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Accurate classification of either patients with Alzheimer’s disease (AD) or patients with

mild cognitive impairment (MCI), the prodromal stage of AD, from cognitively unimpaired

(CU) individuals is important for clinical diagnosis and adequate intervention. The current

study focused on distinguishing AD or MCI from CU based on the multi-feature kernel

supervised within-Class-similar discriminative dictionary learning algorithm (MKSCDDL),

which we introduced in a previous study, demonstrating that MKSCDDL had superior

performance in face recognition. Structural magnetic resonance imaging (sMRI),

fluorodeoxyglucose (FDG) positron emission tomography (PET), and florbetapir-PET data

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) databasewere all included for

classification of AD vs. CU, MCI vs. CU, as well as AD vs. MCI (113 AD patients, 110 MCI

patients, and 117 CU subjects). By adopting MKSCDDL, we achieved a classification

accuracy of 98.18% for AD vs. CU, 78.50% for MCI vs. CU, and 74.47% for AD

vs. MCI, which in each instance was superior to results obtained using several other

state-of-the-art approaches (MKL, JRC, mSRC, and mSCDDL). In addition, testing time

results outperformed other high quality methods. Therefore, the results suggested that

the MKSCDDL procedure is a promising tool for assisting early diagnosis of diseases

using neuroimaging data.

Keywords: Alzheimer’s disease (AD), mild cognitive impairment (MCI), multimodal imaging, multiple kernel

dictionary learning

INTRODUCTION

Alzheimer’s disease (AD) is a complex multifactorial neurodegenerative disorder and is the
most common type of dementia, defined by extensive neuronal and synapses loss (Tan
et al., 2013; Gao et al., 2016). Recent study has shown that AD has high prevalence
of an estimated 40 million patients worldwide (Selkoe and Hardy, 2016). Mild cognitive
impairment (MCI) has been generally viewed as an intermediate state between normal aging and
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the onset of AD (Petersen et al., 2001; Garcés et al., 2014). Thus,
AD and MCI, the transitional stage between the healthy aging
and dementia, which commonly characterized by slight cognitive
deficits but largely intact activities of daily living (Petersen, 2004;
Wei et al., 2016), have been greatly interested.

It has been shown that the neuroimaging data, including
structural magnetic resonance imaging (sMRI) (Wee et al., 2011;
Zhou et al., 2011), functional MRI (fMRI) (Suk et al., 2013),
fluorodeoxyglucose positron emission tomography (FDG-PET)
(Sanabria-Diaz et al., 2013), and amyloid PETs, such as Pittsburgh
compound B (PiB-PET) (Zhang et al., 2014), florbetapir-PET
(Saint-Aubert et al., 2013), can be used to discriminate AD
or MCI with promising results when each modality is used
individually and separately. It has been speculated that different
neuroimaging tool provides complementary information, which,
when combined, can be more powerful for diagnosis of AD
or MCI (Liu et al., 2014b; Suk et al., 2015; Wang et al., 2016)
and combining these potentially complementary information
from various modalities would produce more powerful classifiers
(Zhang et al., 2012a; Xu et al., 2015).

Several classification methods of combining multi-modality
data have been used to classify AD or MCI from CU.
For example, a weighted multiple kernel learning (MKL)
model has been proposed to classify AD or MCI based
on combining different modalities (Wee et al., 2012; Zhang
et al., 2012b; Liu et al., 2014b). A joint regression and
classification (JRC) algorithm was also introduced and has
been indicated to diagnosis AD or MCI effectively based on
multi-modalities data (Zhu et al., 2014a,b). A weighted multi-
modality sparse representation-based classification (mSRC) was
developed and applied for discriminating AD or MCI based
on multi-modalities (Xu et al., 2015). Recently, a multi-
modal discriminative dictionary learning (mSCDDL) (Li et al.,
2017) algorithm has been proposed for classifying AD or
MCI efficiently, which was a weighted multi-modality way
extended from supervised within-Class-similarity discriminative
dictionary learning (SCDDL), a robust and efficient machine
learning method for facial recognition by Xu et al (Xu et al.,
2016).

SCDDL was a discriminant dictionary learning (DL),
which combined the classification error term and the

within-Class-similarity in the objection function of DL scheme
(Xu et al., 2016). Recently, SCDDL was extended to a kernel
framework, due to MKL algorithm has been suggested to be
effective for feature fusion (Gönen and Alpaydin, 2011), named
as multi-feature kernel SCDDL (MKSCDDL) and has been
indicated to be an efficient tool in face recognition (Wu et al.,
2017).

In this study, MKSCDDL was examined for its robustness
and efficiency of classification accuracy for AD or MCI
with CU, based on three modalities data i.e., sMRI, FDG-
PET and florbetapir-PET. Our experimental results indicated
that the MKSCDDL method combined multi-modalities could
outperform SCDDL with each modality data alone, and achieve
better or comparable classification performance, compared
with some other state-of-the-art multi-modality classification
algorithms, including MKL (Zhang et al., 2011), JRC (Zhu et al.,
2014a), mSRC (Xu et al., 2015), and mSCDDL (Li et al., 2017).

IMAGE PREPROCESSING

In this work, we used data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) for performance evaluation.
The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and non-profit
organizations, as a 5-year public-private partnership. For up-to-
date information, see http://www.adni-info.org.

Subjects
In this paper, 113 patients with AD, 110 patients with MCI and
117 CU with the age ranged from 55 to 99 years were included.
All the data, including the sMRI, FDG-PET, and florbetapir-PET,
were downloaded from ADNI 1, ADNI GO, or ADNI 2. For
each subject, the data-acquisition interval of the three modalities
was within four months. Moreover, the subjects were matched
in terms of age, the years of education and gender. The subjects
we selected satisfied the following criteria: (1) The MMSE score
of each AD subject was between 20 and 26, with a CDR of 0.5
or 1.0. The AD group did not significantly differ with respect to
the presence of APOE4 alleles from the MCI group (p = 0.765),
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but had significantly lower MMSE scores (compared with CU
group, p = 1.24 × 10−90; MCI group, p = 1.61 × 10−40) and
a different presence of APOE4 alleles compared with the CU
group (p = 0.014). (2) The MMSE score of each MCI subject
was between 24 and 30, and the CDR was 0.5. The MCI group
had significantly lower MMSE scores (p = 4.69 × 10−31) and a
different presence of APOE4 alleles (p= 7.34× 10−04) compared
with CU group. (3) The MMSE score of each CU was between 26
and 30 and their CDR was 0.0. Table 1 shows the demographic
information of the subjects.

Image Processing
Images were preprocessed using the VBM8 (Voxel-Based
Morphometry 8) Toolbox (http://dbm.neuro.uni-jena.de/
vbm8/) in SPM8 (Statistical Parametric Mapping 8) (http://
www.fil.ion.ucl.ac.uk/spm/) that running on MATLAB 2010b
(The MathWorks, Inc., Sherborn, MA, USA). Based on adaptive
maximum posterior and partial volume estimation, every
structural image was segmented into rigid-body-aligned gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
for each subject (Rajapakse et al., 1997; Tohka et al., 2004).
Spatially adaptive non-local approach was applied to improve
the segmentation. The diffeomorphic anatomical registration
through exponential lie algebra (DARTEL) protocol (Ashburner,
2007) in which template creation and image registration were
performed to normalize the gray-matter images iteratively by
using a diffeomorphic anatomical registration.

All FDG-PET and florbetapir-PET images were co-registered
with each individual’s sMRI using a rigid body transformation,
and subsequently warped to the cohort-specific DARTEL
template. Then, the standard uptake value ratio (SUVr) image
was calculated for each FDG-PET image and florbetapir-
PET image; reference masks for quantification were defined
relative to the whole brain (Langbaum et al., 2009; Sabbagh
et al., 2015) or cerebellum (Reitan, 1958; Camus et al., 2012),
respectively.

Then, based on the Automated Anatomical Labeling (AAL)
(Tzourio-Mazoyer et al., 2002), 90 regions of interest (ROIs) (45
for each hemisphere; Table S1) were obtained. The feature of
sMRI, FDG-PET, and florbetapir-PET were got by averaging the
corresponding value of mean volume of GM, SUVr values of

TABLE 1 | Demographic information of the subjects, p-value was obtained using

one-way ANOVA to the AD, MCI, and CU groups.

AD (n = 113) MCI (n = 110) CU (n = 117) p-value

Gender 62M/51F 59M/51F 62M/55F 0.96

Age 75.6 ± 7.6 75.2 ± 7.8 75.4 ± 7.0 0.94

EDU 16.10 ± 3.00 16.57 ± 2.76 16.44 ± 2.41 0.65

MMSE 22.4 ± 2.2 27.4 ± 1.9 28.9 ± 1.3 7.75 × 10−75

CDR 0.8 ± 0.2 0.5 ± 0.0 0.0 ± 0.0 7.00 × 10−151

APOE4 (%) 50.00 52.73 24.49

AD, Alzheimer’s disease; MCI, mild cognitive impairment; CU, cognitively unimpaired; M,

male; F, female; MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating;

EDU, years of education; APOE4, percentage of APOE4 alleles.

FDG-PET and florbetapir-PET from each ROI that all the voxels
within the ROI of each subject.

METHOD

Discriminant Dictionary Learning
Suppose n training samples with d-dimension from k classes are
represented by A = [a1, a2, . . . , an] = [A1, . . . ,Al, . . . ,Ak] ∈

R
d×n, in which, column vector ai is the sample i (i = 1, . . . , n),

and submatrix Aj consists of column vectors (samples) from
class j (j = 1, . . . , k), and there are m atoms (each column of
the dictionary can be viewed as an atom) in the corresponding
dictionary D = [d1, d2, . . . , dm] ∈ R

d×m(m ≤ n). The general
supervised DL model can be denoted as follows:

〈D, θ ,X〉 = arg min
D,θ ,X

‖A− DX‖2F + λ1 ‖X‖1 + λθ g (θ)

s.t.
∥

∥dj
∥

∥

2

2
= 1, for all j = 1, . . . ,m (1)

where θ is the discriminative parameter and g(θ) represents the
discriminative term, X denotes the coding coefficients of training
samples A on the dictionary D. g(θ) here indicates the linear
classification error function (like ‖H −WX‖2F in the DLmethods
of D-KSVD (Zhang and Li, 2010) and LC-KSVD (Jiang et al.,
2013), where H is the class label matrix andW is a classifier).

For classification, the classifier learned with the dictionary
may be optimal simultaneously, as in the DL algorithms that
incorporate a linear classification error term (Zhang and Li,
2010). However, the inner-structure of representation coefficients
between classes has not been considered in such approach. To
further enhance the discriminant power of the dictionary, both
the linear classifier and the direct restriction of within-Class
scatter on coding coefficients in the above discriminant DL
scheme in our previous study are indicated (Xu et al., 2016),
which is referred to as the SCDDL algorithm.

Supervised within-Class-Similar
Discriminative Dictionary Learning
Suppose A = [A1, . . . ,Al, . . . ,Ak] ∈ R

d×n denotes the
n d-dimensional training samples from k classes, D ∈

R
d×m(m ≤ n) is the discriminative dictionary with m atoms

that needs to be derived, and X represents the coding coefficients
of training samples A on the dictionary D, denoted as X =

[X1, . . . ,Xl, . . . ,Xk] ∈ R
m×n, same as above. The SCDDL model

can be written as follows:

〈D,W,X〉 = arg min
D,W,X

‖A− DX‖2F + α ‖H −WX‖2F + β ‖W‖2F

+ λ1 ‖X‖1 + λ2

k
∑

i=1

(

‖Xi −Mi‖
2
F + η ‖Xi‖

2
F

)

s.t.
∥

∥dj
∥

∥

2

2
= 1, for all j = 1, . . . ,m (2)

where ‖·‖2F represents the Frobenius norm. ‖ A− DX ‖2F is the
reconstructed error term of the training samples A on the newly
constructed dictionaryD, α‖ H −WX ‖2F+β‖ W ‖2F is the linear

classification error term, and
k

∑

i=1

(

‖ Xi −Mi ‖
2
F + η‖ Xi ‖

2
F

)

is
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the within-Class-similar term.W ∈ R
k×m is the parameter of the

classifier; each column of H ∈ R
k×m is a vector, corresponds to

one training sample with the form as [0, 0, . . . , 1, . . . , 0, 0] ∈ R
k,

where 1 locates the corresponding class of the training sample;
and each column of Mi is the mean vector of the coefficients
Xi corresponding to class i. According to the elastic-net theory,
the term ‖ Xi ‖

2
F combined with the term ‖ X ‖1 might make the

solution of Equation (2) more stable (Zou and Hastie, 2005); and
η is set as η = 1 for simplicity (Yang et al., 2014). Then Equation
(2) can be written as:

〈D,W,X〉 = arg min
D,W,X

‖A− DX‖2F + α ‖H −WX‖2F + β ‖W‖2F

+ λ1 ‖X‖1 + λ2

k
∑

i=1

(

‖Xi −Mi‖
2
F + ‖Xi‖

2
F

)

s.t.
∥

∥dj
∥

∥

2

2
= 1, for all j = 1, . . . ,m (3)

The optimization process of Equation (3) has been discussed
in our previous study (Xu et al., 2016). In SCDDL, the
directly restricted within-Class-similar term makes the coding
coefficients similar within one class and the linear classification
error term selects the optimal classifier. This combination has
been shown to improve the discriminative classification of the
dictionary (Xu et al., 2016).

After obtaining the dictionary D and classifier W in the
SCDDL model, the test samples can be finally classified.

For a given test sample y, the representation coefficient on D
is:

x = argmin
x

∥

∥y− Dx

∥

∥

2

2
+ λ ‖x‖1 (4)

where λ is a scalar constant. The representation coefficient x can
be simply combined with the linear classifier W. Then the final
identification of the test sample y is obtained in the DL procedure
with:

label
(

y
)

= argmax
l

{Wx}l , l = 1, 2, . . . , k (5)

where {·}l represents the l-th element in the brace, x contains
discriminant information for classification.

Multi-feature Kernel SCDDL (MKSCDDL)
The SCDDL model is extended to a kernel framework for
the further multi-feature fusion in our previous study (Wu
et al., 2017). Suppose φ(·) is a mapping function from RN

to a higher dimensional feature space. To avoid the explicit
high-dimensional mapping procedure, mercer kernels could be
helpful. The common mercer kernels include the linear kernel
k(x, y) =

〈

x, y
〉

, which equals to non-mapping; the Gaussian

kernels k(x, y) = exp(−
‖x−y‖2

c ); the polynomial kernels k(x, y) =

(
〈

x, y
〉

+ c)
d
(c and d are parameters) and the sigmoid kernels

k(x, y) = tanh(a(xTy) + r) (a and r are parameters) (Manevitz
and Yousef, 2001; Hussain et al., 2011; Liu et al., 2013; Pham and
Pagh, 2013; Dyrba et al., 2015).

The training samples A and dictionary D can be mapped to
a higher dimensional space by a function of φ(·), then A and D

in the SCDDL model can be replaced by φ(A) ∈ Rdmap×n and
φ(D) ∈ Rdmap×m (dmap is the dimensional number in themapping
space) respectively for the kernel SCDDL framework as follows:

〈D,W,X〉 = arg min
D,W,X

∥

∥φ(A)− φ(D)X
∥

∥

2

F
+ α ‖H −WX‖2F

+ β ‖W‖2F + λ1 ‖X‖1

+ λ2

k
∑

i=1

(

‖Xi −Mi‖
2
F + ‖Xi‖

2
F

)

s.t.
∥

∥dj
∥

∥

2

2
= 1, for all j = 1, . . . ,m (6)

The dictionary can be represented by the training samples as
Equation (7), according to the represented theorem (Schölkopf
et al., 2001):

φ (D) = φ(A)V (7)

where V ∈ Rn×m is the representation matrix. Equation (6) can
be transformed to Equation (8) with Equation (7):

〈V ,W,X〉 = arg min
V ,W,X

‖φ (A) − φ (A)VX‖2F + α ‖H −WX‖2F

+ β ‖W‖2F + λ1 ‖X‖1 + λ2

k
∑

i=1

(

‖Xi −Mi‖
2
F

+ ‖Xi‖
2
F

)

(8)

The optimization process of Equation (8) has been discussed in
our previous study (Wu et al., 2017). Then, the test sample y and
dictionaryD in Equation (4) can be replaced by φ(y) ∈ Rdmap and
φ(A)V respectively as:

x = arg min
x

∥

∥φ(y)− φ(A)Vx
∥

∥

2

2
+ λ ‖X‖1 (9)

where λ is a scalar constant as above.
Let T (x) = min

x

∥

∥φ(y)− φ(A)Vx
∥

∥

2

2
, then T(x) can be

simplified as:

T(x) = min
x

tr(xTPx− 2xTQ+ S) (10)

where P = VTk(A,A)V , Q = VTk(y,A), and S = k(y, y).
Using the conclusions in previous study (Harandi and

Salzmann, 2015), Equation (10) is equivalent to:

T(x) = arg min
x

∥

∥ỹ− D̃x
∥

∥

2

2
(11)

where ỹ = Σ− 1
2UTQ, D̃ = Σ

1
2UT , and UΣUT is the SVD of P

(Nguyen et al., 2012). Then Equation (9) can be denoted as:

〈x〉 = arg min
x

∥

∥ỹ− D̃x
∥

∥

2

2
+ λ

1
‖X‖1 (12)

The convex problems in Equation (12) can be efficiently solved
by plenty of tools such as the L1-magic software package (Candes
and Romberg, 2005), the GPSR package (Figueiredo et al., 2007)
and the L1-homotopy package (Asif and Romberg, 2010).
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Finally, the identification of the test sample y can be employed
using Equation (5) as follows:

label
(

y
)

= arg max
l

{Wx}l , l = 1, 2, . . . , k

where the {·}l represents the l-th element in the brace.
As it is shown in theMKL algorithm (Sonnenburg et al., 2006),

suppose there are J features for each sample, the kernel can be
combined by convex combinations of J kernels, i.e.,

k
(

x, y
)

=

J
∑

j=1

wjkj
(

x, y
)

wj ≥ 0,

J
∑

j=1

wj = 1 (13)

where each sub-kernel kj corresponds to feature j.
So far, the kernels involved in the solution of Equation (12)

can be replaced by Equation (13) for the multi-feature fusion
of MKSCDDL. The combination coefficients can be simply
set to be equal across all the features or optimized by cross-
validation on the training samples. The sub-kernels can be
selected from linear kernel, polynomial kernels, Gaussian kernels

and sigmoid kernels etc. After the substitution of the kernels
involved in the solution of Equation (12), MKSCDDL is realized
(Wu et al., 2017).

Experimental Setting
In MKSCDDL model and the classification scheme, there are
several parameters need to be set, including the parameter α for
the classification error term, λ for the sparse coding term, λ1 for
the sparsity term, and λ2 for the with-Class-similar term. Here,
for simplify, α was set with α = 1 to make the contribution
of the classification error equal (Xu et al., 2016). Furthermore,
the parameter in the classification scheme λ made a little effect
in the experimental results. So, λ was set with λ = 0.001 in
the experiment. For the parameters in the optimization model
λ1 and λ2, the optimal values were searched from a small set of
{0.001, 0.005, 0.01, 0.05, 0.1} with a 5-fold cross-validation on
the training set (Wu et al., 2017). For the AD and CU data set:
λ1 = 0.001, λ2 = 0.1. For the MCI and CU data set: λ1 =

0.05, λ2 = 0.05. For the AD and MCI data set: λ1 = 0.05,
λ2 = 0.005.

FIGURE 1 | Comparison of the ROC curves based on SCDDL-sMRI, SCDDL-FDG-PET, SCDDL-florbetapir-PET, and MKSCDDL (A) for classification AD and CU; (B)

for classification MCI and CU; and (C) for classification AD and MCI.

FIGURE 2 | Comparison of the areas under the ROC curves based on SCDDL-sMRI, SCDDL-FDG-PET, SCDDL-florbetapir-PET, and MKSCDDL (A) for classification

AD and CU; (B) for classification MCI and CU; and (C) for classification AD and MCI (**indicates 0.01 ≤ p < 0.05; *indicates 0.05 ≤ p < 0.10).
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The dictionary size in MKSCDDL, mSCDDL, and SCDDL
were set as 20 atoms (equivalent to 10 atoms for each class) for
AD/CU, MCI/CU and AD/MCI classification; for MKL and JRC
algorithms, all the training samples were trained for the model
and classification; and for mSRC, all the training samples were
used as a dictionary.

In this study, linear kernel was employed for MKSCDDL
in the experiment. The combining weight parameters of three
modalities for MKSCDDL was derived based on grid search
approach with the range of [0,1] at a step size of 0.1 with a
5-fold cross-validation on training set (Zhang et al., 2011; Xu
et al., 2015, 2016). Particularly, the combing weight parameters
optimized corresponding to sMRI, FDG-PET and florbetapir-
PET for classifying AD from CU are 0.5, 0.3, and 0.2; for
discriminating MCI from CU are 0.2, 0.7, and 0.1; for detecting
MCI from AD are 0.3, 0.6, and 0.1.

To evaluate the performance of all competing methods, their
accuracy (the ratio of samples correctly classified among the
test samples), sensitivity (the ratio of positive classes that were
correctly identified), specificity (the ratio of negative classes that
were accurately classified), and the areas under the Receiver
Operating Characteristic (ROC) curves (AUC) were employed
and compared in classification. For each group (AD, MCI, and
CU), samples (subjects) were divided randomly into training and
test sets. Sixty samples were selected randomly as the training
set, and the rest comprised the test set. The division process was
then repeated five times for the results of means and standard
deviations, which were reported in this paper. Then, a two-
sample t-test was carried out for each comparison pair to obtain
the p-value.

In order to find the biomarkers for AD, MCI and CU
classification, the 90 features were ranked according to the
significance of the two-sample t-test. Then, the classification
accuracy with different number (from 1 to 90) of the ranked 90
features has been calculated based on MKSCDDL (Zhang et al.,
2011; Xu et al., 2016).

RESULTS AND DISCUSSIONS

Comparison with Single-Modality SCDDL
The performance of using single-modality SCDDL (SCDDL-
sMRI, SCDDL-FDG-PET, and SCDDL-florbetapir-PET) and
MKSCDDL (sMRI + FDG-PET + florbetapir-PET) were
evaluated, as shown in Figures 1, 2 and Table 2, the MKSCDDL
achieved higher accuracy in classifying AD, MCI, and CU than
single-modality SCDDL methods.

For discriminating AD from CU, MKSCDDL achieved
an accuracy of 98.18% (with 99.81% sensitivity and 96.49%
specificity) that was much better than the best accuracy of
91.18% with single-modality method (using SCDDL-FDG-PET).
Further, the comparison of the ROC curves for classification of
AD and CU is shown in Figure 1A, and the comparison of AUCs
is shown in Table 2. The ROC curve of MKSCDDL was closer
to the top-left corner than that of SCDDL-FDG-PET, SCDDL-
florbetapir-PET, and SCDDL-sMRI. The AUC of MKSCDDL
was 0.991, which was better than the single-modality methods
(AUC = 0.939, p = 0.046 for SCDDL-sMRI; AUC = 0.937,
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p = 0.028 for SCDDL-florbetapir-PET; and AUC = 0.970,
p = 0.151 for SCDDL-FDG-PET, which was not significant in
validation, but was numerically greater) as shown in Figure 2A.

For classifying MCI from CU, MKSCDDL achieved an
accuracy of 78.50% (with sensitivity of 76.00% and specificity
of 81.06%), which was greater than all three single-modality
methods (the best classification accuracy was 72.50% when
using SCDDL-FDG-PET). The comparison of the ROC curves
for classification of MCI and CU are shown in Figure 1B

and the comparison of AUCs is shown in Table 2. The ROC
curve of MKSCDDL was closer to the top-left corner than
that of SCDDL-sMRI, SCDDL-florbetapir-PET, and SCDDL-
FDG-PET. Further, based on the significance validation,
MKSCDDL was significantly much better than the single-
modality methods with AUC, which was 0.839 for the multi-
modality method compared with that of the single-modality

methods (AUC = 0.762, p = 0.094 for SCDDL-FDG-PET;
AUC = 0.742, p = 0.076 for SCDDL-florbetapir-PET; AUC =

0.787, p = 0.315 for SCDDL-sMRI, which were numerically
better, though were not significant in validation) as shown in
Figure 2B.

For classifying AD from MCI, MKSCDDL achieved an
accuracy of 74.47% (with sensitivity of 72.44% and specificity
of 78.99%), which was greater than all three single-modality
methods (the best classification accuracy was 72.23% when using
SCDDL-FDG-PET). The comparison of the ROC curves for
classification of AD and MCI are shown in Figure 1C and the
comparison of AUCs is shown in Table 2. The ROC curve of
MKSCDDL was closer to the top-left corner than that of SCDDL-
sMRI, SCDDL-florbetapir-PET, and SCDDL-FDG-PET. Further,
based on significant validation, MKSCDDL was significantly
much better than the single-modality methods with AUC, which

FIGURE 3 | Comparison of the ROC curves based on JRC, MKL, mSRC, mSCDDL, and MKSCDDL (A) for classification AD and CU; (B) for classification MCI and

CU; and (C) for classification AD and MCI.

FIGURE 4 | Comparison of the areas under the ROC curves based on MKL, JRC, mSRC, mSCDDL, and MKSCDDL (A) for classification AD and CU; (B) for

classification MCI and CU; and (C) for classification AD and MCI (*indicates 0.05 ≤ p < 0.10).
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was 0.791 for the multi-modality method compared with that
of the single-modality methods (AUC = 0.687, p = 0.091 for
SCDDL-sMRI; AUC = 0.694, p = 0.107 for SCDDL-florbetapir-
PET; and AUC = 0.742, p = 0.198 for SCDDL-FDG-PET, which
was numerically better, though were not significant in validation)
as shown in Figure 2C.

The MKSCDDL achieved better classification accuracy and
AUC for AD, MCI, and CU classification than the methods based
on single-modality SCDDL (SCDDL-sMRI, SCDDL-FDG-PET,
and SCDDL-florbetapir-PET), as seen in the results above, either
statistically or numerically. The results we derived here were also
consistent with those of other studies that have reported fusing
multiple modalities could obtain better classification accuracy
(Zhang et al., 2011; Westman et al., 2012; Xu et al., 2016).

Notably, on differentiating between MCI and CU, the
classification specificity based on SCDDL-FDG-PET was 81.23%,
which was slightly higher than that based on MKSCDDL
(81.06%), whereas the classification sensitivity based on SCDDL-
FDG-PET (62.20%) was much lower than that of MKSCDDL
(76.00%). Lower sensitivity with only marginally higher
specificity (which could be due to random noise) would result in
underdiagnosis. The MKSCDDL method had higher sensitivity
and outstanding specificity that was comparable with that of
SCDDL-FDG-PET, and much higher than that of the other
methods. Therefore, the results suggest the feasibility of using
MKSCDDL for neuroimaging classification tasks. These meant
that the MKSCDDL method was much or slightly better than
SCDDL-florbetapir-PET, SCDDL-sMRI and SCDDL-FDG-PET
in differentiating AD or MCI from CU.

Comparison with Several Other
Multi-modality Methods
The performance of using MKL, JRC, mSRC, mSCDDL, and
MKSCDDL were evaluated and compared, including recognition
rate, ROC curve and testing time. As shown in Figures 3–5 and

Table 3, the MKSCDDL achieved higher accuracy in classifying
AD or MCI from CU than other multimodal methods, and
outperforms in testing time.

For differentiating AD from CU, MKSCDDL achieved
an accuracy of 98.18% accuracy CU that was higher than
MKL (93.64%), JRC (94.55%), mSRC (94.55%), and mSCDDL
(97.36%). The comparison of the ROC curves for classification
of AD and CU is shown in Figure 3A and the comparison of
AUCs is shown in Table 3. The ROC curve of MKSCDDL was
closer to the top-left corner than that of MKL, JRC, mSRC, and
mSCDDL. The areas under the ROC curves for differentiation
of AD and CU based on the five different methods are displayed
in Figure 4A, in which the MKSCDDL method (AUC = 0.991)
performed equally well statistically or numerically better than the
other three multi-modality methods (AUC= 0.963, p= 0.095 for
MKL; AUC = 0.971, p = 0.291 for JRC; AUC = 0.978, p = 0.429
for mSRC; and AUC = 0.985, p = 0.603 for mSCDDL). Figure 5
has shown the computational time for classification of per test
sample with the corresponding methods. As shown, MKSCDDL
consumed much less testing time than JRC (p = 0.007), mSRC
(p= 0.010), and mSCDDL (p= 0.036), and was comparable with
the MKL (p= 0.208) method.

For classifying MCI from CU, MKSCDDL achieved an
accuracy of 78.50% (with sensitivity of 76.00% and specificity of
81.06%), which was greater than MKL (74.77%), JRC (73.83%),

mSRC (75.70%), and mSCDDL (77.66%). The comparison of

the ROC curves for classification of MCI and CU are shown in
Figure 3B and the comparison of AUCs is shown in Table 3.

The ROC curve of MKSCDDL was closer to the top-left corner

than that of MKL, JRC, mSRC, and mSCDDL. Further, based on
significant validation, MKSCDDL was numerically better than

the corresponding methods with AUC, which was 0.839 for the
MKSCDDL method compared with that of the corresponding

methods (AUC = 0.804, p = 0.534 for MKL; AUC = 0.793,

p = 0.331 for JRC; AUC = 0.785, p = 0.223 for mSRC; and

FIGURE 5 | Comparison of testing time of different multi-modality methods for classification AD, MCI, and CU based on MKL, JRC, mSRC, mSCDDL, and

MKSCDDL (**indicates 0.01≤ p < 0.05; *indicates 0.05 ≤ p < 0.10).
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AUC = 0.828, p = 0.843 for mSCDDL), as shown in Figure 4B.

As shown in Figure 5, MKSCDDL consumed much less testing
time than JRC (p = 0.009), mSRC (p = 0.015) and mSCDDL
(p = 0.047), and was comparable with the MKL (p = 0.389)
method.

For classifying AD from MCI, MKSCDDL achieved an

accuracy of 74.47% (with sensitivity of 72.44% and specificity of
78.99%), which was greater than MKL (72.94%), JRC (72.05%),

mSRC (68.55%), and mSCDDL (73.20%). The comparison of
the ROC curves for classification of AD and MCI are shown in

Figure 3C and the comparison of AUCs is shown in Table 3.

The ROC curve of MKSCDDL was closer to the top-left corner
than that of MKL, JRC, mSRC, and mSCDDL. Further, based on

significant validation, MKSCDDL was numerically better than

the corresponding methods with AUC, which was 0.791 for the
MKSCDDL method compared with that of the corresponding
methods (AUC = 0.779, p = 0.600 for MKL; AUC = 0.772,
p = 0.477 for JRC; AUC = 0.693, p = 0.120 for mSRC; and
AUC = 0.780, p = 0.593 for mSCDDL), which shown in
Figure 4C. As shown in Figure 5, MKSCDDL consumed much
less testing time than JRC (p = 0.011), mSRC (p = 0.019)
and mSCDDL (p = 0.059), and was comparable with the MKL
(p= 0.352) method.

Biomarkers for AD, MCI, and CU
Classification
To characterize the classification performance for AD, MCI,
and CU with all 90 features (without feature selection), the
classification accuracy has been investigated under feature
selection with 1, 2, 3, ..., or 90 features for each of the ranked
90 features. The results of classification performance for different
numbers of ranked features are shown in Figure 6.

The figure shows that the MKSCDDL method could reach
strong classification accuracy even with fewer than 5 features
(the top 5% ranked features on sMRI, FDG-PET, and florbetapir-
PET) for AD/MCI/CU classification. In particular, there was
higher than 90% accuracy for classifying AD from CU, higher
than 78% accuracy for distinguishing MCI from CU, and
higher than 61% accuracy for discriminating AD and MCI.
The MKSCDDL method was stable (with less ups and downs)
for the classification of AD/MCI from CU, which indicated
that redundant features likely introduced little interference
of classification. For classification of AD and MCI, though
the accuracy was also acceptable, it was not as stable as the
classification accuracy for AD/MCI with CU, which may be
due to the biomarkers for AD and MCI having very high
similarity. When the top 10% features were used, the accuracy
for classification of AD and MCI was higher than 64%.

As shown in Figure 6, the MKSCDDL could achieve a
promising or acceptable accuracy even with less than 5 features
(the top 5% ranked features). Thus, for convenience, one could
apply a small set of features to effectively discriminate AD, MCI,
and CU. Here, the top 5–10% ranked features (4–9 features)
consisted of sMRI, FDG-PET, and florbetapir-PET data and could
be chosen as biomarkers for further classification (Xu et al., 2016).
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FIGURE 6 | Classification accuracy for AD, MCI, and CU with different feature dimensions based on MKSCDDL.

The biomarkers of different modalities for classification of the
AD, MCI, and CU groups are displayed in Table 4 and Figure 7.
For classification of AD and CU, the Hippocampus, Inferior
Temporal, and ParaHippocampal may be the discriminating
biomarkers on sMRI; the Angular, Posterior Cingulum, and
Inferior Parietal may be the important regions on FDG-PET;
and the Hippocampus and ParaHippocampal may be the key
regions on florbetapir-PET. For discriminating MCI from CU,
the Hippocampus, Middle Temporal, and ParaHippocampal may
be the discriminating biomarkers on sMRI; the Angular and
Posterior Cingulum may be the important regions on FDG-
PET; and the Hippocampus, Posterior Cingulum, and Middle
Frontal (Orbital part) may be the key regions on florbetapir-
PET. For differentiating AD and MCI, the SupraMarginal,
Angular, and left Superior Frontal (Orbital part) were the
discriminating biomarkers on sMRI; the Angular, Inferior
Parietal, and SupraMarginal may be the important regions on
FDG-PET; and the Calcarine, Heschl, and Lingual may be the key
regions on florbetapir-PET.

For AD and CU classification, the Hippocampus (Wisse et al.,
2014; de Flores et al., 2015; Voineskos et al., 2015), Inferior
Temporal (Seo et al., 2017), ParaHippocampal (Guo et al., 2014;
Peng et al., 2016), Angular (Sanabria-Diaz et al., 2013), Posterior
Cingulum (Nakata et al., 2009; Demirhan et al., 2015), and
Inferior Parietal (Murray et al., 2015; Zhang et al., 2015) have
been proposed in several studies to be effective biomarkers. The
Hippocampus (Wee et al., 2011; Zhou et al., 2011; Liu et al.,
2014a), Middle Temporal (Lenzi et al., 2011; Jiang et al., 2014),
ParaHippocampal (Cerami et al., 2015; Kato et al., 2016), Angular
(Nobili et al., 2010; Martlno et al., 2013; Zu et al., 2015), Posterior
Cingulum (Choo et al., 2010; Yu et al., 2017), and Middle
Frontal (Orbital part) (Xiang et al., 2013) have been reported
as the important regions for discriminating MCI and CU. For
differentiating AD and MCI, the SupraMarginal (Esposito et al.,

TABLE 4 | The most discriminating regions for classification AD, MCI, and CU

based on sMRI, FDG-PET, and florbetapir-PET.

sMRI FDG-PET Florbetapir PET

AD vs. CU

Left hippocampus Left angular Left hippocampus

Right hippocampus Left posterior

cingulum

Right hippocampus

Left inferior temporal Right angular Left parahippocampal

Right parahippocampal Right inferior parietal Right parahippocampal

MCI vs. CU

Left hippocampus Left posterior

cingulum

Left hippocampus

Right hippocampus Left angular Right hippocampus

Left middle temporal Right posterior

cingulum

Right posterior cingulum

Right parahippocampal Right angular Left middle frontal (orbital part)

AD vs. MCI

Left supramarginal Right angular Left calcarine

Right angular Left angular Left heschl

Right supramarginal Right inferior parietal Right lingual

Left superior frontal

(orbital part)

Left supramarginal Right heschl

2013; Moretti, 2015), Angular (Hirao et al., 2005; Griffith et al.,
2010; Li et al., 2016), Superior Frontal (Orbital part) (Liu et al.,
2012), Inferior Parietal (Desikan et al., 2009; Triplett et al.,
2016), Calcarine (Liu et al., 2012), Heschl (Hanggi et al., 2011),
and Lingual (Li et al., 2016) may be the key biomarkers for
diagnosis.

Therefore, MKSCDDL was proved as a very efficient method
for classifying AD or MCI from CU, and had potential to
discriminate AD from MCI, as compared to the single-modality

Frontiers in Computational Neuroscience | www.frontiersin.org 10 January 2018 | Volume 11 | Article 117

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Li et al. MKSCDDL for AD/MCI Diagnosis

FIGURE 7 | Biomarkers with sMRI, FDG-PET, and florbetapir-PET (A) for classification AD and CU; (B) for classification MCI and CU; and (C) for classification AD and

MCI.

method and several state-of-art multi-modality methods. The
MKSCDDL method performed better than MKL, JRC, mSRC,
and mSCDDL in terms of accuracy rate and AUC, often
significantly on validation but at least numerically for AD, MCI,
and CU classification. In addition, the MKSCDDL method took
less computation time than did JRC, mSRC, and mSCDDL, and
was comparable to MKL in terms of computation time. Together,
this indicates that the MKSCDDL method could potentially play
an important role in AD and MCI diagnosis.

CONCLUSIONS

In this study, a novel DL method, named as MKSCDDL
with previous successful application to face recognition,
was introduced combining sMRI, FDG-PET, and
florbetapir-PET for differentiating AD, MCI, and CU.
The results suggested that the MKSCDDL is promising
for classification and diagnose diseases with neuroimaging
data.
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