. To assess the capacity of MSCs to produce heterol-
ogous proteins, many transgenes were expressed in MSCs in
vitro. The proteins included coagulation factors VIII [128], IX
[129], IL-3 [130], human growth hormone [131], human ery-
thropoietin (hEPO) [132] and so on. As a result, MSCs could act
as platforms for recombinant protein production in vivo to treat
acquired and inherited disorders. As far as type 1 diabetes is
concerned, insulin gene therapy using MSCs is an alternative
treatment. 

Human insulin gene is located on chromosome 11p15.5 [133].
Insulin synthesis and release from islet �-cells is complex and tight-
ly regulated. Glucose affects insulin at all levels, including transcrip-
tion, translation and release. Mature insulin results from a process-
ing pathway which starts at the rough endoplasmic reticulum and
ends at the Golgi apparatus. Translation of insulin mRNA yields pre-
proinsulin, which is sequentially cleaved by endoproteinases PC1
and PC2/PC3 to give pro-insulin first and mature insulin plus C-pep-
tide second. In the secretory granule, six insulin molecules are coor-
dinated by a Zn atom, which is demonstrated under microscopy by
dithizone staining. Some researchers have begun to set foot in the
field of MSCs-based insulin gene therapy for type 1 diabetes. In one
study [134], human bone marrow MSCs transduced with adeno-
associated virus (AAV) containing furin-cleavable human preproin-
sulin gene produce increased amount of insulin and C-peptide com-
pared to the control group. In another study [135], retrovirus vector
pLNCX was used to transfer the human insulin gene into human
BM-MSCs. The transfected MSCs expressed the insulin gene and
stably secreted insulin into culture media. More recently, Xu et al.
[136] showed that experimental diabetes in mice could be relieved
effectively for up to 6 weeks by intrahepatic transplantation of bone
marrow-derived murine MSCs infected with the recombinant retro-
virus-carrying human insulin gene. However, implantation of engi-
neered cells using diabetic animal models and evaluation of thera-
peutic effect should be performed with more tests of efficacy and
safety of engineered human MSCs as surrogate �-cells in further
study. In addition, other researchers [137] are working with a mod-
ified herpes I virus as a vector for the human insulin gene. The the-
oretical advantages of the herpes I virus are: (i) the large capacity to
accommodate a construct; (ii) the ability of the virus to infect pri-
mary and second cell lines in vitro; (iii) although the virus enters the
nucleus it does not integrate with the host DNA and is therefore not
likely to unmask oncogenes, it functions separate to the host DNA
as an episome; (iv) most patients have already had contacts with the
herpes I virus, which normally resides in a quiescent state in neuro-

logical tissue; (v). immune reaction against the virus is relatively
mild; (vi) established antiviral treatment against the herpes virus is
available. In consequence, the modified herpes I virus could serve as
a new vector for human insulin gene delivery into MSCs. (Table 2)

Induction of IPCs from stem cells by protein
transduction technology

New technology, known as protein transduction technology, has
been recently developed. A variety of peptides, known as protein
transduction domains (PTDs) or cell-penetrating peptides (CPPs),
have been characterized for their ability to translocate into live
cells. Proteins and peptides can be directly internalized into cells
when synthesized as recombinant fusion proteins or covalently
cross-linked to PTDs. There are numerous examples of biological-
ly active full-length proteins and peptides that have been delivered
to cells both in vitro and in vivo. The most commonly studied
PTDs are homeodomain transcription factors such as
Antennapedia (Antp), HSV type 1 protein VP22 and HIV-1 transac-
tivator TAT protein. The mechanism of PTD-mediated protein
transduction is mainly via endocytosis followed by passage from
the vesicle into the cytoplasm [138].

It has been suggested that protein transduction technology is
useful for the treatment of diabetes, because this technology facil-
itates the differentiation of stem cells into insulin-producing cells.
First, PDX-1 protein and BETA2/NeuroD protein, two pancreatic
endocrine transcription factors, both have a PTD sequence in their
structure. Noguchi et al. demonstrated that PDX-1 [139] or
BETA2/NeuroD [140] protein induced insulin expression in pan-
creatic ductal progenitor cells. Similarly, Domínguez-Bendala et al.
[141] showed that TAT-mediated neurogenin 3 (ngn3) protein
transduction stimulated pancreatic endocrine differentiation in
vitro. In another research, Gräslund’s group [142] reported that
the third helix of the homeodomain of transcription factor Isl-1
internalized into cells. Thus, delivery of exogenous transcription
factors (PDX-1, BETA2/NeuroD, ngn3, Isl-1, etc.) by protein trans-
duction technology could be a novel strategy for generating IPCs
from stem/progenitor cells without requiring gene transfer tech-
nology. We propose MSCs as strong candidate stem cells for this
new approach.

Minimum requirements for replacement �-cells

As mentioned above, insulin-producing cells generated either by
transdifferentiation of MSCs or by delivery of insulin gene into
MSCs are able to act as replacement �-cells for the transplanta-
tion therapy of type 1 diabetes. These MSCs-derived IPCs may
solve the donor shortage issue for islet cell transplantation and
provide a cure for this disease. Nevertheless, any substitute for
primary islets of Langerhans will require some minimum essential
properties. The basic requirements for surrogate �-cells are
described as follows [143].

© 2008 The Authors
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First, to make any significant therapeutic impact vast numbers
of replacement �-cells will be required. Current transplantation
protocols use up to 1 � 106 primary human islets per recipient,
equivalent to approximately 2–4 � 109 �-cells. As a result, the abil-
ity of MSCs to replicate and to differentiate toward pancreatic
endocrine phenotype makes them attractive candidates for produc-
ing replacement �-cells. Secondly, the replacement cells must have
the ability to synthesize, store and release insulin in response to
changes in the ambient glycaemia. Understanding �-cell function
at the molecular level will likely facilitate to manufacture physiolog-
ically competent insulin-producing cells from MSCs. Thirdly, the
proliferative capacity of the replacement cells must be tightly con-
trolled to avoid the development of hyperinsulinemic hypogly-
caemia as the �-cell mass expands in vivo. Excluding proliferative
cells from the transplant material will help to overcome this prob-
lem. In the case of insulin gene transferred MSCs, the possibility of
tumour formation has to be considered. Finally, the transplanted

cells must avoid destruction by the recipient’s immune system.
Two major mechanisms are involved in the immune attack against
replacement �-cells, one is transplant rejection and the other is
recurrence of autoimmunity. In addition to appropriate immuno-
suppressive treatment, autologous transplantation of MSCs-
derived IPCs will circumvent the immune rejection dilemma. On the
other hand, Burt et al. [144] indicated that HSC transplantation may
re-introduce tolerance to islet cells in type 1 diabetics. Thus,
cotransplantation of MSCs-derived IPCs and HSC from the same
donor (autologous or allogeneic) could evade the risks of recurring
autoimmunity. Furthermore, the pathways of �-cell differentiation
in vitro may differ significantly from those in vivo [145], and it is
also possible that current in vitro differentiation protocols do not
generate �-cells, but cells that have some phenotypic and function-
al similarity to authentic �-cells. Since IPCs generated from MSCs
are developmentally and immunologically distinct from primary 
�-cells, they may escape the recipient’s autoimmune assault. 
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Table 2 Cell-based treatment protocols in experimental diabetes models

Study Cell source for transplantation Therapeutic effects in diabetic animal models

Ramiya et al. [88] Islets generated from mouse pancreatic stem cells Insulin-independent, blood glucose levels return to
near-normal levels

Huang et al. [93] ICCs derived from NIPs residing in human foetal  pan-
creas

Reverse hyperglycaemia

Hess et al. [102] mouse c-kit+ BM-derived cells Reduce hyperglycaemia, accompanied by a
proliferation of recipient pancreatic cells

Lee et al. [103] Human BM-MSCs Lower blood glucose levels, promote repair of pancre-
atic islets and renal glomeruli

Urbán et al. [107] Mouse syngeneic BMCs and syngeneic or
allogeneic MSCs 

Rapid recovery of blood glucose and serum insulin lev-
els accompanied with efficient
pancreatic tissue regeneration

Tang et al. [108] IPCs obtained from mouse bone marrow Reverse hyperglycaemia, improve metabolic profiles

Oh et al. [109] IPCs transdifferentiated from rat BMCs Lower blood glucose levels, maintain 
comparatively normal glucose levels

Chen et al. [111] 
and Wu et al. [112]

Islet-like cells differentiated from rat marrow MSCs Lower glucose levels

Li et al. [115] and 
Karnieli et al. [116]

IPCs generated from PDX-1 gene-modified human BM-
MSCs

Reduction of hyperglycaemia

Ende et al. [121, 122] HUCB mononuclear cells Improve blood glucose levels, survival rate, glomerular
hypertrophy, tubular dilatation and insulitis

Chao et al. [126] ICCs derived from human UC-MSCs Alleviate hyperglycaemia and glucose intolerance sig-
nificantly

Xu et al. [136] Mouse BM-MSCs infected with recombinant retrovirus-
carrying human insulin gene

Improvement of body weight, blood glucose and serum
insulin levels

Abbreviations: ICCs, islet-like cell clusters; NIPs, nestin-positive islet-derived progenitor cells; MSCs, mesenchymal stem cells; BMCs, bone marrow
cells; IPCs, insulin-producing cells; PDX-1, pancreatic duodenal homeobox-1; HUCB, human umbilical cord blood; UC, umbilical cord.
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MSCs for therapeutic neovascularization in type 1
diabetes

It has been demonstrated that endothelial progenitor cells (EPCs)
are responsible for postnatal vasculogenesis in physiological and
pathological neovascularization [146]. Ischaemia and tissue injury
are potent stimuli for neovascularization. We have reported that
autologous transplantation of granulocyte colony-stimulating fac-
tor-mobilized peripheral blood mononuclear cells (M-PBMSCs)
improves critical limb ischaemia (CLI) in diabetes [147]. Further
investigation indicated that local transplantation of M-PBMNCs
achieved therapeutic neovascularization via supply of abundant
angioblasts (EPCs) and angiogenic factors [148]. However, EPCs
in type 1 diabetic patients are dysfunctional, and their dysfunction
may contribute to the pathogenesis of vascular complications in
type 1 diabetes [149]. Our group also proved that M-PBMNCs
from diabetic patients augment neovascularization in ischaemic
limbs but with impaired capability [150]. Clinically, allogenic
transplantation of normal M-PBMNCs may be more effective, but
such transplanted cells are likely to encounter immune rejection.
Therefore, autologous transplantation of diabetic M-PBMNCs is
still a good-albeit compromised and not perfect-approach for CLI
in diabetes. On the other hand, the pancreatic islets of Langerhans

are well vascularized throughout life. Signals from the endotheli-
um may play a role in postnatal islet cell proliferation and neoge-
nesis. Mathews et al. [151] provided evidence that transplanted
bone marrow-derived EPCs are recruited to the pancreas in
response to STZ-induced islet injury and that EPC-mediated neo-
vascularization of the pancreas could in principle facilitate the
recovery of non-terminally injured �-cells. Neovascularization of
the pancreas is likely to be an adaptive response to �-cell injury in
type 1 diabetes.

MSCs have been shown to promote angiogenesis both in vivo
[152] and in vitro [153]. Yet the underlying mechanism of this
action remains elusive. Oswald et al. [154] showed the differenti-
ation of expanded adult human BM-MSCs into cells with pheno-
typic and functional features of endothelial cells. However,
Kinnaird et al. [155] demonstrated that MSCs secrete a wide array
of arteriogenic cytokines and they contribute to collateral re-mod-
elling in ischaemic limb via paracrine mechanisms. Recently,
another two studies suggest that BM-MSCs enhance angiogenesis
in wounds of diabetic mice through paracrine effects [156, 157].
An increasing bulk of evidence supports that release of angiogenic
factors rather than endothelial transdifferentiation is accountable
for MSCs-mediated strengthened angiogenesis. MSCs express
genes encoding a broad spectrum of arteriogenic/angiogenic
cytokines including vascular endothelial growth factor (VEGF),

© 2008 The Authors
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Fig. 1 Mesenchymal stem cells in the treatment of type 1 diabetes. The clinical potentials of mesenchymal stem cells (MSCs) in type
1 diabetes therapy are illustrated. Abbreviations: T1DM, type 1 diabetes mellitus; IPCs, insulin-producing cells; PTT, protein trans-
duction technology. 
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Concluding remarks
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