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Abstract

Background: Common variants have explained less than the amount of heritability expected for complex diseases,
which has led to interest in less-common variants and more powerful approaches to the analysis of whole-genome
scans. Because of low frequency (low statistical power), less-common variants are best analyzed using SNP-set methods
such as gene-set or pathway-based analyses. However, there is as yet no clear consensus regarding how to focus in on
potential risk variants following set-based analyses. We used a stepwise, telescoping approach to analyze common-
and rare-variant data from the Illumina Metabochip array to assess genomic association with colorectal cancer (CRC) in
the Japanese sub-population of the Multiethnic Cohort (676 cases, 7180 controls). We started with pathway analysis of
SNPs that are in genes and pathways having known mechanistic roles in colorectal cancer, then focused on genes
within the pathways that evidenced association with CRC, and finally assessed individual SNPs within the genes that
evidenced association. Pathway SNPs downloaded from the dbSNP database were cross-matched with Metabochip
SNPs and analyzed using the logistic kernel machine regression approach (logistic SNP-set kernel-machine association
test, or sequence kernel association test; SKAT) and related methods.

Results: The TGF-β and WNT pathways were associated with all CRC, and the WNT pathway was associated with colon
cancer. Individual genes demonstrating the strongest associations were TGFBR2 in the TGF-β pathway and SMAD7
(which is involved in both the TGF-β and WNT pathways). As partial validation of our approach, a known CRC risk
variant in SMAD7 (in both the TGF-β and WNT pathways: rs11874392) was associated with CRC risk in our data. We also
detected two novel candidate CRC risk variants (rs13075948 and rs17025857) in TGFBR2, a gene known to be
associated with CRC risk.

Conclusions: A stepwise, telescoping approach identified some potentially novel risk variants associated with
colorectal cancer, so it may be a useful method for following up on results of set-based SNP analyses. Further work is
required to assess the statistical characteristics of the approach, and additional applications should aid in better
clarifying its utility.
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Background
In the search to uncover the missing heritability of complex
human diseases [1, 2], agnostic analyses of genome-wide
SNP array or sequencing data are giving way to SNP-set or
gene-set analyses using methods such as burden tests and
kernel association tests. Although such combined-locus ap-
proaches are well understood, how to proceed to the next
step of identifying the individual risk loci is an area that re-
mains open for development. Our aim was to implement
existing set-based testing methods and then use the results
to focus in on genes and SNPs to seek new candidate risk
variants, without imposing rigid testing criteria, in the spirit
of relying on independent external replication as the best
way of establishing association [3].
Analyses of individual SNPs, especially less-common

ones, suffer from lack of power because multiple-testing
adjustment is conservative and individual variants may
have low frequencies and small-to-moderate effects. It
has therefore been suggested that analyses of groups of
variants (both common and rare) that contribute to a
common mechanism may be more likely to explain
common diseases at the population level, with different
variants acting (being present) in different individuals
[4]. Across the population, then, many variants might
contribute to disease risk via a common pathway or cel-
lular network, so in population-based association ana-
lyses power can be increased by combining SNPs within
genes or pathways, and treating the SNP set, rather than
the individual SNP, as the unit of risk [5–9]. This is
especially advantageous with rare variants, because their
low frequencies render individual-variant approaches
unsuitable [10, 11], although due to low population
frequency, aggregate analyses with rare variants might
still require greater sample sizes than traditional
genome-wide analyses of individual common variants
[12]. In addition, an alternative to larger sample sizes
and dealing with the challenge of multiple comparisons
is to incorporate prior information in the selection of
SNP sets for study, to exclude likely non-informative
(neutral) loci and thereby increase power by reducing di-
mensionality and the burden of strict multiple-testing
adjustment. We undertook such an approach to study
how genetic variants based on genotype data from the
Metabochip [13] are associated with colorectal cancer
(CRC) in the individuals of Japanese ancestry included
in the Multiethnic Cohort (MEC), a prospective cohort
study including five racial/ethnic populations (White,
Latino, African-American, Japanese-American, and Na-
tive Hawaiian) conducted in Honolulu and Los Angeles
[14]. Although the Metabochip is not a high-density
array, it focuses on a number of metabolic pathways—
such as those associated with insulin resistance, lipid
metabolism, and obesity—that are thought to be in-
volved in CRC etiology.

CRC is an important target for genomic study because it
ranks among the top contributors worldwide to cancer in-
cidence and mortality, with substantial differences by eth-
nic group and involvement of dietary and other lifestyle
factors [15–17]. As of 2014, CRC was the third most com-
mon cancer and third leading cause of cancer death in
both men and women in the U.S. [18], and as of 2012
CRC rates in Miyagi Prefecture, Japan, were the highest
among a worldwide selection of registries [16]. Anywhere
from 5 to 10% [19] to as much as 15–30% [20] of CRC
may be due to known hereditary conditions, including
hereditary non-polyposis colorectal cancer (HNPCC; also
known as Lynch syndrome, caused by mutations in mis-
match DNA repair genes) and familial adenomatous
polyposis (FAP, which is caused by mutations in the APC
tumor suppressor gene). The remainder, sporadic CRC, is
commonly attributed to environmental factors, such as a
high-caloric, low-fiber, low-calcium western-type diet, low
physical activity, obesity, alcohol, and smoking, which pre-
sumably involve interactions with predisposing genomic
variants [21]. Importantly, offspring of Japanese migrants
to Hawaii have had increased rates of CRC far exceeding
rates in Japan and even higher than rates in the white
population [19, 22]. In recent decades, CRC rates in Japan
have increased markedly and have now reached levels that
are the same as, or higher than, rates in the United States
[23]. Although much of the high incidence of CRC in Jap-
anese is attributed to environmental factors, it is likely that
gene-environment interaction also plays a role [24].
The goal of our investigation was to evaluate the use of

SNP-set analysis as a preliminary step in ultimately focusing
in on potential risk variants. By using what might be called
a “telescoping” approach, we began with candidate path-
ways to limit the initial search for risk variants, then we fo-
cused in on genes within the pathways that evidenced
association, and finally we zeroed in on variants within the
genes that appeared to be associated. Although not a rigor-
ous procedure from the standpoint of statistical testing,
such an approach is expected to have greater power to
identify potential causal variants than whole-genome
testing based on individual-SNP analyses, if it is followed by
independent studies focused on the candidate variants.

Methods
Study population and genotyping
The MEC, comprising more than 200,000 persons, was
assembled in 1993–1996 by the mailing of a
self-administered, 26-page questionnaire to persons with
drivers licenses (California and Hawaii), voter registrations
(Hawaii only), or health care financing records (California
only) to obtain extensive information on demographics,
medical and reproductive histories, medication use, family
history of various cancers, physical activity, and diet. Ances-
try in the MEC was ascertained via questionnaire [25].
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Because the importance of certain cellular pathways might
vary due to ethnic differences, focusing on persons of a sin-
gle ancestry should be advantageous by reducing variability.
We therefore restricted our analysis to persons of Japanese
ancestry, for reasons explained in the Background section.
The Japanese-American sub-population constitutes about
26% of the MEC.
Identification of incident cancer cases was by regular link-

age with the Hawaii, Los Angeles County, and California
SEER registries. Although colon and rectal cancers are dis-
tinct and have separate ICD codes, they are often combined
because their etiologies are similar. In the present analysis
we used all CRC and colon cancer only; we did not analyze
rectal cancer alone due to the small number of cases.
Genotyping was performed in blood specimens col-

lected according to a case-control design. Some MEC
subjects were re-contacted, mostly from 1995 to 2001,
for blood collection; these included persons with inci-
dent breast, prostate, or colorectal cancers, as well as a
random sample of cohort participants to serve as con-
trols in nested genetic case-control studies (participation
rate 72% among cases and 63% among controls). From
2001 to 2006, blood was also collected prospectively,
without regard to cancer diagnosis, from willing cohort
participants (participation rate 43%).
Genotypes were assessed with the Metabochip, a custom

Illumina iSelect array designed with about 200,000 SNPs to
study genetic association with metabolic, cardiovascular,
and anthropometric traits. The Metabochip was not de-
signed to study cancer, but it includes variants known or
suspected to be associated with metabolism, obesity, and
insulin resistance—factors that have been linked to CRC
risk. Although the Metabochip has limited coverage of the
genome, larger agnostic GWAS arrays are likely to include
large numbers of non-informative SNPs, which can reduce
power in gene-set analyses [26]. In addition, although im-
putation allows estimation of many non-genotyped vari-
ants, imputation is challenging with rare variants [26] and
imputation with persons of Japanese ancestry in the MEC
is based on East Asians in the 1000 Genomes Project [27],
which might not be the most suitable basis for imputation
of rare variants among persons of strictly Japanese ancestry.
We therefore considered that the Metabochip genotype
data (without imputation) could be useful for a preliminary
examination of CRC pathways because of its focused nature
and direct genotyping of less-common variants.
The study protocols of the MEC GWASs were ap-

proved by the University of Hawaii Human Studies Pro-
gram and the University of Southern California IRB.

Data pre-processing
We chose candidate pathways for the first step (pathway
analysis) by assessing published reviews of molecular char-
acteristics of CRC and selecting pathways and their related

genes that were anticipated to be associated with CRC, a
strategy that is expected to improve power [28, 29]. A
similar approach was also described by Liu and others
[30]. Molecular characteristics of CRC are the subject of
several reviews [20, 31–33]. Pathways chosen were WNT,
TGF-beta, P53, RTK-RAS, MAPK, adiponectin, combined
DNA repair and fidelity of DNA replication, mTOR, and
the laminin gene family. Genes we selected from among
these pathways are listed in the Additional file 1. We
downloaded lists of SNPs in the selected genes from the
dbSNP database [34], similar to the approach of Scar-
brough and others [8], except that we did not restrict up-
stream and downstream distances of candidate variants (it
is not clear how association tests with aggregated variants
will perform with non-coding variants [12] possibly in-
volved in regulation, so to err on the side of not leaving
anything out, we chose to include as many variants as pos-
sible). Lists of SNP rs numbers in the selected genes were
queried with restriction to “Organism: Homo sapiens” and
“Variation class: SNP” in the dbSNP database. We copied
the list of rs numbers shown in the “dbSNP Batch” option
of “Display Settings”. The “dbSNP Batch” list includes rs
numbers of SNPs that have been merged with other SNPs,
which is important given the time that has elapsed be-
tween specification of variants for the Metabochip array
and downloading of SNP lists (older, merged rs numbers
were not included in the “FlatFile” option of dbSNP).
The downloaded lists of rs numbers were then

matched against the rs numbers of variants in the Meta-
bochip data to create the list of variants for analysis (an
R script for this processing is available upon request).
Downloads were current as of July 28, 2016 or later and
were based on genome build 38. Matching SNPs were
identified in all pathways except for the laminin gene
family. Numbers of SNPs that matched to the Metabo-
chip are shown in the Additional file 1.
We excluded cohort participants whose reported sex did

not match the sex chromosome genotype, whose overall
genotype call rate was less than 95%, who were first-degree
relatives, or whose genotype was found to be duplicated. Of
the 8187 remaining participants of Japanese ancestry, 331
were ineligible due to prior cancer, leaving 7856 subjects
for analysis: 676 with colorectal cancer (478 with colon can-
cer) and 7180 controls. We included all genotyped loci
from the Metabochip that remained after we excluded
markers not in Hardy-Weinberg equilibrium, markers with
call rate less than 95%, and sex-chromosome and mito-
chondrial DNA SNPs. After these variant exclusions there
were 189,127 Metabochip SNPs available for matching to
the downloaded pathway SNPs. Variants with minor allele
frequency (MAF) less than 1% were retained for the present
analyses because genes containing common variants with
established effects on complex diseases might also contain
rare variants with larger effects [1].

Cologne et al. BMC Genomics  (2018) 19:524 Page 3 of 10



Analysis
To implement the telescoping approach, in the first step we
applied the Sequence Kernel Association Test (SKAT [35],
formerly known as the logistic SNP-set kernel-machine as-
sociation test [29]) to pathways as units of analysis. In the
second step we applied SKAT to the set of genes within
each pathway (one pathway at a time) that showed evidence
of association with CRC. In the third step, individual SNPs
contained within the genes that evidenced association in
analyses with SKAT were analyzed with PLINK [36]. Logis-
tic models (defined below) were fit in SKAT and PLINK
with the one-parameter linear genetic effect (count of
minor-variant alleles: 0, 1, or 2) as the genomic covariate. P
values corrected for multiple testing were obtained with the
Bonferroni family-wise error rate (FWER) and the false dis-
covery rate (FDR) procedures (note that FDR is not neces-
sarily preferable to FWER in situations with a small
number of tests, such as when confirming results in an in-
dependent candidate-SNP study [37]). Individual SNPs that
showed evidence of association were further examined by
searching for their rs numbers in the NHGRI-EBI GWAS
Catalogue [38] and in PubMed.
Pathway analyses were performed with the kernel

logistic regression procedure in the SKAT R package (v.
1.2.1) [39], which can accommodate rare variants [35].
Briefly, SKAT is based on a variance component score
statistic, where the variance component is the variance—
within a pathway—of individual-variant effects assumed
to follow a common distribution, so that the null hy-
pothesis—that all individual-variant effects are zero—is
equivalent to the simpler hypothesis that the variance of
those effects is zero. For a binary phenotype (outcome)
Y ∈ {0,1}, the logistic regression model is

logit PrðYi ¼ 1Þ ¼ α
0
xi þ β

0
gi; ð1Þ

where logit is the logistic function {logit(p) = log(p/[1−p])},
the subscript i signifies individual i in the study population
(i = 1, …, n), xi = {1, xi1, …, xip}′ is the vector of covariates
for individual i, gi = {gi1, …, giq}′ is the vector of genotypes
at q SNPs for individual i, α is a (p + 1)×1 vector of
coefficients for the covariates, and β is a q×1 vector
of coefficients for the SNPs. The variance component
statistic (S) is

S ¼ y−ŷð Þ GWG
0
y−ŷð Þ;

where y = {y1,…, yn}
' is the vector of observed outcomes,

ŷ is the vector of fitted values under the null hypothesis
�
ŷ ¼ logit−1½Xα̂�; X ¼ ½x1;…; xn�

0�
, G = [g1,…, gn]

', and
W is a q×q diagonal matrix of individual-variant weights
that can be chosen to improve power (e.g., by
down-weighting non-functional variants [35]). We used

an approach similar to that used by Saunders and others
[40], in that we ran alternative analyses with various
omnibus tests, such as the optimized combination of
burden and SKAT tests (SKAT-O) [41]—which has bet-
ter power than traditional burden tests [42]—and a test
for combined rare and common variants (SKAT-C) [43].
We used the default linear-weighted method in SKAT,
which assigns higher weights to rarer variants due to
their greater likelihood of being causal.
Covariates we adjusted in logistic regression models

were age (a), sex (s), body mass index (BMI, the Quetelet
index q = height/weight2), smoking behavior (c), and, to
account for population stratification, the top five
ancestry-informative eigenvectors (p1, …, p5) from the
principal component decomposition of the genotype matrix
among MEC Japanese. Logistic regression models for a sin-
gle variant (j ∈ {1, …, q}) were therefore of the form

logit½ PriðcancerÞjxi; gi j� ¼ α0 þ αaai þ αssi þ αqqi

þ αhhi þ αcci þ
X5

k¼1

αpk pik

þ βg j
gi j

where Pri(cancer) is the probability that individual i has
colorectal cancer (or colon cancer, depending on which
outcome is being analyzed) and gij is the jth genomic co-
variate (count of minor alleles) for individual i. Logistic
models used in SKAT had the obvious multi-locus ex-
tension of the genomic covariate, as shown in eq. (1).
Height (h) was included to remove possible residual de-
pendence of BMI on stature [44], although it had little
impact on the results.
SKAT produces a P value plot (QQ plot based on the

expected uniform distribution of P values under the glo-
bal null hypothesis) as a means of assessing true posi-
tives [45]. The P values in SKAT are adjusted for poor
adherence to asymptotic test assumptions with a binary
outcome but are not a priori adjusted for multiple test-
ing (multiple SNP sets).

Results
Pathway and individual-gene results
With adjustment for all covariates, the TGF-β (P =
0.0060) and WNT (P = 0.015) pathways demonstrated
associations with all CRC (Fig. 1). With multiple testing
adjustment by the Bonferroni and FDR procedures, only
the TGF-β pathway evidenced association (Bonferroni
P = 0.048 based on eight tests, Benjamini & Hochberg
FDR P = 0.048 with the R p.adjust [“method = fdr”]
procedure; corresponding values for the WNT path-
way were 0.12 and 0.058).
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With the bootstrap facility in SKAT to adjust for mul-
tiple testing, the family-wise error rate adjusted P value
for TGF-β was 0.087 and that for WNT was 0.17. The
SKAT-C method produced unadjusted P values 0.052
for WNT and 0.90 for TGF-β (the TGFβ and WNT
pathways had similar proportions of common and rare
SNPs; see Appendix 3). The SKAT-O combination of
traditional-burden and SKAT methods produced P
values 0.012 for TGF-β and 0.018 for WNT. Given
that the TGF-β and WNT pathways are closely re-
lated [46], we also performed a pathway analysis with
TGF-β and WNT combined as a single pathway; the
combined pathway had an unadjusted P = 0.0023 (cor-
rected P = 0.016 by both Bonferroni and FDR).
Several genes demonstrated evidence of association

with CRC when SKAT was applied to genes as SNP sets
within either the TGF-β or the WNT pathway (Table 1).
None of these genes evidenced association after Bonfer-
roni correction: significance thresholds were 0.05/12 =
0.0042 for TGF-β genes and 0.05/13 = 0.0038 for WNT
genes (numbers of genes—12 and 13—that overlapped
with the Metabochip were derived from Additional file 1:
Table S1). The smallest P value was for WNT11 (based
on only one overlapping SNP), whereas the gene with
the next smallest P value (TGFBR2) contained 78 over-
lapping SNPs.

In an analysis with colon cancer only as the endpoint,
the WNT pathway appeared to be associated (P = 0.045
not corrected for multiple testing) but the TGF-β path-
way did not (P = 0.18). With the SKAT-C method, P =
0.11 for the WNT pathway, and with the SKAT-O
method P = 0.036 for the WNT pathway. Within the
WNT pathway, individual genes evidencing association
with colon cancer were WNT11 (P = 0.014) and TCF7L2
(P = 0.045). SMAD7 showed only weak evidence of asso-
ciation with colon cancer (P = 0.058). The TFDP1 gene
in the TGF-β pathway demonstrated an association with
colon cancer even though the TGF-β pathway overall
did not. None of these putative associations with colon
cancer would be deemed statistically significant after
correction for multiple testing, however. For this reason,
and because pathway results were qualitatively similar
for all CRC and colon cancer only, we used only CRC in
further analyses of individual variants.

Individual-SNP results
Eleven individual Metabochip SNPs in the TGF-β and
WNT pathways were associated with CRC in unadjusted
case-control association analysis (Table 2; two SNPs—
rs11874392 and rs4464148—are in both pathways). With
covariate adjustment, three SNPs in the TGF-β pathway
(rs17025857 and rs13075948 in the TGFBR2 gene, and
rs11874392 in the SMAD7 gene) were associated with CRC;
one of these (rs11874392) is also in the WNT pathway, but
no other SNPs in the WNT pathway were associated with
CRC after covariate adjustment. With restriction to the 405
Metabochip SNPs in our chosen pathways, the minimum
value of FDR was 0.41 (Table 2); Bonferroni adjustment re-
sulted in significance levels of 1.0 for all 405 SNPs.
The variant rs11874392 in SMAD7 (adjusted OR 1.16)

was reported by Jiang and others [47] to be associated
with CRC in a population-based study of non-Hispanic
white subjects, but with odds ratio less than 1 (OR 0.80),
whereas it was noted to be positively associated with
CRC in Hispanics by Schmit and others (OR = 1.27)
[48]. The variant rs13075948 in the TGFBR2 gene (OR
1.95) is an intron variant that has been implicated in ab-
dominal aortic aneurism [49], but it did not otherwise
return any results in searches on NHGRI and PubMed,

Fig. 1 Values of –log10 P for individual pathways with adjustment
for all covariates. Covariates adjusted were age, sex, BMI, height,
smoking behavior, and the top five principal components of the
genotype matrix. Solid line: line of identity. Dashed lines:
approximate 95% confidence bands (these bands are not precise
and should only be used for guidance). Typically, points towards the
right that fall well above the line of identity are considered as
providing evidence of departure from the null hypothesis of
no association

Table 1 Individual genes in the TGF-β and WNT pathways that
demonstrated an association with colorectal cancer

Gene No.
SNPs

Pathway P value

All CRC Colon cancer only

WNT11 1 WNT 0.0064 0.014

TGFBR2 78 TGF-β 0.0075 0.15

SMAD7 6 TGF-β and WNT 0.015 0.058

TCF7L2 26 WNT 0.019 0.045

TFDP1 1 TGF-β 0.044 0.040
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nor did the variant rs17025857, also an intron variant in
the TGFBR2 gene (adjusted OR 2.01), although other
variants in the TGFBR2 gene have been reported to be
associated with CRC [50, 51].
We compared frequencies of the SNPs we detected as

being associated with CRC in our population of Japanese
ancestry with those of the Tokyo Japanese population
(JPT; 120 samples) in the 1000 Genomes Catalog (using
the NCBI 1000 Genomes Browser, Phase 3 [52]). All three
minor allele frequencies in our population were slightly
higher than those in the Tokyo Japanese: SNP rs17025857
(our cohort MAF 0.020) had MAF 0/120 in the Tokyo
Japanese; rs13075948 (our cohort MAF 0.019) had MAF
0/120 in the Tokyo Japanese; and rs11874392 (our cohort
MAF 0.34) had MAF 0.26 in the Tokyo Japanese.

Discussion
Agnostic (individual-variant) approaches to association
testing can suffer from a lack of statistical power due to
low variant frequency and moderate-at-best effect sizes.
SNP-set or gene-set analyses (pathway analyses) based
on burden tests or kernel association tests are a more
powerful approach but do not reveal individual causal
SNPs. Recent methodological work has turned to this
problem of identifying causal variants after set-based
testing, but the area remains open for further develop-
ment. Based on the premise that the most valid ap-
proach to confirming relationships between variants and
disease is to conduct independent external replication, a
variant-discovery approach that identifies candidates for

further, independent investigation should be a useful first
stage in identifying risk variants (see Robertson and
others [53] for recent work on combining data from
two-stage studies). In the present work we illustrate a
multi-step, telescoping approach that is motivated not
by rigorous significance testing but rather by sequen-
tially removing natural layers of complexity in the ana-
lysis. We suggest some variants that might deserve
further study in relation to colorectal cancer, but our il-
lustration is not meant to be conclusive with regard to
the association of these variants with CRC. The ap-
proach can be applied to genome-wide array data or
whole-exome (or whole-genome) sequencing data with
the intention to follow up results with independent data
(including in silico studies).
Our analysis of SNP sets with the SKAT method, which

began by limiting the set of candidate SNPs to those in
pathways having a known mechanistic role in CRC, identi-
fied several variants in the TGF-β and WNT signaling path-
ways that are potentially associated with CRC in Japanese
Americans. Two of those variants (rs17025857, OR = 2.01,
and rs13075948, OR 1.95, both in the in TGFBR2 gene) are
apparently new findings given that their association with
CRC was not noted in the NHGRI-EBI GWAS Catalog or
in PubMed. TGF-β and WNT pathway proteins influence
cell division and cell fate of gut endoderm stem cells, such
that disorders in these pathways can lead to
gastro-intestinal cancers, including colonic adenocarcin-
omas [46]. Association tests using gene sets within these
pathways confirmed that TGFBR2 in the TGF-β pathway,

Table 2 Association with colorectal cancer of individual TGF-β and WNT pathway SNPs

SNP Gene Minor allele frequency Crude (unadjusted) association Adjusted associationa

Cases Controls Odds ratio 95% CI P value FDRc Odds ratio 95% CI P value FDR

TGF-β pathway

rs17025857 TGFBR2 0.029 0.019 1.57 1.12, 2.21 0.009 0.48 2.01 1.28, 3.16 0.002 0.41

rs13075948 TGFBR2 0.026 0.018 1.49 1.04, 2.13 0.029 0.58 1.95 1.22, 3.11 0.005 0.44

rs11874392 SMAD7 0.375 0.342 1.16 1.03, 1.30 0.015 0.49 1.16 1.00, 1.34 0.049 1

rs3825977 SMAD3 0.453 0.490 0.86 0.77, 0.96 0.009 0.48 0.87 0.76, 1.01 0.063 1

rs4776890 SMAD3 0.206 0.234 0.85 0.74, 0.97 0.019 0.49 0.85 0.72, 1.01 0.059 1

rs4464148 SMAD7 0.038 0.053 0.70 0.53, 0.94 0.016 0.49 0.71 0.50, 1.01 0.057 1

rs11466531 TGFBR2 0.011 0.019 0.57 0.34, 0.97 0.034 0.59 0.71 0.39, 1.28 0.26 1

rs3773662 TGFBR2 0.011 0.020 0.56 0.33, 0.94 0.026 0.56 0.68 0.38, 1.23 0.20 1

WNT pathway

rs2439593 APC 0.0022 0.0003 6.39 1.53, 26.8 0.004 0.48 NAb NA NA NA

rs4944092 WNT11 0.156 0.129 1.24 1.07, 1.45 0.006 0.48 1.13 0.93, 1.38 0.22 1

rs11874392 SMAD7 0.375 0.342 1.16 1.03, 1.30 0.015 0.49 1.16 1.00, 1.34 0.049 1

rs4464148 SMAD7 0.038 0.053 0.70 0.53, 0.94 0.016 0.49 0.71 0.50, 1.01 0.057 1

rs11196187 TCF7L2 0.023 0.033 0.68 0.47, 0.99 0.042 0.60 0.69 0.43, 1.12 0.13 1
aAdjusted for age, sex, BMI, height, smoking status, and the first five principal components among Japanese; odds ratios based on a linear genetic effect
bNA: could not be estimated because of low frequency in controls
cFDR: false discovery rate based on the 405 Metabochip SNPs that were in the selected pathways
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and SMAD7 in both pathways, are associated with CRC.
Although no individual variants in our analysis would be
considered statistically significant based on traditional
multiple-testing adjustment methods, the purpose of our
analysis was to find previously unidentified candidate risk
variants within pathways and genes already known to be re-
lated to CRC, so strict P-value adjustment—which is con-
servative and may result in false-negative results (type II
errors)—might not be appropriate. Correcting the
family-wise error rate assumes a global null hypothesis of
no associated elements, whereas it is likely that some, and
perhaps many, of the SNPs in the chosen pathways are as-
sociated with CRC. By using a stepwise approach, starting
with candidate pathways and then telescoping in on genes
and then SNPs within genes that demonstrate evidence of
association with CRC, some of the overly conservative re-
strictiveness of traditional multiple testing (and resulting
low probability of detecting risk variants) may be overcome.
However, such a multi-step approach could still be subject
to inflated type I errors, so our findings should only be con-
sidered preliminary. As with all genomic analyses, the most
important evidence must come from independent confirm-
ation in independent populations. Low density of coverage
of the genome might limit the effectiveness of pathway ana-
lysis [54], which may be a reason why our selected path-
ways other than TGF-β and WNT, also known to be
associated with CRC, did not show evidence of association
in our analysis. Indeed, among our selected pathways, the
TGF-β pathway had the largest number of SNPs present on
the Metabochip, so it might not be surprising that it pro-
duced the strongest evidence of association.
There has been little guidance on how to identify individ-

ual driver (risk) SNPs that underlie a SNP set found to be
related to phenotype. Various ad hoc approaches have been
used; for example, Tang and others [55] chose SNPs that
were deemed to be associated by individual-SNP analysis
and in genes that were deemed to be associated via
SKAT-O analysis. Recently, He and others [9] described a
variable-selection method incorporated within the SKAT
kernel approach that can be used to suggest which SNPs
drive the SNP-set association. In particular, finding a SNP
set that evidences association does not distinguish between
a few driver SNPs with large effects on the one hand and
many driver SNPs with lesser effects on the other.
SNP-set analyses present a number of challenges when

rare variants are studied. If rare variants in a particular
genetic region are enriched among persons with disease,
set-based tests should be more powerful than
individual-SNP analyses. However, single variants might not
contribute greatly to more powerful SNP-set tests if the
number of associated variants in any particular gene-set or
SNP-set is small. Furthermore, the optimal approach to
testing association with SNP sets depends on many factors,
including the true (but unknown) proportion of causal

SNPs in the SNP set and their effect magnitudes. We there-
fore employed several approaches (SKAT, SKAT-C, and
SKAT-O), but which is most appropriate cannot be known
a priori. Another concern is that, with small samples, the
asymptotic distribution used for the SKAT test might be in-
accurate. However, this has been said to result in inflated P
values (or loss of power [56]), in which case small-sample
bias would not likely cause false-positive results. It is also
possible that variant assignment to a particular gene might
be incorrect [57].
Appropriate weighting of individual SNPs within SNP

sets would be beneficial if it were feasible. In addition to
using biological (functional) information for pathway
and gene selection, using such information to weight in-
dividual variants in the analysis could reduce the impact
of non-informative variants within the selected genes
and pathways. We used the default weighting in SKAT,
which gives higher weight to rarer variants, but there is
surely much residual variation in strength of effect even
after accounting for variant frequency. More appropriate
weights that take function into account might lead to in-
creased power by down-weighting neutral variants that
have little or no impact on cellular processes. However,
such functional and annotation information may be ad-
vantageous only when it is accurate [2], which remains a
problem with online databases. Spencer and others [58]
described an alternative, Bayesian, approach that allows
incorporation of expert prior functional knowledge.
Several strengths and limitations of the present study de-

serve consideration. The fact that we were able to repro-
duce associations with previously reported CRC-related
genes provides reassurance about the validity of our ap-
proach. A second strength is the design of the MEC study,
a prospective cohort study with population based sam-
pling. A third strength is that we focused on one ethnic
group: differences in allelic variation among populations
can result in reduced power if association tests are not per-
formed in specific populations [59]. A fourth strength is
that, by focusing on pathways and genes known to be
mechanistically linked to CRC, it is more likely that a true
risk variant might be detected, because the genes consid-
ered should be enriched with variants related to CRC, and
with lower degrees of freedom there is less penalty for mul-
tiple testing and hence a lower false-negative rate. One
limitation of this study is the relatively small number of
cases, which could reduce power. A second limitation is
sparse coverage of the genome by the Metabochip for
many of the pathways and genes considered in our analysis.
There may well be variants in these genes that are associ-
ated with CRC but that were not included in the present
study because they were not genotyped. A more compre-
hensive SNP set including imputed variants could be more
informative, but as noted in the introduction, imputation
with rare variants, especially among persons of Japanese
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ancestry, may be unreliable. Alternatively, SNP-set analyses
based on whole-genome sequence data can be employed
to include and potentially discover novel CRC-related
genes, as was done by Koboldt and others [60], who
combined whole-genome sequencing with selection of
known susceptibility genes for prostate cancer. A third
limitation is the small set of candidate pathways selected.
For example, we did not examine DNA mismatch repair
gene defects, which have been linked to HNPCC but are
rare in sporadic CRC [20], genes related to the inflamma-
tion and innate immunity pathways [61], or genes related
to glucose metabolism and its interaction with
epithelial-mesenchymal transition [62]. Furthermore, we
did not investigate variants in genes or pathways not yet
known to be associated with CRC. Better informed deci-
sions as to which pathways to include in the analysis—ra-
ther than limiting to pathways with demonstrated
associated SNPs—could perhaps further increase the likeli-
hood of detecting novel risk SNPs, because there could be
many false negative results among published GWAS stud-
ies [63]. However, adding candidate pathways could also
increase the proportion of non-informative (neutral) SNPs.
A fourth limitation is the lack of a well-defined
statistical-testing framework for the telescoping approach
we used. Larson and others [64] pointed out that type-I
error control has not been well studied for gene-set ana-
lyses, and they described corrections to SKAT to adjust for
multiple testing when there may be substantial overlap of
genes across multiple pathways. However, because of our
small number of candidate pathways, there was only mod-
est overlap of genes. Although our approach might suffer
from lack of tight type-I error control, it is less likely to re-
ject true causal variants, so it should be useful as a first
step in identifying candidate SNPs to be assessed in a sec-
ond stage of independent validation.
Although we noted potential associations of several

variants with CRC, one should keep in mind that a
mechanism comprises the collective effects of numerous
individual minor variants across the population. It is not
finding the individual risk variant per se that is the ul-
timate goal. Rather, the variants identified should be
considered as proxies for the entire mechanism in which
they participate, and other variants that impact that
mechanism should be considered likely candidates (with
effects—and therefore strength of associations—
dependent, of course, on their relative functionalities).
Indeed, it has been noted that with the explosion of the
human population, there are likely to have arisen many
rare variants that might play roles in complex disease
risk, but with only a few individuals in any particular
study sample possessing any one particular variant
among them [65]. In this regard, the estimated odds ra-
tios for individual variants may be more informative
than their P values for association.

Conclusions
A stepwise, telescoping approach to the analysis of dense
genomic data—beginning with pathways, then focusing
in on genes within the pathways associated with out-
come, and finally assessing individual SNPs within the
genes that evidence association with outcome—allowed
us to identify several potential novel risk variants not
previously associated with CRC in traditional analyses.
The procedure is exploratory, so these variants require
independent validation as well as consideration of their
cellular or regulatory functions before they can be
regarded as causal SNPs. Our results are meant merely
to demonstrate the potential utility of the stepwise ap-
proach to SNP-set analyses; the procedure should iden-
tify a greater number of potential associated variants if
based on a genome-wide scan. Although multiple-testing
implications of the stepwise approach could be complex,
this type of approach—coupled with subsequent inde-
pendent confirmation as well as detailed functional con-
siderations—may be preferable to the agnostic approach
typically employed with whole-genome scans. Further-
more, additional novel candidate SNPs might be identi-
fied if the initial set of candidate pathways is expanded
to include ones that are hypothesized to be associated
on the basis of functional or biological knowledge even
though they have not previously been established as be-
ing associated with CRC (due to low power of agnostic
analyses). Future, more in-depth, analyses of CRC risk
pathways, genes, and variants should be based on denser
coverage of the genome, include a larger number of can-
didate pathways, investigate differences across ethnic
populations, and utilize imputed variants that are im-
puted with reasonable certainty. Because a large number
of neutral loci can dilute statistical power, a potentially
fruitful area of future research would be to incorporate
functional information to weight pathways, genes, and
individual variants according to biological expectations
of their relevance to the outcome under study.
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