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Post-stroke depression (PSD) is the most common stroke-related emotional disorder,

and it severely affects the recovery process. However, more than half cases are not

correctly diagnosed. This study was designed to develop a new method to assess PSD

using EEG signal to analyze the specificity of PSD patients’ brain network. We have 107

subjects attended in this study (72 stabilized stroke survivors and 35 non-depressed

healthy subjects). A Hamilton Depression Rating Scale (HDRS) score was determined

for all subjects before EEG data collection. According to HDRS score, the 72 patients

were divided into 3 groups: post-stroke non-depression (PSND), post-stroke mild

depression (PSMD) and post-stroke depression (PSD). Mutual information (MI)-based

graph theory was used to analyze brain network connectivity. Statistical analysis of

brain network characteristics was made with a threshold of 10–30% of the strongest

MIs. The results showed significant weakened interhemispheric connections and lower

clustering coefficient in post-stroke depressed patients compared to those in healthy

controls. Stroke patients showed a decreasing trend in the connection between the

parietal-occipital and the frontal area as the severity of the depression increased. PSD

subjects showed abnormal brain network connectivity and network features based on

EEG, suggesting that MI-based brain network may have the potential to assess the

severity of depression post stroke.

Keywords: post-stroke depression (PSD), electroencephalography (EEG), mutual information (MI), graph theory,

brain network

INTRODUCTION

Post-stroke depression (PSD) is among the most frequent neuropsychiatric consequences of
cerebral ischemia (Cojocaru et al., 2013). PSD is an abnormal negative emotional response caused
by loss, disappointment or failure. PSD has a significant negative impact on the rehabilitation of
stroke (Ghose et al., 2005), thus seriously affecting the patient’s future quality of life (Bays, 2001;
Ayerbe et al., 2013; Chen et al., 2014) and delaying or even hindering the process for rehabilitation
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and return to society. Approximately one-third of stroke
patients have aphasia (Berthier, 2005; Engelter et al., 2006), and
approximately 70% will have cognitive impairment (Nys et al.,
2007). Aphasia and cognitive impairment make it difficult to
obtain the changes in patients’ emotions and interests, which
pose a great challenge for the diagnosis of PSD. There are few
guidelines for the assessment, treatment and prevention of PSD
(Babkair, 2017), and more than half cases are not correctly
diagnosed.

Depression was thought to be the result of a dysregulation
in the ability of brain cells to communicate with each other
(Cai et al., 2013). Researchers have found abnormalities in the
transmission of excitatory signals between cells in depression.
Restoring normal brain communication is one mechanism
underlying the successful function of antidepressant drugs such
as serotonin, which is a key factor in depression remission
(Cai et al., 2013). Disrupted network connectivity has been
found in some core major depressive disorder (MDD) networks
(Brakowski et al., 2017). Previous findings in geriatric depression
have also strongly suggested “brain network dysfunction” as
the best explanatory model for understanding the biological
mechanism of depression (Drevets et al., 2008). All of the possible
etiologies of late-life depression result in different depressive
symptoms by disturbing the dynamics and functions of different
brain networks (Tadayonnejad and Ajilore, 2014). Impairment
of the affective regulatory pathway has been suggested as a
possible pathogenic factor related to vascular disease according
to previous studies (Alexopoulos et al., 1997a,b). We suggest that
PSD patients’ abnormal connectivity among brain areas could be
driving this pathogenesis, which may appear as “disconnection”
symptoms.

Functional connectivity in the human brain can be
represented as a network using electroencephalography (EEG)
signals (Rathee et al., 2017). One of the functional connectivity
measures for analyzing EEG is Mutual information (MI) which is
a non-directional connectivity measure. It enables the estimation
of both linear and non-linear statistical dependencies between
time series and can be used to detect functional coupling (Wang
et al., 2009). Because neural dynamics almost certainly includes
many highly nonlinear processes, MI analysis may be helpful
in understanding and quantifying the nonlinear transmission
of information within the brain (Jeong et al., 2001). Abnormal
cortical connections usingMI have been found in nervous system
diseases, such as Alzheimer’s, schizophrenia and Parkinson’s
(Coronel et al., 2017; Yin et al., 2017).

Graph theory has played an integral role in recent efforts
to understand the function of complex systems including brain
networks. Importantly, graph-based representations of brain
networks can quantitatively describe the connectivity of different
brain regions. It has been applied to understand brain networks
and emerged as a powerful analytic tool for brain connectivity.
Using this method, many researchers have studied the structural
and functional networks of the brain and the network anomalies
caused by neuropsychiatric disorders (Schreiber, 2000; Bernhardt
et al., 2013; Rathee et al., 2017). In brain networks, different
connections represent different paths of information transfer.
This study aimed to analyze the features of MI-based undirected

and weighted brain network to explore the abnormal brain
connectivity of the stroke patients with different degrees of
depression.

MATERIALS AND METHODS

Participants
This study was performed in the Department of Rehabilitation,
Tianjin Union Medical Center, Tianjin, China. All participants
were right-handed and native speakers ofMandarin Chinese. The
hospital ethics committee approved the study. All participants
were informed of the aims and protocols of the experiments.

This study involved 35 healthy controls (HC) and 72 stroke
patients. The HC group had no history of neurological or
psychiatric disease. All patients were divided into three groups
based on their Hamilton Depression Rating Scale (HDRS)
score. The patients in the post-stroke non-depression group
(PSND), post-stroke mild-depression group (PSMD), and post-
stroke depression group (PSD) have HDRS scores of ≤5, 6–20,
and >20, respectively. Other demographic and general subject
characteristics are listed in Table 1.

EEG Recording and Preprocessing
The subjects were seated in a resting state with their eyes closed
for 5min in a quiet environment. The EEG was recorded at 16
scalp loci (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, O1, O2,
T5, and T6) in compliance with the international 10–20 system
using a NicoletOne digital video electroencephalograph made by
US. The skin resistance at each site was <10 k�. EEG data were
collected for 300 s at a rate of 250Hz. Data containing artifacts
were removed in an off line analysis. We also used independent
component analysis (ICA) to identify and remove residual ocular
activity (Fanciullacci et al., 2017). The EEG signals were re-
referenced to the bilateral mastoid electrodes (A1 and A2), and
removed each channels baseline from continuous EEG data by
using the routine pop_rmbase (EEGLAB). Then a Hamming
windowed sinc FIR filter was used to filter the data with a
bandwidth of 0.1–100Hz by using the routine pop_eegfiltnew
(EEGLAB).

As previous studies have proved that the infinity reference
was proper for EEG network analysis (Qin et al., 2010), we
changed linked earlobes to infinity reference using a reference
electrode standardization technique (REST) (Dong et al., 2017;
Yao, 2017). REST is used for the approximate standardization
of the reference of scalp EEG recordings to a point at infinity
that, being far from all possible neural sources, acts like a neutral
virtual reference(Marzetti et al., 2007). Numerous studies have
shown that REST is the most accurate reference method for brain
network analysis (Yao, 2001; Qin et al., 2010). A REST toolbox
which developed by Dong et al. (2017) were used in this study.

Multivariate Causal Analysis of Data
In information theory, MI is a measure of the statistical
dependence between two random variables (Ince et al., 2017).
The average amount of information obtained from any
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TABLE 1 | Demographic and clinical features of four groups.

Variables Healthy controls

(HC, n = 35)

Stroke patients (n = 72) F df p

PSND

(HDRS ≤ 5,

n = 14)

PSMD (5 < HDRS ≤

20, n = 43)

PSD (HDRS > 20, n = 15)

Age [M ± SD (years)] 50.25 ± 15.01 59.36 ± 8.93 60.39 ± 8.85 62.73 ± 6.27 2.074 3/103 0.108

Sex (male/female) 19/16 11/3 27/16 8/7 1.014 2/69 0.368

Handedness (left/right) 3/32 1/13 3/40 0/15 0.425 3/103 0.736

HDRS [M ± SD (score)] 2.23 ± 1.14 3.36 ± 1.78 11.77 ± 4.51 28.40 ± 7.90 150.44 3/103 0.000*

Time after stroke [M ± SD

(months)]

2.82 ± 2.58 3.19 ± 5.96 5.44 ± 8.26 0.913 2/69 0.406

Lesion location (Left/Right) 7/7 24/19 6/9 0.548 2/69 0.580

*p < 0.05.

observation of X={xi} is the entropy H of a system:

H (X) = −
∑

xi

PX (xi) log PX(xi)

where PX (xi) is the probability that an isolated measurement will
find the system in the ith element of the bin. We evaluated these
probabilities PX (xi) by constructing a histogram (from 1,250
data points) of the variations of the measurement xi.

Before any measurement of X, this information is called
uncertainty. Under the condition Y = yj, H (X) has to be
replaced by the conditional uncertainty on X
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Where PXY
(

xi, yj
)

is the joint probability density for the
measurements of X and Y that produce the values X and
Y. H

(

X
∣

∣Y = yj
)

indicates the amount of uncertainty in a
measurement of x, given that y has been measured and found to
be yj. From this, we get the mean conditional uncertainty on X
over yj, under the condition that Y is known

H (X|Y) = −
∑
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So we define the MI as the amount by which a measurement of
Y reduces the uncertainty of X. The MI is as follows: MIXY =

H (X)−H (X|Y) = H (X)+H (Y)−H (X, Y) = MIYXwhich can
be rewritten as:

MIXY = MIYX == −
∑

xi ,yj

PXY
(

xi, yj
)

log
PXY

(

xi, yj
)

PX (xi) PY
(

yj
)

MI has the maximum value when the two time series are
completely the same. If one system is completely independent of
the other, the MI is zero (Na et al., 2002). The principal difficulty
in calculating the MI from experimental data is estimating
PXY

(

x, y
)

from histograms, selecting different sampling bins has
a great influence on the accuracy of MI (Jeong et al., 2001). In this
study, we took logarithm with base e, and 11 bins were adopted
for 1,250 samples, which can provide a stable estimate.

In this study, EEG data were segmented into 5-s epochs (1,250
data points), and a total of 60 epochs for each channel were
analyzed using the MI. 60 MI values can be obtained between
any two channels, and the mean index value of the 60 MIs
were performed as the final MI indices. All routines above were
implemented in MATLAB (MathWorks, Inc.).

Graphical Description of the Network
Graph theory has proven very useful in statistics as a way
to describe the dependent relations between random variables
(Salvador et al., 2005). In graph theory, a network is reduced to
an abstract description as a set of nodes connected by edges (or
lines) (Bassett and Bullmore, 2009). The edges can be directed or
undirected and weighted or unweighted.

The nodes and edges of a brain graph can be empirically
defined inmanyways. In this study, we used 16 leads as nodes and
constructed the cortical undirected network graph by using the
calculatedMI as the edge of the network. By using the topological
properties of networks, we analyzed the characteristics of brain
networks in different subjects and then explored the abnormal
connectivity of the brain in patients with depression after stroke.
The setup process for the brain network is shown in Figure 1.

Topological properties of a brain network can be described
using some graph measures based on Graph theory, such
as clustering coefficient and betweenness centrality. Clustering
coefficient is one key topological metric which quantifies degree
of collectivization of one network. The clustering coefficient of
one node measures the connecting size of its adjacent edges. The
calculation formula for clustering coefficientCi of node i is shown

Ci =
ei

C2
k

=
2ei

ki(ki − 1)
(1)
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FIGURE 1 | Schematic diagram of a brain network based on mutual information (MI) technology. (A) nodes location; (B) acquisition of 16-lead EEG data; (C)

calculation of MI; (D) formation of a MI matrix; (E) adjacency matrix with a certain threshold; (F) the brain network diagram was formed according to the relationship

among the 16 leads.

Where, ki is the number of all adjacent nodes of node i, ei is
the number of connected edges between all neighboring nodes of
node i. One node had value 0, while which only has a neighbor or
none. The mean clustering coefficients of all the nodes represent
the network’s coefficient. The betweenness centrality is used
to describe the role and status of one node to the network.
Higher betweenness centrality indicates more important status
and the corresponding node is a core node for the network. The
caculation formula for betweeness centrality is shown

Ni =
∑

j 6=i 6=k ǫ G

σjk(i)

σjk
(2)

σjk(i) is the number of shortest path from node j to node k,
which passing node i. In this study, clustering coefficients and
betweenness centrality were calculated by binary MI matrices
(elements above the threshold were defined as 1, otherwise
defined as 0) at each threshold.

Simulation of MI-Based Brain Network
Using MI to assess statistical dependence between two EEG
signals, there can be contamination of spurious connectivity
caused by volume conduction. In order to solve this problem,
we used a surrogate data method to conduct a simulation
study. We generated a dataset which has the same structure
with our EEG data using Matlab code provided by Stefan
Haufe et al. (Fonov et al., 2009, 2011; Haufe et al., 2013).
In this dataset a linear time-lagged information flow from
the left hemisphere (brain area below C3) to the right
hemisphere (area below C4) is simulated by means of a
bivariate AR model. This flow is to be detected as the
only true time-lagged interaction happening in the data.
We have established the MI brain network of this dataset,

FIGURE 2 | The brain network of the simulation dataset. Information flow from

the left (below C3) to the right (below C4) source is modeled by means of a

bivariate AR model.

the result is shown in Figure 2. It can be seen from
Figure 2 that MI can better reflect the true connection
between the corresponding brain regions and suppress spurious
connectivity. This is basically consistent with the connectivity
between simulated EEG sensor measurements estimated by
phase-slope index (PSI) in Stefan Haufe et al. (2013). The
difference between the two methods is that MI has no
directionality, and PSI can reflect the direction of information
flow.
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FIGURE 3 | Edges from mean unthresholded MI matrices of four subject groups rank-ordered by MI values. There are a total of 120 unique correlations in each

unthresholded MI matrix. The strongest 10–30% of these MIs are considered for subsequent graph analysis. MIs in healthy people are on average slightly greater than

in the other three groups for a range of rank-ordered means.

FIGURE 4 | The average MI matrices of four subject groups thresholded such that only 20% of the strongest weights are preserved. The white matrix elements

represent functional connectivity. The key difference areas are marked with boxes.
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RESULTS

As shown in Table 1, four groups showed no significant

difference in other demographic and clinical features except for

HDRS.

There are 16 channels’ time series of 300 s duration for each
subject. These time series were analyzed in sequential windows

of 5 s duration, yielding 16 time series with a length of 60 epochs.
For each subject, this approach yielded 120 unique MIs (from the
16× 16 MI matrix removing diagonal and symmetric data).

Figure 3 shows the rank-ordered average MIs for
unthresholded MI matrices of four groups. We can find
that more than 70% of MIs are between 0.05 and 0.2, they
capture only a small amount of the common variance (the
square of the MI < 4%) in the underlying dynamics, and also the
difference between the four curves in this range is not significant
in the Figure 3. According to the study of Rubinov et al. (2009),
the 10–30% of the strongest MIs are more likely to reflect the
underlying network architecture. Selected a certain range is
also more convenient for us to find patterns in complex brain
networks, so the following analysis mainly focused on 10–30%

of the strongest MIs. There is no significant difference between
four groups in the Figure 3. MIs in healthy people are on average
slightly greater than in the other three groups for a range of
rank-ordered means.

Figure 4 shows the average MI matrices for four groups,
which were thresholded such that 20% of the strongest edges
are presented. The MI matrices had the same number of
elements after thresholding. The white matrix elements represent
functional connectivity. The connection between the parietal-
occipital area and the frontal area shows a decreasing trend as the
severity of the disease increases (white squares in the Figure 4).

Figure 5 shows the brain networks based on the average MI
matrices of four groups thresholded such that only 20% of the
strongest edges are preserved. Different colors represent the size
of the betweenness centrality of the nodes, that is, the importance
of each node in the network. The connection between the left and
right brain is weakened as the degree of depression increases. And
the internal connections of each hemisphere have been enhanced
correspondingly.

The nodes color shows that the core nodes of PSD were
more scattered than the other three groups. This may affect the

FIGURE 5 | The brain networks based on average MI matrices of four subject groups at threshold 20% of the strongest edges. Different colors indicate the

betweenness centrality of the each node.
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degree of clustering between nodes, and the subsequent analysis
proves this by the statistical results of clustering coefficients. The
subsequent statistical analysis results showed that there was no
significant difference in the betweenness centrality of each node
among the four groups at almost all thresholds.

According to the brain network characteristics of Figure 5,
we performed statistical analysis of the relevant topological
properties. Post-stroke depressed subjects showed weaker
connections between the left and right hemisphere. Table 2

shows the statistical significance of the edge numbers between
left and right cerebral hemispheres across 10–30% thresholds,
assessed at each threshold by One-Way ANOVA. Post-hoc group
comparisons were performed using Least Significant Difference
(LSD) or Tamhane’s T2 (IBM SPSS Statistics 19), according to
whether the variance meets the condition of homogeneity. The
significant results (p < 0.05) are in bold. If the p values are all
above 0.05 at all thresholds between two groups will not be shown
here. As can be seen from the table, there are some significant
differences between the HC group and the PSMD and the PSD
group at about half number of the thresholds. In particular, there
is a clear difference between HC and PSD at a large continuous
threshold range (19–29%). We noticed no significant difference
between the HC group and the PSND group, but there are
differences between PSND and PSD at several thresholds.

Table 3 shows clustering coefficients in four groups with
thresholds of 10–30% of strongest edges. The difference in
clustering is significant at 11 of the 21 thresholds between HC

and PSD, most assemble at higher thresholds, and there is
no significant difference between any other two groups. The
clustering of HC is higher than that of PSD in Table 3. It
indicates that healthy people’s EEG signals have a higher degree
of clustering.

DISCUSSION

In this study, we examined the brain network performance in
post-stroke depressed patients using the EEG-MI. We found
that stroke patients with different degrees of depression showed
different connection features. These features may be helpful in
the diagnosis of PSD. Our results showed significant weakened
connections between the left and right cerebral hemispheres in
stroke patients compared to those in healthy controls, and this
feature is more obvious with the deepening of the degree of
depression. This suggests that depression affects the information
communication between the left and right hemispheres in stroke
patients. Among the stroke patients, the core nodes of PSD were
more scattered than the other three groups. The connections
between the parietal-occipital area and the frontal area showed
a decreasing trend as the severity of the depression increases.
Post-stroke depressed patients have a lower clustering coefficient
than healthy subjects, with a significant difference at one-half
thresholds.

The basal ganglia proved to play key roles in cortical and
subcortical connected circuits, including the frontal, premotor

TABLE 2 | Edge numbers between left and right cerebral hemispheres at thresholds 10–30%.

Threshold Edges number (M ± SD) p-value

HC PSND PSMD PSD HC vs. PSMD HC vs. PSD PSND vs. PSD

0.10 3.57 ± 1.50 3.93 ± 1.98 3.07 ± 2.29 3.24 ± 1.73 0.371 0.426 0.206

0.11 4.29 ± 1.56 4.43 ± 2.16 3.47 ± 2.50 3.83 ± 1.88 0.180 0.317 0.191

0.12 5.69 ± 1.83 5.93 ± 2.28 4.33 ± 2.60 5.02 ± 2.03 0.043 0.178 0.047

0.13 6.26 ± 1.92 6.43 ± 2.38 4.87 ± 2.53 5.55 ± 2.05 0.040 0.156 0.056

0.14 6.83 ± 1.90 7.07 ± 2.31 5.40 ± 2.50 5.98 ± 2.17 0.038 0.093 0.043

0.15 7.57 ± 1.89 7.57 ± 2.26 6.07 ± 2.57 6.60 ± 2.22 0.030 0.057 0.071

0.16 8.11 ± 1.98 8.14 ± 2.13 6.73 ± 2.38 7.07 ± 2.20 0.043 0.040 0.086

0.17 9.34 ± 1.94 9.36 ± 2.41 8.00 ± 2.71 8.43 ± 2.24 0.060 0.084 0.113

0.18 9.89 ± 2.00 10.00 ± 2.36 8.53 ± 2.80 8.93 ± 2.14 0.057 0.069 0.086

0.19 10.60 ± 1.95 10.57 ± 2.23 9.20 ± 2.95 9.43 ± 2.35 0.057 0.032 0.120

0.20 11.20 ± 2.01 11.14 ± 2.36 9.73 ± 2.77 10.07 ± 2.39 0.048 0.040 0.113

0.21 11.83 ± 2.09 11.71 ± 2.34 10.60 ± 2.68 10.60 ± 2.26 0.092 0.023 0.203

0.22 13.17 ± 2.08 13.00 ± 2.36 11.80 ± 2.56 11.88 ± 2.27 0.057 0.016 0.165

0.23 13.80 ± 2.09 13.43 ± 2.29 12.73 ± 2.67 12.52 ± 2.27 0.140 0.018 0.422

0.24 14.57 ± 2.00 14.07 ± 2.15 13.33 ± 2.44 13.21 ± 2.28 0.077 0.010 0.378

0.25 15.14 ± 1.88 14.64 ± 2.35 13.80 ± 2.37 13.90 ± 2.32 0.055 0.017 0.314

0.26 15.74 ± 1.89 15.29 ± 2.49 14.27 ± 2.35 14.43 ± 2.24 0.034 0.011 0.221

0.27 17.00 ± 1.67 16.71 ± 2.60 15.47 ± 2.28 15.69 ± 2.13 0.021 0.008 0.118

0.28 17.63 ± 1.73 17.43 ± 2.67 16.07 ± 2.41 16.52 ± 2.13 0.022 0.028 0.095

0.29 18.23 ± 1.87 18.07 ± 2.69 16.93 ± 2.38 17.02 ± 2.05 0.057 0.018 0.163

0.30 18.66 ± 1.87 18.57 ± 2.97 17.67 ± 2.47 17.64 ± 2.15 0.162 0.055 0.288

Significant results are in bold.
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TABLE 3 | Clustering coefficients at thresholds 10–30%.

Threshold Clustering coefficient (M ± SD) p-value

HC PSND PSMD PSD HC vs. PSD

0.10 0.25 ± 0.12 0.18 ± 0.11 0.26 ± 0.11 0.20 ± 0.11 0.080

0.11 0.27 ± 0.12 0.22 ± 0.11 0.26 ± 0.13 0.23 ± 0.13 0.200

0.12 0.31 ± 0.11 0.25 ± 0.11 0.27 ± 0.13 0.26 ± 0.12 0.062

0.13 0.34 ± 0.11 0.28 ± 0.12 0.29 ± 0.13 0.29 ± 0.13 0.050

0.14 0.35 ± 0.10 0.31 ± 0.09 0.32 ± 0.12 0.31 ± 0.12 0.124

0.15 0.36 ± 0.09 0.33 ± 0.10 0.33 ± 0.10 0.33 ± 0.13 0.237

0.16 0.38 ± 0.09 0.35 ± 0.09 0.34 ± 0.10 0.33 ± 0.12 0.028

0.17 0.41 ± 0.10 0.37 ± 0.08 0.37 ± 0.11 0.37 ± 0.11 0.047

0.18 0.42 ± 0.10 0.40 ± 0.08 0.38 ± 0.11 0.38 ± 0.10 0.067

0.19 0.43 ± 0.09 0.41 ± 0.08 0.42 ± 0.14 0.39 ± 0.10 0.071

0.20 0.46 ± 0.10 0.43 ± 0.08 0.44 ± 0.13 0.40 ± 0.10 0.021

0.21 0.48 ± 0.11 0.44 ± 0.09 0.45 ± 0.12 0.42 ± 0.10 0.036

0.22 0.50 ± 0.11 0.47 ± 0.08 0.46 ± 0.11 0.47 ± 0.11 0.155

0.23 0.53 ± 0.11 0.47 ± 0.09 0.48 ± 0.11 0.48 ± 0.11 0.036

0.24 0.53 ± 0.10 0.49 ± 0.09 0.51 ± 0.12 0.49 ± 0.10 0.047

0.25 0.54 ± 0.10 0.50 ± 0.09 0.52 ± 0.10 0.50 ± 0.10 0.045

0.26 0.55 ± 0.09 0.52 ± 0.09 0.52 ± 0.10 0.51 ± 0.10 0.039

0.27 0.56 ± 0.09 0.56 ± 0.09 0.53 ± 0.12 0.52 ± 0.08 0.038

0.28 0.57 ± 0.08 0.57 ± 0.10 0.54 ± 0.10 0.53 ± 0.08 0.104

0.29 0.58 ± 0.08 0.58 ± 0.10 0.56 ± 0.10 0.54 ± 0.08 0.027

0.30 0.59 ± 0.08 0.58 ± 0.09 0.56 ± 0.09 0.54 ± 0.08 0.026

Significant results are in bold.

and motor networks (Draganski et al., 2008; Thomas, 2009; Lao
et al., 2016). This area may receive multiple cortical inputs in
the presence of oscillatory activity and produce a high frequency
drive back to the cerebral cortex, especially the supplementary
motor area (Williams et al., 2002). Dysfunction of the frontal-
parietal-occipital network in stroke patients may result from an
organic lesion of the basal ganglia.

For depressed patients following stroke, the interhemispheric
interaction was found to be highly disturbed in this study.
Yamada et al. (1995) found that depressed patients showed lower
frontal interhemispheric coherences than normal controls in
each EEG band, and EEG power and coherence in presenile and
senile depression. Wei et al. (2010) get similar findings with the
above research. Furthermore, they found the inter-hemispheric
coherence was correlated with some emotional processing. A
decreased interhemispheric modulation was found in patients
with major depression (Bajwa et al., 2008; Wu, 2014), which is
consistent with our findings. Slow interhemispheric switching
mechanisms in mood disorders may explain the weakened
hemispheric information flow in PSD patients.

The frontal lobe plays a regulatory role in emotional cognition,
the connection between the parietal-occipital and the frontal
was decreased in depression in this study. Previous studies
have reported aberrant EEG performance, such as increased
slow activity in the frontal areas (Grin-Yatsenko et al., 2009,
2010), in depressed patients. Depressed older adults were
found to have decreased frontal and parietal activation during
some working memory tasks (Dumas and Newhouse, 2015).

Weakened prefrontal and frontal connections may suggest
decreased activation of the cortico-limbic circuit, which is related
to symptoms such anhedonia or blunted affect (Fingelkurts and
Fingelkurts, 2006). Some studies found that local information
flow in the frontal-parietal-occipital network was related to
the level of sedation (Rathee et al., 2016). For most stroke
patients, the main symptoms of depression are decreased interest
and retardation, which may cause the performance in the
frontal-parietal-occipital network to become similar to that with
sedation.

Post-stroke depressed patients exhibit lower clustering
coefficients and more diffuse distribution of core nodes. The
hypothesis of nerve loop connectivity injury has been used
to explain the incidence of depression in some studies.
Specifically, the pathogenesis of depression has certain
neuroanatomical mechanisms. Damage to certain brain-
related areas disrupts the neural pathway of emotional
regulation, resulting in depressive episodes (Greicius et al.,
2007; Alexopoulos et al., 2008). Previous studies found
abnormal connectivity of neural circuits in depressed subjects.
Studies also found that antidepressant drugs can restore this
connection, which identified the relationship between the
incidence of depression and nerve connection disorders (Cai
et al., 2013; Tadayonnejad et al., 2014; Gudayol-Ferre et al.,
2015). We suggest that abnormal communication in emotion-
related brain areas results in disconnection in PSD subjects,
and this phenomenon is also related to the damaged “core
node.”
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Previous studies found dopamine-dependent changes in the
functional connectivity between the basal ganglia and cerebral
cortex (Williams et al., 2002). As depressive disorders were
considered a syndrome of cortical-subcortical dysrhythmia
(Fingelkurts and Fingelkurts, 2015), a basal ganglia lesion should
disrupt the normal cortical-subcortical neural pathway, which
regulates emotions. Our results support the conclusion that post-
stroke depressed subjects demonstrated abnormal brain network
connectivity and that network features determined based on EEG
may be utilized as reliable biomarkers for the effective assessment
of PSD in the future.

There are some limitations of the present study. Only 16
EEG channels were used in the present study, which limited the
network nodes. We plan to collect 64-channel EEGs in the future
to obtain a more precise network. Another limitation of the study
was the different locations of hemispheric lesions in participants.
This study contained both left and right hemispheric lesioned
patients, which may confound the current results. As the left and
right hemispheres have different roles in emotional processing,
a depressed mood following different hemispheric lesions may
result from different brain disconnections. In future studies, we
plan to investigate differences in the brain network in post-stroke
depressed subjects with left and right hemispheric lesions. There
can be contamination of spurious connectivity caused by volume
conduction using MI algorithm. We will try more methods such
as phase lag index (Stam et al., 2010) and imaginary part of
coherency (Nolte et al., 2004) to cope with this limitation in later
studies.
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