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Abstract

Psychology is a complicated science. It has no general axioms or mathematical proofs, is

rarely directly observable, and is the only discipline in which the subject matter (i.e., human

psychological phenomena) is also the tool of investigation. Like the Flatlanders in Edwin

Abbot’s famous short story (1884), we may be led to believe that the parsimony offered by our

low-dimensional theories reflects the reality of a much higher-dimensional problem. Here we

contend that this “Flatland fallacy” leads us to seek out simplified explanations of complex phe-

nomena, limiting our capacity as scientists to build and communicate useful models of human

psychology. We suggest that this fallacy can be overcome through (a) the use of quantitative

models, which force researchers to formalize their theories to overcome this fallacy, and (b)

improved quantitative training, which can build new norms for conducting psychological

research.
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Yet I exist in the hope that these memoirs, in some manner, I know not how, may find
their way to the minds of humanity in Some Dimension, and may stir up a race of
rebels who shall refuse to be confined to limited Dimensionality.

—Edwin A. Abbott, Flatland: A Romance of Many Dimensions (1884)

1. Introduction

Few works consider the nature of perception and dimensionality as elegantly as Edwin

Abbott’s (1884) novella Flatland: A Romance of Many Dimensions. The narrator of the

story, A. Square, lives in a world full of “Flatlanders,” who are incapable of perceiving

or even conceiving of a reality that exists beyond two dimensions. However, after a visit

from a “Stranger” (a sphere) A. Square comes to appreciate how complex and high

dimensional the world really is. Ultimately, he is imprisoned for his heretical beliefs after

trying to teach his colleagues about his revelations. Abbott’s key insight was that crea-

tures with limited perceptual capacities (i.e., seeing in only two dimensions) come to rea-
son in a limited way, ignoring the complexity of the world and truly believing their

perceptions to be veridical (Fig. 1). Much like Flatlanders, humans exhibit strong biases

in their reasoning about a complex and high-dimensional world due to finite limitations

on their cognitive capacities. For this reason, we posit that psychological researchers,

Reality (3D)

Time

Flatlander View (2D)

Fig. 1. In Abbott’s novella, A. Square cannot perceive his world as anything other than two dimensional.

From his limited perspective (“Flatlander View”; bottom), a three-dimensional entity (sphere) appears to be

changing sizes before him (growing and shrinking circle). In reality (top), this entity is simply moving

through a lower-dimensional plane, but A. Square’s limited perspective leads to a false conclusion about the

nature of reality. For similar reasons, psychological scientists may falsely conclude that the number of dimen-

sions that accurately characterize psychological phenomena is sufficiently small, viewing the world like Flat-

landers, even if in reality the complexity of psychological phenomena is high dimensional.
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constrained by these limitations, may come to view the complexities of psychological life

in similarly limited ways.

Human psychology is rife with complexity, the product of an immensely high-dimen-

sional space characterized by interactions between trillions of neural connections, billions of

unique individuals, and dynamic changing contexts spanning thousands of years of history.

Despite this complexity, the majority of theoretical developments in psychological research

have consistently converged on producing a number of low (typically two) dimensional/fac-

tor theories/process models of human mental life. Since at least the early work of Plato

(Evans & Frankish, 2009), this manner of characterizing the mind has come to dominate our

understanding of emotion (Damasio, 1994; Davidson, 1993; Ochsner, Bunge, Gross, & Gab-

rieli, 2002; Posner, Russell, & Peterson, 2005; Russell, 1980; Schachter & Singer, 1962;

Zajonc, 1980), social cognition (Chaiken & Trope, 1999; Cuddy, Fiske, & Glick, 2008;

Gray, Gray, & Wegner, 2007; Gray & Wegner, 2009; Greenwald & Banaji, 1995; Haslam,

2006; Mitchell, 2005; Saxe, 2005; Todorov, Said, Engell, & Oosterhof, 2008; Waytz &

Mitchell, 2011), moral judgment (Greene, Sommerville, Nystrom, Darley, & Cohen, 2001;

Rand, Greene, & Nowak, 2012), learning (Daw, Niv, & Dayan, 2005; Frank, Cohen, & San-

fey, 2009; Poldrack et al., 2001; Poldrack & Packard, 2003), cognitive control (Heatherton
& Wagner, 2011; Hofmann, Friese, & Strack, 2009; McClure, Laibson, Loewenstein, &

Cohen, 2004; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1984), decision-making
(Chang & Sanfey, 2008; Dijksterhuis, Bos, Nordgren, & van Baaren, 2006; Kahneman,

2003; Sanfey & Chang, 2008; Sloman, 1996; Wilson & Schooler, 1991), and reasoning
(Epstein, 1994; Evans, 2003; Stanovich & West, 2000). How could something as complex

as the human mind be consistently described in two dimensions, irrespective of the mental

faculty under consideration? Although these theories have provided a bedrock for empirical

investigation, we argue that rather than reflecting a rich characterization of the complexity

of human psychology, they instead reflect a simplistic view of our scientific understanding

(Flatland fallacy)—a product of the limits of our cognition.

In this paper, we outline several reasons why we believe psychologists consistently

converge on two-factor solutions to characterize our understanding of human psychology.

We argue that these conclusions arise from our limited cognitive capacities, social norms

ubiquitous in the field of psychology, and our reliance on low-bandwidth channels to

communicate research findings (e.g., natural language and simple visualizations). We sug-

gest that moving beyond low-dimensional thinking requires formalizing psychological

theories as quantitative computational models capable of making precise predictions

about cognition and/or behavior, and we advocate for improving training in technical

skills and quantitative reasoning in psychology.

2. Why does the Flatland fallacy happen?

Understanding why the Flatland fallacy occurs requires examining both biases and limita-

tions in human cognition as well as cultural norms in research and training in psychology.

Specifically, we propose four main reasons why this fallacy occurs: (a) biases in the feeling
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of understanding; (b) limitations of human cognition; (c) over-reliance on traditional experi-

mental design and analytic approaches; and (d) limitations in our ability to communicate

complex concepts. Because psychology researchers have the unique privilege of being mem-

bers of both the matter of study and those conducting the study, it is critical that the products

of our science not be constrained by the limits of our own psychology (Meehl, 1954).

2.1. Feelings of understanding

Much like Abbott’s A. Square feels that a two-dimensional existence is a complete

account of his universe, humans are prone to a “folk understanding bias”—the sensation

that simplistic explanations lead us to believe we truly understand more complex phe-

nomena. Prior work in cognitive science and philosophy has illustrated how individuals

can fall victim to cognitive biases that lead them to believe their actual understanding of

phenomena exceeds their true understanding of phenomena. For example, individuals

often report a high feeling-of-knowing despite their inability to accurately recall previ-

ously learned information (Koriat, 1993). When individuals are tested on their ability to

explain how a system works (e.g., a quartz watch), they tend to report an overestimate of

their knowledge until they are asked to provide a specific explication (Rozenblit & Keil,

2002). In other words, individuals create mental placeholders of elaborate, in-depth expla-

nations (e.g., essences and hidden mechanisms) that give rise to a feeling of certainty and

understanding, even when limited understanding exists (Medin, 1989; Strevens, 2000).

Because these approximations can provide basic explanations as to how a system works,

they are initially insightful, leaving people with the sensation that they know more than

they really do (Rozenblit & Keil, 2002).

A critical observation is that this bias is exacerbated when individuals are asked to

explain systems that are highly opaque, that is, have poor observability of their inner

workings (Rozenblit & Keil, 2002). Unfortunately, the complexity of psychological

science lies almost entirely in its lack of transparency; mental processes are not directly

observable, only inferrable through observations of behavior and their correlations with

biological functioning.

This bias likely originates from our strong motivation to understand and find meaning in

our experiences and the world as a whole (Cohen, Stotland, & Wolfe, 1955). For this rea-

son, it makes sense to favor simplistic and easily understandable theoretical conclusions

over complex and complete accounts of phenomena, even if they are only weakly supported

by experimental data. Simple explanations provide some uncertainty resolution even if they

paint an incomplete picture (Pinker, 1999; Webster & Kruglanski, 1994). Consequently,

researchers may be collectively at risk for pursuing a psychological science that they can

“understand,” irrespective of whether that science offers robust predictive accuracy.

2.2. Limitations of cognitive capacity

Limitations in the cognitive capacities and motivations of individuals offer another

explanation for the Flatland fallacy. It is well established, for example, that humans are
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not supercomputers who always calculate mathematically optimal solutions for the prob-

lems they face (Gigerenzer & Goldstein, 1996). Rather, our brains are the product of

specific evolutionary constraints such as physical size—they need to be small enough to

permit live births and allow us to locomote; speed—they need to support processing that

can occur on finite time scales; and energy—their energy demands cannot exceed our

metabolic abilities (Montague, 2007). For this reason, the notion of bounded rationality

has been instrumental in characterizing how the mind processes information quickly and

reasonably accurately (Simon, 1957). There are many well-known examples, such as our

limited capacity to simultaneously manipulate large chunks of information (Miller, 1956),

process multiple attentional tasks (Pashler, 1994), and uniquely represent person-identity

information without relying on feature similarity such as stereotypes (Mervis & Rosch,

1981; Smith & Zarate, 1992).

We believe that the key psychological limitation underlying the Flatland fallacy is our

inability to reason in more than a few dimensions, particularly in contexts that require

integrating multiple sources of information together. Individuals tend to default to sim-

pler, general, heuristic-like strategies that serve to make such reasoning more cognitively

tractable. These strategies often constitute lower-dimensional approximations (e.g., two or

three) of far more complex information landscapes, which raises the possibility that even

the process of conducting scientific research can be similarly marred by the limits of our

cognition. We outline three examples of how lower dimensional approximations impact

how we make judgments and decisions.

2.2.1. Judgment
Many real-world settings involve situations in which individuals are faced with the

task of making judgments by combining a large number of potentially relevant factors

(e.g., clinical evaluations). A large body of work has consistently demonstrated that

humans make judgments using just a handful of dimensions (Brunswick, 1952) rather

than considering all the available information on hand. In particular, individuals over

weight or under weight the relative importance of specific factors or simply ignore seem-

ingly irrelevant information in favor of simplified evaluation criteria, such as when esti-

mating school admissions, personality metrics, and even criminal evaluations (Dudycha &

Naylor, 1966; Karelaia & Hogarth, 2008; Meehl, 1954). In other words, individuals rely

on heuristics to simplify the space of information under consideration, especially when

this space is very large or shares a nonlinear relationship with an outcome (Deane, Ham-

mond, & Summers, 1972; Karelaia & Hogarth, 2008). Given the robustness of this evi-

dence, there has been a strong call to incorporate statistical models that can integrate

more dimensions in place of solely relying on clinical judgment to overcome these cogni-

tive limitations (Dawes, 1971; Dawes, Faust, & Meehl, 1989; Meehl, 1954).

2.2.2. Decision-making
Dual-process theories have a rich history of characterizing human decision-making

(Sanfey & Chang, 2008). These accounts have been used to explain how we can switch

between fast, intuitive, and reflexive modes of thinking to slow deliberative calculations
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(Kahneman, 2003, 2011) and also how emotions and cognitive deliberation might be inte-

grated when making decisions (Chang & Sanfey, 2008; Chang, Smith, Dufwenberg, &

Sanfey, 2011; Greene, Nystrom, Engell, Darley, & Cohen, 2004). In addition, there

appears to be an upper limit on the number of attributes that can be simultaneously con-

sidered when making a decision between different choices (Ashby, Alfonso-Reese, Tur-

ken, & Waldron, 1998; Payne, 1976). Faced with a large number of factors to consider,

individuals appear to act in an adaptive manner, falling back on heuristic shortcuts rather

than considering all of the available information on hand (Payne, Bettman, & Johnson,

1993; Simon, 1987). In other words, humans tend to make high-dimensional problems

more cognitively tractable by considering lower dimensional perspectives—specifically,

through the use of heuristic strategies that entail ignoring potentially relevant factors

(Gigerenzer & Brighton, 2009).

2.2.3. Conditional reasoning
Even in more socially interactive contexts that require individuals to consider the moti-

vations of others, individuals exhibit consistent limits on their cognitive abilities. A large

body of work in game theory and behavioral economics has demonstrated that individuals

are limited in their depth of strategic reasoning (Camerer, Ho, & Chong, 2015). In this

work, individuals compete or coordinate with each other within an economic game. Play-

ers’ strategies in these games allow for optimizing their own payoffs while also consider-

ing the strategy utilized by other players. Interestingly, individuals are rarely able to

reason more than two steps ahead of other individuals, (i.e., more than two levels of such

conditional reasoning: “I think that you think that I think”) (Camerer, Ho, & Chong,

2004; Griessinger & Coricelli, 2015; Stahl & Wilson, 1995). Even in non-strategic con-

texts, individuals have been shown to exhibit limits on the amount of recursive reasoning

they are capable of, such as during theory-of-mind tasks that require inferring the motives

of fictionalized agents (e.g., Happ�e, 1994) or, more generally, parsing language comprised

of numerous embedded clauses (Karlsson, 2010). Across a large number of spoken lan-

guages, for example, this type of syntactic recursion (e.g., “a car the man the woman the

boy saw drove fast”) rarely exceeds two levels of depth and even in written text rarely

exceeds three levels of depth (Karlsson, 2007). Because understanding conditional com-

plexity quickly becomes incredibly difficult, individuals fall back on using simple heuris-

tic strategies and generalized decisions rules in lieu of making more optimally rational

choices (Camerer, Johnson, Rymon, & Sen, 1993; Costa-Gomes, Crawford, & Broseta,

2001).

Taken together, these findings suggest that in the face of complex information process-

ing, individuals intuitively converge on strategies that reduce the number of factors (di-

mensions) under consideration to make cognitive problems more tractable. Because the

dimensionality of factors necessary for understanding human psychology is incredibly

high, psychological researchers may be focusing on far fewer dimensions than what actu-

ally comprise the mind. That is, scientists may intuitively converge on establishing low-

dimensional theories (e.g., dual process models) because they allow for a reduction of the
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diverse set of factors relevant to building a comprehensive account of psychological pro-

cessing.

2.3. Cultural norms

Together with individual biases and cognitive limitations, we believe that methodologi-

cal traditions within the field of psychology have built a pedagogy that supports the Flat-

land fallacy. Heavily inspired by Ronald Fisher’s iconic Statistic Methods for Research

Workers (Fisher, 1925) and deeply embedded in undergraduate training in psychology,

there is a strong persistent cultural tradition of academic psychology’s reliance on a

specific type of experimental design and statistical analysis to test hypotheses: two-dimen-

sional factorial designs (i.e., two-way analysis of variance; ANOVA) evaluated via null

hypothesis significance testing (NHST).

Although psychology does not have a generally agreed–upon core curriculum, at mini-

mum almost all psychology undergraduate programs require that students take an intro-

ductory psychology course and one or more courses in statistics or research methods

(Stoloff et al., 2009). Introductory statistics courses typically introduce basic concepts of

inferential statistics, culminating in an introduction to two-way ANOVA. Research methods

courses primarily emphasize making causal inferences using 2 9 2 factorial designs. In

addition, approximately 40% of psychology programs require taking five courses in speci-

fic topics of psychology (e.g., abnormal, developmental, cognitive, social, biological) and

a capstone course that results in a culminating experience for the psychology major (Stol-

off et al., 2009). This limited training in statistical theory and psychological measurement

persists into graduate training. A survey conducted in 1990 of psychology doctoral pro-

grams found that statistical training in most programs was highly similar to what it had

been 20 years prior with 73% of programs providing in-depth understanding of “old stan-

dards of statistics” predominantly ANOVA, but only 21% provided more advanced train-

ing such as multivariate procedures (Aiken et al., 1990). A follow-up study 20 years later

reached nearly identical conclusions with 80% of training still devoted to ANOVA and a

continual general decline in measurement training (Aiken, West, & Millsap, 2008). In

particular, Aiken et al., (2008) note the decline in coverage of measurement techniques

(median 4.5 weeks of total PhD curriculum) with many programs offering absolutely no

training in test theory or construction.

We believe this pedagogy not only trains generations of psychological scientists to pur-

sue empirical investigations that favor simple factorial designs, but also teaches them to

think about psychological science in a low-dimensional way. Consequently, the standard

approach for inferential reasoning in psychology produces theoretical ideas that are lim-

ited to measuring mean differences between variables manipulated along a handful of

psychological dimensions, thereby perpetuating the Flatland fallacy.

Although this approach provides an accessible starting point for the evaluation of psy-

chological phenomena, significance testing of experimental manipulations alone does not

constitute a formal model of human psychology and cannot be used as evidence for such

(Bolles, 1962). The pervasive danger of relying on this approach when testing
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psychological theory is that it reinforces the generation of weaker, less specific, and more

nebulous theories, particularly in a growing era of “big data” (Meehl, 1990; Van Horn &

Toga, 2014). This methodological paradox was elegantly articulated more than 50 years

ago by Paul Meehl (Meehl, 1967). Whereas increasing experimental power constitutes a

more difficult test that a quantitative theory must pass to remain viable (e.g., a mathemati-

cal model in physics), the exact opposite is true of psychological research, which is pri-

marily concerned with utilizing NHST to detect arbitrary non-zero differences between

experimental conditions. Because measurement error decreases with increasing power and

precision, smaller non-zero differences will be necessarily more detectable in the limit of

NHST. This leads psychological researchers to conclude that a statistically significant

result of a trivially small difference provides support for a given theory. By instead devel-

oping theories as the “prediction of a form of function (with parameters to be fitted)” or

“prediction of a quantitative magnitude (point-value),” the band of tolerance around theo-

retical validity decreases as experimental fidelity increases (Meehl, 1967). In other words,

using NHST to evaluate theories formalized as models that make specific quantitative

predictions ensures that theories must be specific in order to remain robust.

A classic example of the benefit of such an approach in psychology can be found in

prospect theory (Kahneman & Tversky, 1979). Prospect theory outlines the form of a

function that describes how the quantitative gain or loss that an individual incurs is math-

ematically transformed into the subjective value he or she feels (Fig. 2a). Critically, this

theory defines a weighting function (Fig. 2b) for outcomes that cannot only be used to

predict individuals’ decisions, but also captures the asymmetry that occurs between

changes in income framed as gains or losses. This model differs drastically from conven-

tional approaches discussed previously in that it can be used to make point predictions

about individuals’ behavior and attitudes in a wide variety of decision contexts (Tversky

& Kahneman, 1974).

2.4. Communicating complexity

Lastly, we consider how a pervasive communication problem endemic to the field of

psychology as a whole gives rise to the Flatland fallacy. Central to this issue is that col-

lectively, psychological researchers lack a lingua franca that enables us to communicate

about the complexities of our field. While numerous succinct psychological constructs

exist to describe complicated ideas (e.g., “stereotype threat” (Steele & Aronson, 1995),

“affective forecasting” (Gilbert & Wilson, 2000), this terminology is fundamentally ad

hoc, making it challenging to develop a shared and extensible framework for the commu-

nication and development of new ideas. In contrast to social science fields that rely on

verbal descriptions of phenomena (e.g., psychology) (Watts, 2017), scientific disciplines

that have methods of communicating about high-dimensional problems using mathematics

(e.g., physics, computer science, economics), concrete physical models (e.g., biology,

astronomy), or their own notation (e.g., chemistry) may be less susceptible to the Flatland

fallacy. We argue that in the absence of a foundational dialect, psychology has suffered

from an inability to communicate complexity, instead generating theories which make
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crude and imprecise predictions that may be difficult to falsify (Meehl, 1990). As a result,

psychological discourse is more like a pidgin language than a lingua franca: simplified

mixtures and non-specific generalizations that make it challenging to build a cumulative

science.

This communication problem is particularly exacerbated by the limited number of

dimensions available to psychologists to visualize their findings. In theory, data visualiza-

tions provide a useful tool for detecting patterns and interpreting research findings. Sev-

eral recent technical and software advances in this area can provide aid in overcoming

this limitation by learning “low-dimensional embeddings” of high-dimensional data that

attempt to preserve distance (Zhang, Huang, & Wang, 2010), such as t-SNE (t-distributed

stochastic neighbor embedding) (van der Maaten & Hinton, 2008) and UMAP (uniform

manifold approximation and projection) (McInnes & Healy, 2018). Both of these algo-

rithms are implemented in easy-to-use open source software packages such as hypertools

(Heusser, Ziman, Owen, & Manning, 2018) However, even with such advanced tech-

niques, graphical representations of research findings are typically limited to about three

dimensions.1 This is particularly problematic in the absence of a formal framework to

build a cumulative science (e.g., mathematics), as psychologists are only able to interpret

experiments that independently manipulate a few dimensions (e.g., a three-way ANOVA).

This creates a tension between theoretical interpretability and theoretical extensibility.

Because psychological science lacks a formal discourse, researchers are motivated to

design experiments around low-dimensional theory testing and simple visualizations, but

because experiments designed to test low-dimensional theories are not by themselves

GainsLosses

Value

Probability
W

ei
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ht

(a) Prospect Theory Value Function
Prospect Theory

Weighting Function(b)

Fig. 2. (a) Prospect theory describes a mathematical function that maps between financial gains and losses

and the subjective value that individuals experience. This function can be used to predict how an individual

will make decisions and explains their tendency to exhibit risk-seeking or risk-averse behavior. (b) A central

part of this theory is a functional account of how individuals treat probability values when making decisions,

illustrating how small probability events receive more consideration than large probability events when mak-

ing choices.
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extensible, psychological science exists as a patchwork of disparate, loosely connected

ideas. Even recent advances in “theory mapping” (Gray, 2017), which provide organiza-

tional instructions as to how to connect psychological theories to each other, are under-

specified and underconstrained (Newell, 1973) because they fail to provide

comprehensive parameterized models of psychology that can be used to make useful

quantitative predictions (Yarkoni & Westfall, 2017) about behavior or cognition.

3. What are some solutions?

We believe that overcoming the Flatland fallacy requires advances in the methodologi-

cal approach that psychological scientists take toward their own work and also pedagogi-

cal changes that train future generations of researchers to build upon and extend extant

work. First, we highlight the role that computational models can play in enabling

researchers to overcome the biases and limitations in their own cognition, as well as

enabling multiple researchers to work together to build a more cumulative science. Sec-

ond, we outline some suggestions for the improvement of psychological training, stress-
ing the importance of teaching students the fundamentals of mathematics and computer

programming. We believe that both of these approaches are required to mature the field

of psychological science.

3.1. Computational models

Formalizing psychological theories using computational models provides a way to

overcome the Flatland fallacy through the consideration of high dimensional explanations
of psychological phenomena. Indeed, recent methodological advances in neuroscience

have demonstrated how information in the brain is encoded with incredibly high dimen-

sionality with respect to both space and time (Haxby, Connolly, & Guntupalli, 2014). We

believe the use of computational models will likewise better enable researchers to capture

this complexity within psychological theories. Most psychological researchers are already

familiar with regression as an instance of a statistical model, specifically a linear one that

combines features according to a set of weights, in order to predict the value of a depen-

dent variable. We encourage researchers to think of models in more general terms: a gen-

eral mathematical function that transforms inputs into specific outputs.2 In this way,

models can be likened to cooking recipes that describe how to best combine ingredients

into prepared foods (Crockett, 2016). We believe this analogy can help elucidate how

models can play a critical role in overcoming the Flatland fallacy.

Imagine eating a piece of cake: observing the colors and designs that draw your eye,

tasting the different flavors and textures as you take a bite, and experiencing the way

numerous ingredients come together to create a delightful sensory experience. What

ingredients determine the colors you see and the flavors you taste? Was that a hint of

vanilla? Does the frosting contain cardamom? You might attempt to recreate this sensory

experience in your own kitchen, combining numerous ingredients in different proportions,
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transforming those ingredients through baking at different temperatures, until you can

reliably reproduce a tasty baked good. Through a painstaking trial-and-error process you

might converge on a recipe for how to combine and transform a set of raw ingredients

into a finished product. In much the same way that recipes serve as a set of instructions

for combining specific ingredients together that produce a cake, models provide mathe-

matical formulations for combining different input features together that produce an out-

come. These features can span a space that comprises only a few dimensions just as it

takes only takes a handful of ingredients to make a pound cake. They can also, however,

be incredibly enumerate and involve complex nonlinear interactions, just as a dobos torte

requires intricately interleaving many layers of a thin sponge cake with buttercream.

Indeed, with recent advances in deep learning, some models can comprise millions of dis-

tinct features organized into hidden layers that learn many different ways to filter and

transform input data (e.g., Huang, Sun, Liu, Sedra, & Weinberger, 2016). Yet despite this

wide range of complexity, researchers need not manipulate so many inputs at once single-

handedly. Instead, they can rely on a model which serves as powerful and reliable assis-

tive tool.

At their core, recipes are comprised of ingredients, proportions of ingredients, and

instructions for how to combine ingredients to produce a finished product. Like recipes,

models are comprised of features that are scaled by weights and combined in a specific

formula to produce a prediction (Table 1). Central to our argument is that models serve

as tools to both reason and communicate about high–dimensional spaces. Models allow

researchers to consider what dimensions of a problem are most relevant and predict out-

comes based on complex sets of interactions. Models also allow researchers to build intu-

itions about their components through simulation and application to novel datasets

(Yarkoni & Westfall, 2017), akin to children taking devices apart to figure out how they

work. Moreover, models can be shared between researchers, permitting the collective

development of a cumulative science whereby weak or redundant theories are pruned and

robust, predictive theories are retained.

A key property of formalizing psychological theories as computational models is that

it enables researchers to share their ideas in extensible ways. In contrast, the significance

result of an ANOVA is fundamentally useless to other researchers trying to extend prior the-

oretical work (Schmidt, 1996): p-values and effect sizes speak to the likelihood of the

data under a null-hypothesis but are unable to provide precise predictions (point-esti-

mates) about new data in new contexts (Meehl, 1967) or evaluate the predictive capabili-

ties of competing ideas (i.e., model selection/comparison). At best, researchers will only

be able to devise novel experiments to test contextual moderators on the coarse treatment

effects that a theory predicts (Van Bavel, Mende-Siedlecki, Brady, & Reinero, 2016). On

the other hand, models are simply recipes for combining inputs to generate predictions,

and they can therefore be easily applied to novel contexts using new data. For example,

we have developed models of how emotions (Chang & Smith, 2015; Chang et al., 2011),

social norms (Chang & Sanfey, 2013; Sanfey, Stallen, & Chang, 2014), and inferences

about others (Chang, Doll, van’t Wout, Frank, & Sanfey, 2010; Fareri, Chang, & Del-

gado, 2015; Sul, G€uro�glu, Crone, & Chang, 2017) can predict decisions to cooperate. In
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addition, we and others have developed models for how activity in different brain regions

might be combined to produce an affective response (Chang, Gianaros, Manuck, Krish-

nan, & Wager, 2015; Eisenbarth, Chang, & Wager, 2016; Krishnan et al., 2016; Wager

et al., 2013). Perhaps one of the best examples of how models can lead to a cumulative

and extensible study of cognition can be found in neurally inspired connectionist models.

This work strives to synthesize neuroscience findings into high-dimensional models of

how the brain implements specific cognitive functions such as learning (O’Reilly &

Frank, 2006; O’Reilly, Frank, Hazy, & Watz, 2007), memory (Norman & O’Reilly,

2003), and decision-making (Frank & Claus, 2006). These models have been integrated

into a programming framework (e.g., Leabra) that provides a holistic architecture capable

of making precise predictions of a wide array of cognitive processes (O’Reilly, Hazy, &

Herd, 2016). The advantage of these types of quantitative models is that they permit pre-

cise evaluation of how sensitive a model is for capturing a psychological construct, as

well as how specific a model is to a given construct as compared to other psychological

states and processes. Further, these models are shareable and extensible by other research-

ers, allowing them to directly build upon previous work to test how a given model, such

as a marker of negative affect, responds in a new experimental condition and generalizes

to a novel context (e.g., Gilead et al., 2016; Krishnan et al., 2016). This process of itera-

tive construct validation through model sharing and testing on many types of data is criti-

cal for developing a cumulative science of what comprises psychological states and how

they are encoded and represented in the brain (Woo, Chang, Lindquist, & Wager, 2017).

3.2. Improved quantitative training

Although computational modeling offers an approach for uncovering psychological

phenomena in higher dimensions, it requires a dramatic reform in the way the discipline

of psychology carries out quantitative training. Instead of providing a limited introduction

to inference using statistics and research design and separately prioritizing the memoriza-

tion of psychological effects in different domains of psychology, we believe there should

be increased emphasis on teaching technical skills and a better education of data-driven

inferential reasoning within all psychology courses. Moreover, psychology’s curriculum

could be expanded to adapt to the recent technological advances that have resulted in the

Table 1

Relationship between models and recipes

Recipe Model Purpose

Ingredients Inputs/features Characterize the possible building blocks (dimension) necessary to

create an output

Proportions Weights/parameters Characterize the relative importance of each input

Instructions Formula/model

specification

A describe a set of mathematical rules for ways in which inputs should

be combined

Product Prediction The output consequent of combining inputs according to a set of rules

with a set of fixed levels of importance
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exponential growth in the collection of data via the Internet, online commerce, mobile

sensing, and so on (Griffiths, 2015; Lazer et al., 2009; Yarkoni, 2012). Beyond the nar-

row domain of academic psychology, there already exists intense demand for skilled

workers who can gain insights about human behavior from data in almost every industry,

including government, journalism, business, and healthcare. We believe that with

improved training, psychologists could become increasingly involved in these efforts, ulti-

mately providing an opportunity to inform an array of diverse and important industries

and issues.

To do so will require reimagining training in psychology. Working with large, compli-

cated datasets requires basic training in areas traditionally associated with computer

science and informatics, including programming, algorithms, databases, and computing.

This requires extending basic education of statistical training to include skills such as data

manipulation, generating predictive models, machine-learning, natural language process-

ing, graph theory, and visualization (Montag, Duke, & Markowetz, 2016; Yarkoni, 2012;

Yarkoni & Westfall, 2017). These types of competencies comprise an emerging growth

of applied statistics or “data science” programs (Anderson, Bowring, McCauley, Pother-

ing, & Starr, 2014). We believe that increased emphasis on training basic technical and

quantitative skills will improve the ability of psychology majors to participate in the enor-

mous endeavor of understanding human behavior from data. However, we are certainly

not advocating that psychology majors should additionally pursue an accompanying

degree in statistics or computer science. Instead, we recommend that training programs in

psychology consider adding additional requirements to curricula (e.g., programming and

computing for psychologists & advanced statistics), providing better integration of data-

driven inferential reasoning skills into existing curricula (e.g., requiring data analysis pro-

jects), and offering more courses on advanced research methods (e.g., natural language

processing, mobile sensing, and/or social network analysis). One practical recommenda-

tion akin to training in other STEM disciplines (e.g., biology, chemistry, physics) would

be to add accompanying laboratories to the core psychology topic classes and provide

hands on training for making inferences using these types of methods. We believe that

this is an exciting opportunity to advance our field to new dimensions.

3.3. Toward computational thinking

We hesitate to leave interested readers with the intuition that improved quantitative

skills and the application of computational modeling are simply additional “tools” that

researchers should strive to acquire in service of conducting high–dimensional psycholog-

ical research. Rather, through the act of engaging in computational thinking, psychologi-
cal researchers themselves can fundamentally change the way they approach

psychological problems (Anderson, 2016; Newell, 1973).

For example, in addition to the psychological explanations enumerated above, there is

also a statistical explanation for the Flatland fallacy. It is well established in the field of

machine learning that making predictions entails a trade-off between minimizing bias and

variance (Hastie, Tibshirani, & Friedman, 2009). Specifically, errors in predictions can be
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decomposed into three separate components: (a) irreducible error is the level of noise

intrinsic to the problem, (b) bias error describes errors between the true data-generating

model and the learned model averaged across many data samples, characterizing the

degree to which a learned model “underfits” a data sample, and (c) variance error reflects
the learned model’s sensitivity to the idiosyncrasies present within individual data sam-

ples, characterizing the degree to which a learned model “overfits” a data sample

(Geman, Bienenstock, & Doursat, 1992). It has been demonstrated that in the context of

small sample sizes and high-dimensional signals, lower dimensional models associated

with greater bias error can counterintuitively make more accurate out-of-sample predic-

tions than the true high-dimensional model of an underlying signal (Friedman, 1997).

This means that there can be a computational benefit to prioritizing parsimony and bias

(Gigerenzer & Brighton, 2009) when predicting complex psychological phenomenon from

small datasets. It also offers an additional explanation for why so many researchers have

converged on low-dimensional accounts of psychological phenomena: Lower dimensional

theories better explain small or inadequately sampled datasets. We provide a simulation

illustrating this point by demonstrating that a principal components analysis of high-

dimensional data is biased to find a low dimensional solution when undersampled
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Fig. 3. This simulation illustrates how small sample sizes are biased to favor low-dimensional explanations

even if the true underlying dimensionality of the data is high. We first generate a multivariate gaussian cloud

using 10,000 observations comprised of 20 orthogonal dimensions and repeatedly draw random samples of

increasing size from this space (100 repetitions per sample size). We then attempt to recover the dimensional-

ity of the simulated data using principal components analysis and plot the distribution of variance explained

across the computed components. When small samples are collected from a high–dimensional space, the

majority of variance explained comes from the first few (2–3) components, which may lead researchers to

mistakenly believe that the population itself is low dimensional. However, when larger data samples are col-

lected, the amount of variance recovered across the dimensions becomes more uniform and in line with the

data-generating process, which would lead to the correct conclusion that the sampled data and therefore the

population from which they came are high dimensional.
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(Fig. 3). While psychologists might be naturally inclined to further simplify their experi-

mental manipulations and increase their sample size to improve power, computational

thinking predicts adopting an alternative strategy. Rather than reducing high bias error

via collecting larger sample sizes alone, computational thinking highlights the importance

of measuring psychological phenomena with greater sampling diversity. For example, nat-

uralistic experiments, comprised of free-viewing/listening to dynamic movies and uncon-

strained social interactions, elicit a greater range of psychological experiences (e.g., Chen

et al., 2017; Haxby et al., 2011; Huth et al., 2016; Zadbood, Chen, Leong, Norman, &

Hasson, 2017). By measuring and eliciting psychological phenomena in numerous ways,

researchers can more richly sample high–dimensional effects of interest. It is with this

data diversity that high-dimensional models can outperform biased lower dimensional

alternatives. To this end, to combat the Flatland fallacy, we believe that psychological

scientists should additionally strive for large sample sizes as well as large data diversity,
richly sampling from a larger spectrum of human experience.

4. Summary

In this paper, we have outlined how subjective biases, limitations of human cognition,

social and cultural norms surrounding experimental design, analysis and pedagogy, and

communicative shortcomings in discussing complex ideas can lead psychological

researchers to consistently converge on low-dimensional explanations of human psychol-

ogy. To avoid committing this “Flatland fallacy,” we have proposed a reimagining of the

field of psychology, which emphasizes a culture of developing, testing, and sharing com-

putational models, accompanied by improved quantitative and technical training. Like

cooking recipes, models provide a formal framework for taking inputs and transforming

them into products (predictions). More specifically, models offer researchers a tool to

assist reasoning in higher dimensional ways, approaching psychological science as an

explanatory and predictive discipline (Yarkoni & Westfall, 2017), and most important,

facilitating the development of a cumulative science rather than one characterized by a

patchwork of disparate low-dimensional theories (i.e., “you can’t play 20 questions with

nature and win” [Newell, 1973]).

We note that this is not a trivial proposal. Redesigning the entire curriculum for under-

graduate and graduate training in psychology will take many years. The adoption of a

computational framework will inevitably generate a host of additional complications and

difficulties. For example, increasingly complex computational methods will necessarily

increase the difficulty in communicating research findings. However, our methods of

inquiry as scientists should not be determined by the ease with which we can communi-

cate our work. Rather, our methods of inquiry should strive to directly tackle the

immense complexity of our discipline while making it easier to collaborate, share, and

develop our cumulative understanding. We believe these initial obfuscations provide a net

benefit to both the general public and other scientists: They remind us that understanding

how the human mind works is an incredibly challenging endeavor easily rivaling the
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difficulty of problems studied for decades in disciplines such as physics, astronomy,

chemistry, biology, and computer science and should be accordingly approached with

commensurate awe, rigor, and humility.
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Notes

1. With the clever manipulation of visual properties (e.g., color, texture, animation), it

may be possible to graphically represent multiple interacting factors, but as the

number of factors increases, difficulties in interpretation increase dramatically.

2. This definition captures a variety of statistical and machine learning approaches,

including linear and nonlinear supervised, unsupervised, and reinforcement learning

models.
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