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CircRNA ZNF609 in peripheral blood leukocytes acts as a
protective factor and a potential biomarker for coronary artery
disease
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Background: Circular RNAs (circRINAs) have been reported to aberrantly express in coronary artery
disease (CAD). Due to their special structures, circRNAs have the potential to be specific and stable markers.
We conducted this study to explore circZNF609’ function in atherosclerosis and to evaluate its predictive
values for CAD.

Methods: About 330 CAD patients and 209 controls were enrolled and the expression of circZNF609 in
peripheral blood leukocytes (PBLs) was detected by quantitative real time polymerase chain reaction (RT-
PCR). Spearman correlation, multivariate regression, multivariate logistic regression and receiver operating
characteristic curve (ROC) were performed. Moreover, circZNF609 was overexpressed in mice macrophage
RAW?264.7 to investigate its influence on inflammatory cytokines. Finally, bioinformatics analysis was
executed to excavate the potential downstream pathway of circZNF609.

Results: The expression level of circZNF609 in PBLs of CAD patients was significantly decreased
compared with the controls (the fold changes of 0.4133, P<0.0001). The logistic regression analysis showed
that decreased circZNF609 expressions were independently associated with increased risks of CAD. The
area under the ROC curve was 0.761 (95% CI: 0.721-0.800, P<0.0001). Furthermore, the circZNF609
expression level was correlated with C-reactive protein (r=-0.138, P=0.026) and lymphocyte counts (r=0.16,
P=0.01). After overexpression of circZNF609 in RAW264.7 cells, the expression level of IL-6 (P<0.001) and
TNF-a (P<0.01) were significantly decreased and IL-10 was significantly increased (P<0.001). Bioinformatics
analysis suggested that the abnormal expression of circZNF609 might probably sponge miRNA to modulate
the inflammation cytokines.

Conclusions: CircRNA ZNF609 played an anti-inflammatory role and was an independent protective
factor for CAD. It represented a moderate diagnostic value and might provide a new therapeutic target for
CAD.
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Introduction

Coronary artery disease (CAD) is a complex and multifactorial
disease and remains the leading cause of death worldwide (1).
In CAD pathogenesis theories, the inflammatory response
theory has been widely recognized (2). Lately, the COLCOT
trials including 4,745 myocardial infarction participants
reported that anti-inflammatory medication colchicine
significantly reduced the risk of ischemic cardiovascular
events (3). Besides, the CANTOS trial enrolling 10,061
high-risk patients defined by prior myocardial infarction has
demonstrated that canakinumab targeting the IL-1B anti-
inflammatory pathway significantly reduced the incidence
of cardiovascular events (4). These two breakthrough
clinical studies have lent strong support to the theory
that inflammation contributes to the pathogenesis of
atherosclerotic diseases. Considered that inflammation plays
a crucial role in the atherosclerosis process (5), it is feasible
to explore potential inflammation-related biomarkers for
prediction and surveillance of cardiovascular disease.

Circular RNA (circRNA), a novel class of endogenous
noncoding RNAs, is quickly gaining prominence rapidly
due to the discovery of its regulatory role and predictive
value in several pathological processes (6-9). Because of
their covalently closed loop structure and resistance to
nuclease, circRNAs have become convenient and ideal
molecular predictive biomarkers (10-12). CircRNAs
have been found to be involved in several cardiovascular
pathological processes, including myocardial infarction (13),
heart failure (14) and overall atherosclerosis (15). CircRNA
ZNF609 (circBase ID: hsa_circ_0000615) is a circle RNA
formed by the 8"-10" exons of the host gene ZNF609
(Zinc Finger family 609), which located at chr15:64791491-
64792365. Liu et al. (16) reported that circZNF609
could participate in the regulation of vascular endothelial
function by interacting with miR-615-5p. Studies have
shown that zinc finger proteins play important roles in
inflammatory regulation (17), apoptosis regulation (18),
and lipid metabolism (19). Since inflammation (20),
apoptosis (21), lipid metabolism are all involved in the
CAD and vascular endothelial dysfunction is considered of
paramount importance in the atherosclerotic process (22),
we hypothesized that circZNF609 could be related to CAD
pathogenesis (16).

Given present data, we carried out this study to
investigate the role of circZNF609 in peripheral blood
leukocytes (PBLs) of CAD patients, and to evaluate its
possible diagnostic value as a novel biomarker. We present
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the following article in accordance with the STARD
reporting checklist (available at http://dx.doi.org/10.21037/
atm-19-4728).

Methods
Experimental subjects

A total of 330 CAD patients and 209 controls were recruited
from Zhongnan Hospital of Wuhan University between
April 2016 and May 2017. Of these, 30 control individuals
and 30 CAD patients with different Gensini scores were
randomly selected as the discovery cohort, whereas the
remaining population served as the validation group. The
diagnostic criteria of CAD were defined as stenosis >50%
in at least one of the coronary arteries by invasive coronary
angiography (ICA). CAD was used to be classified into four
subtypes of stable angina pectoris (SAP), unstable angina
pectoris (UA), non-ST-segment elevation myocardial
infarction (NSTEMI) and ST-segment elevation myocardial
infarction (STEMI), while the latest 2019 ESC Guidelines
on Chronic Coronary Syndromes emphasized that CAD
was classified into acute coronary syndromes (ACS) and
chronic coronary syndromes (CCS) (23). Patients with
the following diseases were excluded: (I) cardiac diseases
including congenital heart diseases, myocardial bridge,
cardiomyopathy or severe non-coronary cardiovascular
diseases; (II) systemic acute or chronic infections or
inflammatory diseases; (III) malignant tumors; (IV)
autoimmune diseases; (V) liver and kidney dysfunctions; (VI)
endocrine diseases such as thyroid diseases. Controls were
age- and gender-matched individuals who came from the
Physical Examination Center without cardiac diseases or
any of the aforementioned conditions.

The extracted data included demographic information:
age, gender, body mass index (BMI) and traditional
CAD risk factors: smoking, alcohol drinking, histories of
hypertension, dyslipidemia and type 2 diabetes mellitus
(T2DM). Fasting plasma glucose (FPQG), total cholesterol
(TC), total triglyceride (T'G), high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), routine complete blood count, C-reaction protein
(CRP), N-terminal pro-brain natriuretic peptide (N'T-
proBNP), and cardiac troponin T (¢TnT) were measured
by standard techniques in the Clinical Core Laboratory of
Zhongnan Hospital. Detailed information is depicted in
Tables S1,S2.

The study was conducted in accordance with the
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Declaration of Helsinki and was approved by the Medical
Institutional Review Board of Zhongnan Hospital of
Wauhan University (approval number 2010052). Informed
consent was obtained before the study.

Calculation of the Gensini score

The severity of coronary atherosclerosis was assessed by the
Gensini score, which took the extent and the location of the
stenosis into account (24). The 0-25%, 26-50%, 51-75%,
76-90%, 91-99% and 100% stenosis were scored at 1, 2, 4,
8, 16 and 32 respectively. Different coronary artery branches
corresponded to different coefficients, ranging from 0.5 to
5, depending on the stenosis location and significance of the
cardiac region supplied by that segment. Gensini scores of
each patient were sum of scores of coronary artery branches
multiplied by the corresponding coefficients.

Calculation of monocyte-to-lymphocyte ratio (MLR),
platelet-to-lymphocyte ratio (PLR), neutrophil-to-
lymphocyte ratio (NLR)

The MLR, PLR and NLR were calculated based on
the counts of neutrophils, lymphocytes, monocytes, and
platelets. MLR = monocyte counts/lymphocyte counts, PLR
= platelet counts/lymphocyte counts, NLR = neutrophil
counts/lymphocyte counts.

Cell culture

RAW264.7 cells were suspended in DMEM medium (Gibco,
USA) containing 10% fetal bovine serum (Gibco, USA) and
seeded in 6-well culture plates at a concentration of 4.0x10’
cells/well. At 60-80% confluence, pcDNA3.1-circZNF609
vector or the blank control vector (GenePharma, China)
were transfected with FuGENE HD transfection reagent
(Promega, USA) at a ratio of 2 pg DNA/7 pL. FuGENE
(according to the manufacturer’s recommendations). After
24 h of transfection, cells were collected for subsequent
experiments.

RNA extraction and quantitative real time polymerase
chain reaction

Fresh whole blood was centrifuged at 3,000 rpm at 4 °C for
10 min to separate blood cells and plasma. The blood cells
were added to the erythrocyte lysate at a ratio of 1:3 and
incubated at 4 °C until the erythrocytes were completely

© Annals of Translational Medicine. All rights reserved.

Page 3 of 13

ruptured. After 12,000 rpm centrifugation at 4 °C for 5 min,
the supernatant was discharged and the precipitation was
PBLs. Total RNA in PBLs and RAW264.7 were isolated
using TRIzol reagent (Invitrogen, USA). Nanodrop
2000 (Thermo Scientific, USA) was used to detect the
concentration and purity of RNA. Total RNA (2 pg) was
incubated with or without 3 U/pg of RNase R (Epicentre
Technologies, USA) for 30 min at 37 °C, and cDNA was
synthesized according to the manufacturer instructions of
PrimeScriptTM RT reagent Kit (Toyobo, Japan).

The mRNA expression levels of circZNF609, 1L-
6, TNF-a, IL-10 were detected using quantitative real
time polymerase chain reaction (RT-PCR) on the Bio-
Rad CFX96 (Bio-Rad, USA) with the Fast SYBR® Green
PCR Master Mix-PE (Applied Biosystem, USA). Relative
expressions were calculated as 27 using GAPDH as a
reference gene. Primers are listed in Table S3.

Prediction for downstream pathways of circZNF609

To investigate the underlying mechanisms of expression
variations of circZNF609 in CAD, TargetScan (25) was
used to predict target microRNAs of circZNF609. DIANA-
miRPath v.3 platform (TarBase v7.0 method) (26) was
used for pathway enrichment analysis of microRNAs.
Then, we retrieved four complementary microRNAs with
circZNF609 on PubMed, which were confirmed by previous
reported double luciferase assays. The potential targets
of these microRNAs were predicted by MiRWalk (27).
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were carried out based
on DAVID Bioinformatics Resources 6.8 (28). circZNF609-
miRNAs-mRNA network map was drawn by Cytoscape
Software (v3.7.1) (29).

Statistical analysis

Data normally distributed were presented as mean =
standard deviation (SD), otherwise being described by
the median with inter-quartile range. Normality of data
distribution was assessed by the Shapiro-Wilk test. The
normally distributed continuous variables were assessed
by the Student’s ¢-test, while non-normally distributed
variables were analyzed by the Mann-Whitney test.
Categorical variables were analyzed by the chi-square test.
When comparison was performed among multiplied groups,
One-way ANOVA test or nonparametric test was used.
The Spearman correlation and multivariate regression were
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Figure 1 The expression level of circZNF609 in CAD patients was significantly decreased compared with controls. (A) In the discovery
cohort; (B) in the validation cohort; (C) in the combined cohort. Error bars represent the median with interquartile range. The data analyzed
using Mann-Whitney test. ****, P<0.0001. CAD, coronary artery disease.

used to test correlations between circZNF609 expression
levels and clinical characteristics in CAD patients. receiver
operating characteristic curve (ROC curve) analysis was
conducted to estimate the potential clinical predictive values.
Associations between circZNF609 relative expressions and
CAD were analyzed by the multivariate logistic regression
and unconditional logistic regression. P<0.05 was considered
to be statistically significant. All statistical analyses were
performed on SPSS version 23.0 (SPSS, USA) and GraphPad
Prism 8.0 (GraphPad Software, USA).

Results
Clinical characteristics in the combined cobort

The clinical characteristics are depicted in Table S1. There
were no differences in age or gender between CAD and
control groups in the combined cohort. The BMI level
(25.1£3.6 vs. 24.3£1.9, P=0.006), smoking status (57.3%
vs. 28.2%, P<0.0001), alcohol drinking (25.2% vs. 16.3%,
P=0.015), hypertension (62.4% vs. 31.6%, P<0.0001),
hyperlipidemia (20.6% vs. 12.0%, P=0.010) and T2DM
(27.9% wvs. 15.3%, P=0.001) in the CAD group were
significantly higher than the control group.

Specific detection of circZNF609 expressions

To verify the specificity of the primers for circZNF609
amplification, RT-PCR products were sequenced and
compared with the standard sequence of circZNF609 in the
circBase database. The Sanger sequencing results showed
that the product sequence was consistent with the database
sequence, suggesting that circZNF609 could be specifically
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amplified by RT-PCR (Figure S1).

Decreased circZNF609 expression levels in CAD patients

In the discovery group, the expression level of circZNF609
was significantly decreased in PBLs of patients, compared
with controls (P<0.0001) (Figure 1A). Furthermore, we
validated the decrease circZNF609 in the validation cohort
consisting of 179 controls and 300 CAD patients (Figure 1B,
P<0.0001). In the combined cohort, circZNF609 was still
significantly down-regulated in the CAD group (P<0.0001)
(Figure 1C). In addition, circZNF609 was statistically lower
in non-T2DM CAD patients compared with non-T2DM
controls, while there was no difference between CAD
patients with vs. without T2DM (Figure S2). These data

were coincident with the logistic regression analysis results.

The expression of circZNF609 was an independent
protective factor for CAD

Without adjustment, the OR for CAD was 0.056 (95% CI:
0.270-0.114, P<0.0001) in individuals with the expression
of circZNF609 in the top tertile compared with the bottom
tertile. After progressive adjustment for age, gender, BMI,
smoking, alcoholism, histories of hypertension, hyperlipidemia,
T2DM, history of statins use, PBLs counts and PBLs
classification, the expression of circZNF609 remained
significantly associated with CAD prevalence (Tible ).

The expression of circZNF609 was negatively related to
CRP levels in cases

The results of the Spearman correlation analysis showed
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Table 1 Univariate and multivariate logistic regression analysis to identify circZNF609 as an independent predictor of CAD
circZNF609

Top tertile Middle tertile P value
0.056 (0.270, 0.114) 0.122 (0.061, 0.246) <0.0001
0.044 (0.021, 0.093) 0.111 (0.055, 0.228) <0.0001
0.041 (0.019, 0.087) 0.104 (0.050, 0.218) <0.0001
0.046 (0.021, 0.099) 0.122 (0.058, 0.258) <0.0001
0.038 (0.017, 0.085) 0.104 (0.048, 0.223) <0.0001
0.069 (0.029, 0.167) 0.126 (0.054, 0.295) <0.0001

Multivariate logistic regression model 5

Data are odds ratio (95% CI). Model 1 included age, gender, BMI. Model 2 included age, gender, BMI, smoking, alcoholism. Model 3
included age, gender, BMI, smoking, alcoholism, histories of hypertension, hyperlipidemia, T2DM. Model 4 included age, gender, BMI,
smoking, alcoholism, histories of hypertension, hyperlipidemia, T2DM, history of statins use. Model 5 included age, gender, BMI, smoking,
alcoholism, histories of hypertension, hyperlipidemia, T2DM, history of statins use, PBLs counts and PBLs classification. CAD, coronary

artery disease; BMI, body mass index; T2DM, type 2 diabetes mellitus; PBLs, peripheral blood leucocytes.

that the expression level of circZNF609 was negatively
correlated with CRP levels (r=-0.137, P=0.025), neutrophils
counts (r=-0.142, P=0.012) and Gensini scores (r=-0.153,
P=0.006), and positively correlated with lymphocyte counts
(r=0.237, P<0.0001) and history of hyperlipidemia (r=0.136,
P=0.013). After adjustment for several differential clinical
parameters in stepwise multivariate linear regression model,
we found that lymphocyte counts (8=0.16, P=0.01) and CRP
(B=-0.138, P=0.026) were independent factors associated
with circZNF609 expressions (Table 2). Since the related
indexes were inflammatory factor, we further analyzed
the relationship between circZNF609 expression and the
systemic inflammatory index (SII), and found circZNF609
was negatively correlated with MLR (r=-0.168, P=0.002),
NLR (r=-0.221, P<0.0001) and PLR (r=-0.158, P=0.004)
(Figure S3). These results suggest that circZNF609 may be

closely related to inflammatory processes in CAD.

Diagnostic values of circZNF609 expressions in PBLs.

ROC was constructed to assess whether circZNF609
expressions could be used as a potential diagnostic marker
for CAD. In the discovery cohort, the AUC was 0.830 (95%
CI: 0.726-0.925, P<0.0001) (Figure 2A), while the AUC
of the validation cohort was 0.752 (95% CI: 0.710-0.800,
P<0.0001) (Figure 2B). Overall, the AUC, specificity and
sensitivity for CAD of circZNF609 were 0.761 (95% CI:
0.721-0.800, P<0.0001), 0.804 (95% CI: 0.745-0.852) and
0.615 (95% CI: 0.562-0.666), respectively. A circZNF609
expression level of 0.024 was the best cut-off value (30).
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These results indicated a moderate predictive value of
circZNF609 for distinguishing patients with CAD from
controls (Figure 2C).

The expression level of circZNF609 in different clinical
subgroups.

The expression levels of circZNF609 among four CAD
subgroups: SAP (n=58), UA (n=67), NSTEMI (n=103)
and STEMI (n=102) were different but all significantly
decreased compared to the control group (all P<0.0001)
(Figure 34). The AUC of circZNF609 was 0.705 (95% CI:
0.624-0.787, P<0.0001) in SAP, 0.807 (95% CI: 0.740-
0.873, P<0.0001) in UA, 0.713 (95% CI: 0.648-0.778,
P<0.0001) in NSTEMI, and 0.752 (95% CI: 0.691-0.813,
P<0.0001) in STEMI (Figure 3B). The corresponding
specificity and sensitivity of each subtype are presented in

Table 3.

Overexpression of circZNF609 attenuated inflammation

In order to further explore the potential function of
circZNF609 on the inflammatory response, pcDNA3.1-
circZNF609 vector or the blank pcDNA3.1 vector were
transfected into RAW264.7 cells. The results showed the
pro-inflammatory cytokines including IL-6 and TNF-a
in cells transfected with pcDNA3.1-circZNF609 was
decreased compared with the control vector, whereas
the anti-inflammatory cytokine IL-10 was significantly
increased (Figure 4), which indicated that circZNF609
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Page 6 of 13

Table 2 Association between circZNF609 expression levels and
clinical parameters in CAD patients

circZNF609 expression

Clinical . Spearman correlation Multiple linear regression
characteristics

r P B P
Sex -0.012 0.833 - -
Age -0.094 0.089 - -
BMI 0.107 0.068 - -
Smoking 0.076 0.166 - -
Alcoholism -0.018 0.750 - -
Hypertension -0.023 0.678 - -
Hyperlipidemia 0.136 0.013 - -
T2DM -0.048 0.386 - -
WBC -0.092 0.104 - -
NEU -0.142 0.012* - -
LYM 0.237  <0.0001* 0.16 0.01*
MON -0.02 0.727 - -
PLT 0.001 0.987 - -
CRP -0.137 0.025* -0.138 0.026*
NT-proBNP —-0.050 0.402 - -
cTnT 0.051 0.378 - -
Gensini scores  -0.153 0.006* - -

*, P<0.05. CAD, coronary artery disease; BMI, body mass
index; T2DM, type 2 diabetes mellitus; WBC, white blood cell
counts; NEU, neutrophil counts; LYM, lymphocyte counts; MON,
monocyte counts; PLT, platelet counts; CRP, c-reaction protein;
NT-proBNP, N-terminal pro-brain natriuretic peptide; cTnT,
cardiac troponin T.

might play a protective role in the inflammatory response of
CAD by modulating inflammation cytokines.

Annotation for circZNF609 downstream pathways

To examine the potential downstream pathway of
circZNF609, KEGG pathway enrichment analysis was
performed on the miRNAs predicted by TargetScan
interacting with circZNF609 (Figure S4), and results
showed they were mainly enrichment in Arrhythmogenic
Right Ventricular Cardiomyopathy (ARVC), adherens
junction, TGF- signaling pathway, etc., which were highly
related to the pathophysiological process of CAD. Then, we
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found four complementary microRNAs with circZNF609
on PubMed, hsa-miR-145-5p (31), hsa-miR-615-5p (16),
hsa-miR-138-5p (32), hsa-miR-150-5p (33), which were
confirmed by double luciferase assays in previous reports.
We selected validated target genes from the predicted
targets results of MiRWalk as downstream targets (Table S4).
A network map comprising circZNF609, four miRNAs and
their target genes was presented in Figure 5A. Venn diagram
revealed the number of common downstream targets of
the four miRNAs (Figure 5B). GO and KEGG pathway
analysis of those target genes showed that they were mainly
concentrated in the pathway closely related to CAD, in
which the pro-inflammatory factors IL-6 and TNF-a were
pivotal irritants of HIF-1a and MAPK signaling pathways,
respectively (Figure 5C,D).

Discussion

In the present study, we found that circZNF609 was
significantly decreased in PBLs of CAD patients and might
be an independent protective factor for CAD (Table I).
Furthermore, we identified its’ anti-inflammation
function, based on the independent negative correlation of
circZNF609 with systemic inflammation indexes (Zable 2)
and in vitro experiments results (Figure 4). In addition, it
could be a potential diagnostic biomarker for CAD with the
diagnostic AUC value of 0.761.

So far, the theory that chronic inflammatory processes persist
in the course of CAD has been gaining the spotlight (34). CRP
has been shown to be a marker of systemic inflammation (35),
while elevated circulating levels of highly sensitive CRP
(hsCRP) are strongly associated with future vascular
events, independent of established risk factors (36,37).
We found circZNF609 was reversely correlated with the
systemic inflammation indexes, CRP and MLR, NLR and
PLR, which have been proven to be closely related to the
occurrence, development and prognosis of CAD (38-41).
MLR and NLR were the independent predictors of
cardiovascular diseases and positively associated with the
extent and severity of coronary lesions (42,43). Increased
PLR might be a marker of chronic inflammation, which
would ultimately lead to increased CAD risk factors
such as slow coronary blood flow and platelet-monocyte
aggregation formation (44,45). Furthermore, MLR, NLR
and PLR were reported to be positively correlated with
IL-6 (46), TNF-a (47) and CRP (48) respectively, while
circZNF609 was negatively correlated with these systemic
inflammation indexes in our study. These supported that
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Figure 2 The ROC curve of circZNF609. (A) In the discovery cohort; (B) in the validation cohort; (C) in the combined cohort. Error bars

represent the median with interquartile range. ROC, receiver operating characteristic; AUC, area under the curve; CAD, coronary artery
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myocardial infarction; STEMI, ST-segment elevation myocardial infarction; ROC, receiver operating characteristic; AUC, area under the

curve; CI, confidence interval.

circZNF609 might play a protective function in CAD
through an anti-inflammatory pathway.

Recently, circRNAs were proven to have the capacity to
regulate the inflammatory process of atherosclerosis. The
A20 gene in the zinc finger protein family was commonly
deemed as an anti-inflammatory and nuclear factor-kappa B
(NF-«B) inhibitor that leads to decreased expression of the
downstream pro-inflammatory cytokine IL-6 and TNF-a
by inhibiting the NF-«xB signaling pathway (49). We
guessed whether circZNF609 have similar functions with
A20. After overexpression of circZNF609 in RAW264.7

© Annals of Translational Medicine. All rights reserved.

cells, it was found that the expression of IL-6 and TNF-a
were significantly decreased, while the expression of anti-
inflammatory cytokines IL-10 was increased. The results
confirmed that circZNF609 might function in CAD
through reducing the intensity of inflammatory response by
decreasing pro-inflammatory cytokines and increasing anti-
inflammatory cytokines.

There are growing evidences supporting the added
value of circRNA in the diagnosis of CAD, since circRNA
is more stable than linear RNA because of the covalently
closed loop structures and resistance to RNA exonuclease
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Table 3 ROC analysis of circZNF609 for distinguishing different subgroups of CAD from controls

Subgroups AUC (95% Cl) Specificity (95% Cl) Sensitivity (95% ClI) P value
SAP 0.705 (0.624-0.787) 0.715 (0.645-0.776) 0.621 (0.492-0.734) <0.0001
UA 0.807 (0.740-0.873) 0.788 (0.721-0.845) 0.716 (0.593-0.820) <0.0001
NSTEMI 0.713 (0.648-0.778) 0.777 (0.708-0.835) 0.602 (0.501-0.697) <0.0001
STEMI 0.752 (0.691-0.813) 0.799 (0.733-0.855) 0.618 (0.516-0.712) <0.0001

ROC, receiver operating characteristic; CAD, coronary artery disease; SAP, stable angina pectoris; UA, unstable angina pectoris; NSTEMI,
non-ST-segment elevation myocardial infarction; STEMI, ST-segment elevation myocardial infarction; AUC, the area under the curve; Cl,

confidence interval.
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Figure 4 Overexpression of circZNF609 attenuated inflammation. (A) The expression level of circZNF609 was significantly elevated in
pcDNA3.1-circZNF609. (B) The expression level of IL-10 was significantly increased in pcDNA3.1-circZNF609. (C) The expression
level of TNF-o was significantly decreased in pcDNA3.1-circZNF609. (D) The expression level of IL-6 was significantly decreased in
pcDNA3.1-circZNF609. Data were listed as mean = SD of at least three independent experiments. **, P<0.01; ***, P<0.001.

(50,51). Burd et al. found that the circular isoform of
ANRIL (cANRIL) may affect the progression of CAD by
regulating INK4/ARF expression (52). Wang et 4/. found
that the overexpression of hsa_circ_0004104 in THP-1-
derived macrophages induced the up-regulation of pro-
atherosclerotic genes, which implying that circRNA might
be involved in the pathologies of CAD (53). In our study,
the sensitivity and specificity of circZNF609 for the CAD
diagnosis were 0.615 and 0.804, respectively, which were
greater than routine ECG [sensitivity and specificity were
0.29 and 0.67, respectively (54)]. Considering the cost and
convenience of diagnostic methods, circZNF609 might
assist in the lab diagnosis of CAD.

© Annals of Translational Medicine. All rights reserved.

In the present study, we divided CAD into four
subtypes according to previous clinical classifications,
though the latest 2019 ESC Guidelines on Chronic
Coronary Syndromes classified CAD into ACS and CCS.
Though the new classification could better reflect the
pathophysiological characteristics of the dynamic changes
in CAD, we think the previous classification classified the
patients from the aspect of chronic inflammation process
in CAD. SAP and UA could mainly be the inflammation
of vessels, while NSTEMI and STEMI involved the vessel
and cardiac inflammation which might induce an enhanced
inflammatory reaction. It could probably be the reason
that there was the lowest circZNF609 level in UA with a
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Figure 5 Prediction of circZNF609 pathways. (A) A network map comprising circZNF609, in which four miRNAs and their downstream

targets was presented. (B) Venn diagram revealed the number of common downstream targets of four miRNAs. (C) The downstream

targets related GO analysis. The blue bar chart represents the biological process, the green bar chart is the cellular component, and the red

bar chart indicates the molecular function. (D) KEGG pathway analysis of the downstream targets. GO, gene ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes.

highest diagnostic AUC value, but a climbing in NSTEMI
and STEMI. We inferred that there might be other
confounding factors (for example cytokines releasing by
myocardial necrosis etc.) up-regulating circZNF609 in ML
Recent studies have reported that circRNAs acted as
miRNA sponges to relieve the inhibitory effects of a miRNA
on its target genes, thereby increasing the expression of

© Annals of Translational Medicine. All rights reserved.

the target genes (55). In this study, the potential pathway
of circZNF609 was explored by bioinformatics databases,
and we further predicted the four miRNAs’ targets, which
are mainly concentrated in the signaling pathways related
to inflammation. AKT'1 was predicted to be the targets of
miR-138-5p, and it was proven that IL-6 would increase if
AKT1 was silencing in mouse macrophage RAW264.7 (56).
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Annals of Translational Medicine, Vol 8, No 12 June 2020

AKTT1 exerts inhibitory effect in the MAPK signaling
pathway through KEGG (https://www.kegg.jp/). Moreover,
miR-138-5p was reported to retain SRY-related high-
mobility-group-box 9 (SOXD9) to facilitate the inflammation,
which is a well-acknowledged transcription factor (57).
In addition, inhibiting miR-150-5p alleviates cardiac
inflammation via targeting Smad7 in cardiac fibroblasts (58).
Based on the bioinformatics prediction and the literature
reports, we speculated that circZNF609 sponge hsa-miR-
138-5p and hsa-miR-150-5p to enhance anti-inflammation
genes and to interrupter inflammation pathways to alleviate
the atherosclerosis chronic inflammation.

It should be noted that there were some limitations in
our study. A larger sample size and multi-center study is
needed to further verify our results. Due to the lack of
follow-up information for CAD patients, the prognostic
values of circZNF609 in major cardiovascular events
in apparent normal population should be evaluated in
subsequent studies. The role of circZNF609 in CAD
disease causal pathways was not fully demonstrated in our
study, although this knowledge is not a prerequisite for
biomarkers.

In summary, we reported a downregulated circZNF609
in PBLs of CAD patients, which might function as an
independent protective factor of CAD through the
anti-inflammation pathway, and could be used as a new
biomarker for the diagnosis of CAD. In future studies,
we will focus on the specific pronounced function of

circZNF609 in the pathological process of CAD.
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Supplementary

3’ genomicreference sequence | 5’ genomic reference sequence

AAGTCAAGTC T GAAAAG |[CAAT G AT GTT GT CCAC TGGGCATGTAC TGACCAAT
AAGTCAAGTCTGAAAMAGCAATGATGTT GTCCACTGGGCATGTACTGACCAAT

4 odll bl A

Figure S1 circZNF609 in PBLs could be amplified by RT-PCR specifically. The sequence of circZNF609 by Sanger sequencing (lower
part) was consistent with that from circBase (upper part). PBL, peripheral blood leukocyte; RT-PCR, real time polymerase chain reaction.
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Figure S2 circZNF609 expression levels between: (A) non-T2DM controls and non-T2DM CAD patients, (B) CAD patients with and
without T2DM. ****, P<0.0001. CAD, coronary artery disease; T2DM, type 2 diabetes mellitus.
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Figure S3 The correlation between circZNF609 expression level and (A) monocyte-to-lymphocyte ratio, (B) neutrophil-to-lymphocyte
ratio and (C) platelet-to-lymphocyte ratio.
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Figure S4 The KEGG pathway enrichment analysis results of circZNF609 related miRNAs predicted by TargetScan. KEGG, Kyoto

Encyclopedia of Genes and Genomes.

Table S1 Clinical characteristics of the studied subjects

Discovery cohort Validation cohort Combined cohort

Characteristics

CAD (n=30) Control (n=30) P CAD (n=300) Control (n=179) P CAD (n=330) Control (n=209) P
Male, n (%) 29 (98.7) 27 (90.0) 0.605° 208 (69.3) 123 (68.7) 0.887° 237 (71.8) 150 (71.8) 0.990°
Age, years 58.2+3.4 57.8+4.0 0.089% 61.3+11.3 62.5+£9.9 0.025% 60.9+10.9 61.9+9.4 0.308*
BMI, kg/m? 24.5+2.9 24.2+2.1 0.620° 25.1+3.4 24.3+1.9 <0.0001° 25.1+£3.6 24.3+1.9 0.006°
Smoking, n (%) 24 (80.0) 16 (563.3) 0.028° 165 (55.0) 43 (24.0) <0.0001° 189 (57.3) 59 (28.2) <0.0001°
Alcoholism, n (%) 9 (30.0) 6 (20.0) 0.371° 74 (24.7) 28 (15.6) 0.020° 83 (25.2) 34 (16.3) 0.015°
Hypertension, n (%) 14 (46.7) 9 (30.0) 0.184° 191 (63.7) 57 (31.8) <0.0001° 206 (62.4) 66 (31.6) <0.0001°
Hyperlipidemia, n (%) 7 (23.3) 5(16.7) 0.519° 62 (20.7) 20 (11.2) 0.008° 68 (20.6) 25 (12.0) 0.010°
T2DM, n (%) 8 (26.7) 6 (20.0) 0.542° 85 (28.3) 26 (14.5) 0.001° 92 (27.9) 32 (15.3) 0.001°
FPG, mmol/L 7.14 (5.99,9.16) 5.44+0.39 <0.0001° 6.32(5.39,8.85) 5.19+0.57 <0.0001°  6.39 (5.42, 8.86) 5.24 (4.98,5.57) <0.0001°
TC, mmol/L 4.08+1.11 4.42+0.46 0.001*  4.13(3.37,4.74)  4.36x0.53 <0.0001°  4.12 (3.37, 4.74) 4.49 (4.01,4.80) <0.0001°
TG, mmol/L 1.75(1.02,2.25) 1.04+0.37  0.005° 1.46 (1.07,2.16) 1.1320.30 <0.0001°  1.47 (1.07,1.18)  1.13(0.85,1.39) <0.0001°
HDL-C, mmol/L 0.97+0.28 1.58+0.34 <0.0001° 1.00(0.86,1.19)  1.5320.33  <0.0001° 0.99 (0.85, 1.18) 1.47 (1.28,1.75)  <0.0001°
LDL-C, mmol/L 2.41+0.79 2.75+0.41 0.010° 2.40(1.86,2.88)  2.70+0.51  <0.0001°  2.40 (1.86, 2.87) 2.78 (2.42,3.09) <0.0001°
WBC, 10%/L 8.97+2.99 6.52+1.86 <0.0001* 7.46(5.83,9.57) 6.14+1.54  <0.0001" 7.63 (5.98, 9.88) 6.1(5.11,7.00)  <0.0001°
NEU, 10%L 6.43+3.19 3.75+1.58 <0.0001* 5.14(3.80,8.20) 3.46+1.16 <0.0001°  5.01(3.72, 7.38) 3.35(2.63,4.00) <0.0001°
LYM, 10%L 1.75+0.62 2.10+0.75 0.054° 1.53(1.17,2.17) 2.01£0.62  <0.0001" 1.50 (1.14, 2.01) 1.99 (1.55,2.42)  <0.0001°
MON, 10°/L 0.64+0.27 0.49+0.18 0.015° 0.52(0.42,0.70) 0.46+0.14 0.001° 0.52 (0.42, 0.67) 0.46 (0.36, 0.59)  <0.0001"
PLT, 10%/L 230+90 185+40 0.043% 199 (156, 233) 182+50 0.040° 191.60 (158.3,234.2) 177 (149, 220) 0.003°
CRP, mg/L 4.22 (1.06, - - 2.74 (0.95, 7.75) - - 2.98 (0.98, 8.33) - -

12.50)
NT-proBNP, pg/mL 372 (147, 565) - - 371 (105, 1,107) - - 372.3 (107.25, - -
1,070.5)
cTnT, ng/mL 3.47 (0.26, - - 0.91 (0.012, - - 1.00 (0.031,13.00) - -
20.96) 11.88)

Gensini scores 48.0 (38.4, 79.5) 445 (22, 73.4) 45.25 (22.75, 74.625) - -

LVEF, % 63 (60.75, 63.25) - - 63 (60, 64) - - 63 (60, 64) - -
History of stains use, n (%) 14 (46.7) - - 147 (52.3) - - 161 (51.8) - -
Last cardiovascular event 2(1,2) - - 1(1,2) - - 1(1,2) - -

time, day

For continuous variables, normally distributed data were expressed as mean =+ standard deviation (SD), while skewed data were described as median (interquartile range).
For categorical, data were expressed as frequency counts. °, Student’s t test; °, Mann-Whitney U test; °, ¥* test. CAD, coronary artery disease; BMI, body mass index;
T2DM, type 2 diabetes mellitus; FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density
lipoprotein cholesterol; WBC, white blood cell counts; NEU, neutrophil counts; LYM, lymphocyte counts; MON, monocyte counts; PLT, platelet counts; CRP, c-reaction
protein; NT-proBNP, N-terminal pro-brain natriuretic peptide; cTnT, cardiac troponin T, LVEF, left ventricular ejection fraction.



Table S2 Clinical characteristics of the subgroups

Characteristics SAP (n=58) UA (n=67) NSTEMI (n=103) STEMI (n=102)
Male, n (%) 37 (63.8) 42 (62.7) 78 (75.7) 80 (78.4)
Age, years 64.12+10.08 62.66+9.32 59.58+10.43 59.36+12.26
BMI, kg/m? 25.3+3.93 25.35+3.58 25.16+3.1 24.7+3.08
Smoking, n (%) 23 (39.7) 29 (43.3) 64 (62.1) 73 (71.6)
Alcoholism, n (%) 23 (39.7) 26 (38.8) 16 (15.5) 18 (17.6)
Hypertension, n (%) 39 (67.2) 46 (68.7) 67 (65) 54 (52.9)
Hyperlipidemia, n (%) 17 (29.3) 13 (19.4) 16 (15.5) 22 (21.6)
T2DM, n (%) 23 (39.7) 22 (32.8) 27 (26.2) 20 (19.6)
FPG, mmol/L 5.64 (5.105, 6.885) 5.73 (5, 6.99) 6.54 (5.54, 9.63) 7.72 (6.03, 10.22)
TC, mmol/L 4.13+0.95 3.86+0.97 4.23+13 4.32+1.1

TG, mmol/L 1.46 (1.07, 2.53) 1.51(1.04, 2.2) 1.52 (1.06, 2.17) 1.37 (1.1, 2.05)
HDL-C, mmol/L 1.09+0.34 0.99+0.21 1.0120.26 1.05+0.27
LDL-C, mmol/L 2.45:+0.72 2.21:0.64 2.51+0.95 2.57+0.79
WBC, 10%/L 6.53+2.44 6.61+1.72 8.22+2.63 10.45+3.64
NEU, 10°%L 4.05+2.51 4.32+1.46 5.76+2.45 8.18+3.59
LYM, 10%L 1.85+0.73 1.62+0.58 1.7120.65 1.53+0.79
MON, 10%/L 0.48+0.16 0.48+0.15 0.61+0.24 0.62+0.3
PLT, 10%L 188.68+53.76 188.21+59.38 217.64+78 202.22+68.48
CRP, mg/L 0.96 (0.595, 2.965) 2.12 (0.76, 4.76) 3.17 (1.25, 8.25) 3.86 (1.31, 12.09)

NT-proBNP, pg/mL
cTnT, ng/mL
Gensini score

LVEF, %

History of stains use, n (%)

Last cardiovascular event time, day

70.26 (37.78, 304.3)
0.0045 (0.002, 0.0178)
3.355 (2.69, 4.4415)
63.07 (62, 65)

32 (55.2)

126.9 (51.97, 363.55)
0.0075 (0.004, 0.028)
30 (15, 62)
62.87 (61, 65)

34 (50.7)
1(1,2)

593.2 (171.45, 1,378.5)
1.24 (0.24, 4.76)
59 (42.5, 85.25)
61.17 (59, 63)
47 (45.6)
1(1,2)

549.55 (192, 1,702.75)
22.05 (4.47, 41.78)
46.5 (36.5, 80.5)
61.28 (60, 63)

56 (54.9)
1(1,2)

For continuous variables, normally distributed data were expressed as mean + standard deviation (SD), while skewed data were described as median (interquartile range).
For categorical, data were expressed as frequency counts. SAP, stable angina pectoris; UA, unstable angina pectoris; NSTEMI, non-ST-segment elevation myocardial
infarction; STEMI, ST-segment elevation myocardial infarction; BMI, body mass index; T2DM, type 2 diabetes mellitus; FPG, fasting plasma glucose; TC, total cholesterol;
TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; WBC, white blood cell count; NEU, neutrophil count; LYM,
lymphocyte count; MON, monocyte count; PLT, platelet count; CRP, c-reaction protein; NT-proBNP, N-terminal pro-brain natriuretic peptide; cTnT, cardiac troponin T;
LVEF, left ventricular ejection fraction.



Table S3 RT-PCR primer sequences

Primer Sequences

circZNF609 for human
Forward 5'-TTGGGAACTAAACCGGAGCC-3'
Reverse 5'-TCAGACCTGCCACATTGGTC-3'

GAPDH for human
Forward 5'-TGTTGCCATCAATGACCCCTT-3'
Reverse 5'-CTCCACGACGTACTCAGCG-3'
IL-6 for mouse
Forward 5'-TACCACTTCACAAGTCGGAGGC-3'
Reverse 5'-CTGCAAGTGCATCATCGTTGTTC-3'
TNF-a for mouse
Forward 5'-GGTGCCTATGTCTCAGCCTCTT-3'
Reverse 5'-GCCATAGAACTGATGAGAGGGAG-3'

IL-10 for mouse

Forward 5'-GCCCTTTGCTATGGTGTCCT-3'

Reverse 5'-TAGGGGAACCCTCTGAGCTG-3'
circZNF609 for mouse

Forward 5'-TTGGGAACTAAACCGGAGCC-3'

Reverse 5'-TCAGACCTGCCACATTGGTC-3'

GAPDH for mouse
Forward 5'-TGTGTCCGTCGTGGATCTGA-3'
Reverse 5'-TTGCTGTTGAAGTCGCAGGAG-3'

The RT-PCR reactions started at 95 °C for 5 min, followed by 38
cycles of 95 °C for 30 sec, 60 °C for 30 sec and 72 °C for 30 sec.
RT-PCR, real time polymerase chain reaction.

Table S4 The four miRNA targets predicted by MiRWalk database

hsa-miR-615-5p

IGF2, HSD11B1L, COMMDS5, TBC1D25, UBE2S, SDF4, ZNF426, MAP3K9, IP6K1, G3BP1, KCNH1, GZMM, NFIC, IFNAR1, GJB7,
AGTPBP1, PPIC, CCDC71L, RAP1GAP2, KDM6B, ZNF488, NMNAT1, FBLIM1, RPH3AL, WWC2, NUPL2, BHLHA15, SLC22A12,
SH3PXD2A, HIST3H2BB, MYO9B, RAB11B, FLYWCH1, SPRED3, VDR, RAB24, ARC, C8orf58, CDKN1A, CDS2, CENPO, ELFN2,
MEF2D, MIDN, MSN, NLGN2, NTSR1, RNF40, SNCG, ZBTB7B, ZC3H7B, FIBCD1, NFIX, RNF24, AKR7A2, APOL6

hsa-miR-145-5p

BNIP3, ERBB4, CCDC43, AKR1B10, KLF5, SP1, MMP1, C11orf65, SOX2, TNFSF13, PTP4A2, HLTF, KLF4, CDK6, TMEM9B, GMFB,
MUC1, ZFYVE9, MMP12, SERINC5, MYO6, NUFIP2, MTMR14, ALPPL2, CDKN1A, DDX6, NDUFA4, NDRG2, STAT1, HIST1H2AH,
FAM3C, DTD1, YES1, ARF6, LYPLA2, TPM3, CBFB, PLAGL2, FAM45A, MAP2K6, PPP3CA, NR1D2, PIGF, CEP19, CLINT1, ADD3,
AP1G1, TPRG1, IRS1, PADI1, JADE1, GOLM1, PARP8, PHACTR2, NIPSNAP1, MAP3K11, TMOD3, SNX24, KREMEN1, PLEKHM1,
EGFR, KIF21A, MMP14, AGTRAP, MAP3K3, SAMD5, ABRACL, TNR, FSCN1, CRYBG1, MIXL1, SLC22A9, MYC, HMGA2, TSPANSG,
RRAGC, FLI1, DDC, PODXL, WSB1, DFFA, ANGPT2, ABHD17C, RABSIP, IFNB1, ROCK1, NANOG, ZNF445, TIRAP, RPS6KB1, MYO5A,
PANK1, POU5F1, CD28, EPAS1, AQR, IGF1R, NFATC1, ETS1, SMIM17, KRT7, SP7, RREB1, NDUFS2, PPM1D, CFTR, CD44, MUC4,
MYRF, CSRNP3, BRAF, ZNF660, CPEB4, ZNF426, ACTB, WASHC2C, FZD7, UBR7, SMAD3, DDI2, ROBO2, SNTB1, SMAD5, NAIP,
SRGAP1, SESN2, TGFBR2, SET, EIF4E, REL, SMAD4, RPA1, CDK4, PSAT1, MAP2K4, MCM2, VEGFA, FZD6, CTNND1, SPTLCT,
SERPINE1, VGLL4, P4HA1, MYOCD, IRS2, IVNS1ABP, MAP4K2, MTDH, ITGB8, SLC16A10, UNC5D, CAMK1D, SWAP70, RPS6KAS,
THSD7A, FXN, ESR1, DEK, SLC26A2, PXN, NUDT1, PRDM2, ORC4, MSH3, JAG1, ZNF772, HBEGF, CD40, NEDD9, CYP2C19, BCLAF3,
TGFB2, DDX17, ZNF100, CTNNBIP1, SMAD2, ERG, CCDC80, CLSTN2, SLC16A5, NRAS, BTG1, ZNF451, PNMAS, ILK, ANKRD28,
ZBTB25, CRAMP1, CTGF, ZFAND3, CCDC85C, SPTBN1, SOCS7, UBXN2A, ABCC1, SENP1, MDM2, NUP43, TGFBI, RTKN, ADAM17,
LMNB2, RBM18, F11R, CDH2, UTP15, DUSP6, ARL6IP5, HDAC?2, IGFBP5, ODR4, ALG9

hsa-miR-138-5p

ARHGEF3, ZNF607, ROCK2, CST9, RHOC, TSTD2, SLC45A3, IL10RA, TERT, MEX3A, EID1, SEMA4C, PPARG, FERMT2, LPL, FEM1B,
IGF1R, C120rf49, GNAI2, PFN2, FOSL1, LNPEP, SIRT1, DEK, CCND3, TP53INP2, PTK2, ARL5B, H2AFX, C7orf33, HIF1A, PLEKHG4B,
CASP3, MYO3A, BLCAP, LIN52, MXD1, BAG4, RELN, FAM35A, EZH2, UBE2V1, SOX4, IGLON5, MMP3, GRID1, CDH2, PPM1D,
PLEK2, FUT11, CDH1, PPM1L, EED, CAPN7, SUZ12, ZNF426, ZEB2, PLAGL2, VIM, NR3C1, PHKG2, MEAF6, RARA, KCNK12, RGS12,
NEUROD1, TOR2A, FOXC1, AGO1, BCL11A, NVL, CD274, DMKN, NFKB1, HIST1IH2BK, AKT1, HIST1H2BJ, SOX9, S100A1, KDM5C,
CCND1, YAP1, SENP1, BAG1, ADGRA2, CASTOR2, RMND5A, CCAR2, IGF2BP1, CELF1, CBY1, FGF19, HMGA1, HNRNPULA1,
ZMYND11, MAP2K7, DNAJB6, NACC1, EIFAEBP1, NPLOC4, ARHGAP42, PLEKHM1, TWIST2, POLR2E, MAP3K11, VASH1, LCN2,
MYBL2, C160rf87, RPA1, TRAM1, YPEL4, CSRP2, ACTR1A, ARHGAP31, FAM109A

hsa-miR-150-5p

MYB, C3orf36, RAB13, DSTYK, ZNF426, PIGR, EGR2, TRAF3IP2, CBX5, DHTKD1, TNIP3, ZNF454, VEGFA, TNFAIP8L1, SUGT1,
CNNM2, WWCH1, EXO5, IGF2, WDR97, HIP1, CDK2, VPS53, TSPAN11, MUC4, PLXDC1, SENP8, BCL11B, USP15, PIAS2, ZEB1,
ABHD15, SLC25A44, MLN, TRIOBP, GATAD2B, NOTCH3, GPR182, KLHL7, SAR1A, SLC7A11, LRRC15, FLT3, TXK, ARSE, PAKS,
SGTB, PXMP4, EP300, FHDC1, TTC31, TRPV2, ISCA2, ATPOA, ATP13A3, SKIDA1, YPEL1, DNASE2, HOOK3, ACOX1, TP53, PHF12,
FAXC, MSANTD3, CAPZA2, DPYSLS5, BIRC5, FAM89A, CALCOCO2, COL9A2, MBD1, CAMK4, SRCIN1, MASTL, TBC1D16, ABHD2,
IRAK4, PRKAB1, CBL, ZNF514, IP6K2, NPHP1, ZNF578, RAPGEF6, ADIPOR2, CAVIN1, C8orf46, CYTIP, ACOT9, CARHSP1, ATP2B1,
MED16, ZNF207, LIPG, NOL9, BDP1, PURB, PDZD8, ULK2, SPPL3, RFK, TEAD1, ZBTB7A, FRAT2, ZNF573, MFSD2A, LY6G5B, ZHX3,
CNPPD1, BBS5, C160rf58, WNT7B, PARD3, TMEM174, HILPDA, ASB16, APOPT1, TIMM50, SYNPO2L, NEK8, SYNPO2, PPP2CB,
SMIM7, ALDOA, RBM41, ATAD2B, TRPS1, HMGB1, SPAG16, SLC25A37, LGSN, CREB1, FOPNL, GOSR1, ELOB, PLEKHM3, PRIM1,
STAT5B, COL4A4, BTN3A2, WWC2, GJD3, KIAA0930, STAT1, SP1, MYH9, SEC14L4, LRRC27, STX4, NANOG, CISH, PTCHD1,
TLDC1, CXorf38, ANKS4B, PRKCA, WDR77, MMAB, PPIE, S1PR3, MAN2B2, MMP14, MRPS27, KLHL21, ASB8, MFSD11, EIF2B2,
ARRB2, GAN, PIGM, ZNF582, C150rf40, GNB5, SLC2A1, AGTPBP1, RRP1B, ZNF626, HSPA4L, UBOX5, DDOST, DGCR6L, RANGAP1,
ZNF551, PRPF38A, ZYG11A, PHLDA1, XPR1, FAM185A, LNPK, GRM6, ZMAT3, RAB3IP, ABHD18, WDR53, LTBP2, SPIC, TMEM127,
STK11, TEP1, TNFSF15, PSMC1, CCS, SPEM1, CDC14B, SMUG1, ATCAY, FKBP9, PDCD4, SLC6A4, CENPM, PPM1A, PGBD4, CTNS,
SRCAP, SLC35F5, DPP9, BMP8B, ZNF682, ZNF699, XPOT, SH3BP5, GJC1, TUBB4A, CAMK1D, TTYH3, MANEAL, RPL14, GPBP1,
SERF2, SLC35G1, TNS4, NMNAT1, RNF19B, ISY1, IPP, TIAL1, TMODS3, HIF1AN, PTPN4, KIF3A, A1CF, CORO2A, TMOD2, SNX2,
ORAI2, KPNAG, BCAS4, MYO1F, TMEM92, RUNDC1, NUDT3, PROSER2, ZNF708, PPP2R3A, TMEM33, CD96, MRPL37, RABLS3,
COX19, SIGLECY9, SYNJ2BP, SLC35F6, KIAA1549, SERINC3, FGD6, TRIP11, SLFN13, PDE6A, HAS2, SLC43A2, EFCAB11, TRAPPC10,
SLC33A1, XIAP, ETV3, THAP6, NKD1, RBM3, SCO1, ESR2, DRAXIN, TLR10, MAPK13, MTSS1L, S1PR1, ZNF7, DNAL1, TPMT, TTLL12,
KCNK3, RNF165, PCP4L1, ZSCAN2, TRIM65, SOCS5, GK5, RABIF, OCIAD1, ENTPD4, ZFP14, QSOX1, CXorf21, PLEKHA2, MYLKS,
STAC2, ZNF70, KIAA1551, POFUT1, PLA2G16, QRFPR, MTMR9, ARMT1, GGA2, DNAJB13, PAIP2B, TLR7, RAI1, FAM241A, CYCS,
TTPAL, NR2F2, CEP104, CDIPT, LRRC58, CNKSR3, AS3MT, KCNKS5, INTS7, LYRM7, MPPE1, CACYBP, REL, JDP2, GPR137B, CDS2,
MRPS10, AGO3, PNPLA3, C210rf33, DCTN5, RHOH, OLAH, C180rf32, ELK1, FAM13B, MSH3, RAB21, SP2, ANKRDG65, FBX047,
EPHB2, C120rf49, AMOTL2, ZNF257, NME6, FFAR4, EMC3, BHMT2, KANSL3, ZNF786
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