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1 |  INTRODUCTION

Recent data demonstrate that the excitability changes of 
spinal motoneurons (MNs) in amyotrophic lateral sclero-
sis (ALS, a prominent neurodegenerative disease of MNs) 
depend on the physiological type of motor unit and evolve 
with disease progression. Most interestingly, interventions 
with pharmacological or chemogenetic tools that aim at 
correcting the firing of the most vulnerable MNs prove to 

have some beneficial impact on the disease. After reviewing 
these data, we focus on trans-spinal direct current stimula-
tion (tsDCS) as a potential alternative therapeutic method 
in ALS. Indeed, electrical polarization by direct current is 
well-known to modify spinal networks. We review recent 
work suggesting that tsDCS could be used to compensate 
for the changes in intrinsic excitability of MNs, or synaptic 
excitation, and hopefully to deliver some neuroprotection 
in ALS.
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Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely 
unknown pathophysiology, characterized by the progressive loss of motoneurons 
(MNs). We review data showing that in presymptomatic ALS mice, MNs display 
reduced intrinsic excitability and impaired level of excitatory inputs. The loss of re-
petitive firing specifically affects the large MNs innervating fast contracting muscle 
fibers, which are the most vulnerable MNs in ALS. Interventions that aimed at restor-
ing either the intrinsic excitability or the synaptic excitation result in a decrease of 
disease markers in MNs and delayed neuromuscular junction denervation. We then 
focus on trans-spinal direct current stimulation (tsDCS), a noninvasive tool, since 
it modulates the activity of spinal neurons and networks. Effects of tsDCS depend 
on the polarity of applied current. Recent work shows that anodal tsDCS induces 
long-lasting enhancement of MN excitability and synaptic excitation of spinal MNs. 
Moreover, we show preliminary results indicating that anodal tsDCS enhances the ex-
citatory synaptic inputs to MNs in ALS mice. In conclusion, we suggest that chronic 
application of anodal tsDCS might be useful as a complementary method in the man-
agement of ALS patients.
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1.1 | Changes of electrical properties of MNs 
in ALS

In ALS, some motor pools are more vulnerable than others 
(Kanning et al., 2010), but even within a given motor pool, the 
order of MN degeneration depends on MN type: fast contract-
ing—fatigable (FF) motor units degenerate first, followed 
by fast contracting—fatigue-resistant units (FR), whereas 
slow contracting motor units (S) are resistant to degeneration 
(Hegedus et al., 2008; Pun et al., 2006). Despite more than 
20 years of intense research, the pathophysiological mecha-
nisms that lead to MN degeneration in ALS are still largely 
unknown. Among many others, the glutamate excitotoxic 
hypothesis has been proposed (Ilieva et al., 2009; Van Den 
Bosch et al., 2006), which relies on the assumption that exces-
sive excitatory glutamatergic input may lead to an overload 
of cytosolic calcium, through calcium permeable-α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and  
N-methyl-D-aspartatic acid (NMDA) channels and voltage-
dependent calcium channels activated by action potentials, 
which, in turn, triggers apoptosis.

One argument that supports the glutamate excitotoxic hy-
pothesis is the fact that Riluzole (which was for a long time 
the only FDA-approved treatment for ALS) prolongs sur-
vival in patients with ALS, albeit modestly (a few months, 
Bensimon et al., 1994; Miller et al., 2003). Indeed, Riluzole 
has multiple actions, among those a decrease of glutamater-
gic transmission and intrinsic excitability—notably by block-
ing the persistent inward sodium current (Bellingham, 2013; 
Kuo et al., 2006; Lamanauskas & Nistri, 2008). However, 
it was recently shown that the survival benefit of Riluzole 
is achieved by extending the fourth stage of the disease, in 
which the motor functions are largely impaired and which 
immediately precedes death (Fang et al., 2018). Moreover, 
all other pharmacological interventions targeting the reduc-
tion of glutamate release or excitability have never worked 
in humans (Wobst et al., 2020). In particular, phase III clin-
ical trials with Talampanel, an AMPA receptor antagonist, 
Memantine, an NMDA receptor antagonist, or Mexiletine, 
a sodium channel blocker, have not been conclusive (De 
Carvalho et al., 2010; Pascuzzi et al., 2010; Weiss et al., 
2016). These results challenge the glutamatergic excitotox-
icity hypothesis. However, intraspinal infusion of large doses 
of AMPA can induce excitotoxic MN degeneration in vivo, 
even in wild type animals (Netzahualcoyotzi & Tapia, 2015) 
but there is no evidence that such an intervention reproduces 
the action of synaptic glutamate release in ALS. Indeed, in 
ALS mouse models, AMPA receptor antagonists (Akamatsu 
et al., 2016; Van Damme et al., 2003) and NMDA receptor 
antagonists (Joo et al., 2007), delivered from symptom onset 
until death, elicit modest improvement of motor function and 
the survival time. This may not be so surprising, since the 
most vulnerable MNs have already degenerated at symptoms 

onset (Hegedus et al., 2008; Pun et al., 2006). Saxena et al. 
(2013) started the administration of the drugs as early as P20 
in the SOD1 G93A mice and under these conditions, AMPA 
(a) ameliorated cellular markers of the disease in MNs (less 
misfolded SOD1 proteins, reduced unfolded protein response 
and stress of the endoplasmic reticulum), (b) delayed the de-
nervation of the less vulnerable motor units, (c) improved 
the force of contraction, and (d) extended the survival by 
20–35  days while AMPA antagonists had opposite effects. 
These results are in contrast with previous studies and contra-
dict the glutamate excitotoxicity theory in ALS and suggest 
that the time of drug application, the cumulative dose, and 
the peak CNS concentration may somehow account for these 
conflicting results.

Indeed, in ALS mouse models, time-dependent alterations 
of intrinsic MN excitability that start long before degenera-
tion onset have been shown in both vulnerable and resistant 
MNs. In these studies it was found that MNs are hyperex-
citable at embryonic stages in the SOD1 G93Amice (input 
resistance is increased, rheobase is decreased and slope of 
the frequency–current relationship is increased; Martin 
et al., 2013; Pieri et al., 2003). When MNs were examined 
shortly after birth (P4–P10), contradictory results have 
been reported: in some works MN are hyperexcitable (van 
Zundert et al., 2008), in others they are hypoexcitable (Bories 
et al., 2007), or they do not display any change in excitability 
(Pambo-Pambo et al., 2009) suggesting an efficient excitabil-
ity homeostasis (Quinlan et al., 2011). However none of these 
studies have sorted MNs according to their physiological 
type, which might explain the reported discrepancies. More 
recently, Leroy et al. (2014) classified spinal MNs according 
to their discharge pattern, their anatomy and the expression 
of specific molecular markers within F- and S-types in P6-
P10 mice and found that only S-type MNs (the less vulner-
able ones) are hyperexcitable (lower rheobase) at this age in 
the SOD1G93A mice while F-type MNs (the most vulnerable 
ones) display a normal excitability. A similar conclusion was 
reached by Venugopal et al. (2015) in trigeminal MNs.

However, the excitability pattern evolves during animal 
maturation. In vivo intracellular recordings in anesthetized 
mice allowed investigations in adults just prior to the degen-
eration of neuromuscular junctions of the most vulnerable 
motor units (P50–60 in SOD1G93A mice). In these conditions, 
Delestrée et al. (2014) showed that a fraction of MNs lose 
their ability to fire repetitively in response to a slow ramp of 
current despite being functionally connected to their muscle 
fibers (Figure 1a). This loss of firing is interpreted as a mani-
festation of hypoexcitability. The ability to type-identify motor 
units in vivo allowed Martínez-Silva et al. (2018) to demon-
strate that the loss of repetitive firing in SOD1G93A mice (and 
also in an unrelated ALS model, FUSP525L; Sharma et al., 
2016) occurred among the population of the most vulnera-
ble MNs (innervating FF and largest FR motor units), while 
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the most resistant MNs (smallest FR and S-type motor units) 
display normal excitability (Figure 1c). Importantly, disease 
markers (p-eIF2α and p62 aggregates) confirm that nonrepet-
itively firing MNs are in a more advanced stage of the disease 
than those that can still discharge normally (Martínez-Silva 
et al., 2018). It should be noted that the Meehan group has not 
reported such hypoexcitability either in the SOD1G127X mice 
(Meehan et al., 2010) or in the SOD1G93A mice (Jensen et al., 
2020). This discrepancy may be due to the fact that they used 
older mice, in which the most vulnerable MNs have already 
started to degenerate, than in the previous studies (Delestrée, 
2014; Martínez-Silva et al., 2018), as well as suboptimal dis-
continuous current-clamp switching rate, which may distort 
the firing of those cells (Manuel, 2020).

Remarkably, recordings in induced pluripotent stem cell 
(iPSC)-derived MNs from human patients have consistently 
reported the same time-dependent excitability changes as in 
ALS mice. After an initial hyperexcitability (Devlin et al., 

2015; Wainger et al., 2014) the cells turn into a hypoexcitable 
state as the cells mature (Devlin et al., 2015; Naujock et al., 
2016; Sareen et al., 2013). A recent study found that the loss 
of repetitive discharge in IPSC-derived MNs occurs only in 
presence of mutant astrocytes, indicating that these processes 
involve nonneuronal cell-types (Zhao et al., 2020).

A major criticism that one may raise about in vivo phar-
macological interventions is that such interventions act not 
only on MNs but also on all other neurons, including many 
classes of excitatory and inhibitory interneurons that pro-
vide inputs to MNs. Since MNs receive similar numbers of 
inhibitory and excitatory synapses (Bae et al., 1999), and 
since MNs were reported to be driven by balanced excitatory 
and inhibitory synaptic activity (Berg et al., 2007), the net 
effect of any drug on MN synaptic inputs is unpredictable 
and depends on the individual sensitivity of excitatory and 
inhibitory interneurons to the drug as well as to the synaptic 
composition and balance of each MN subpopulation.

F I G U R E  1  Intrinsic excitability and synaptic excitation are depressed in the SOD1G93A mice. (a) MN that fails to display a repetitive discharge 
in response to a slow triangular ramp of current (A1) but that is still able to elicit a single spike in response to a short transient pulse (A2). The blue 
trace is the injected current, the green trace is the intracellular recording, the gray trace is the EMG recorded in the triceps surae, the red trace is 
the force recorded at the tendon of the triceps surae. (b) MN displaying a repetitive firing in response to a slow triangular ramp (same arrangement 
as in (a). (c) Nonfiring MNs are found among the largest motor units (FF and FR with a twitch force larger than 1.3 mN). MNs indicated by an 
arrow correspond to the two examples in (a) and (b). Adapted from Martinez-Silva et al. (2018). (d) Experimental arrangement for testing the size 
of the maximal Ia Excitatory Post-Synaptic Potentials (EPSP). (e) Typical recordings in a wtSOD1 MN (E1) and a SOD1G93A MN (E2). Lower 
traces are the intracellular recordings. Upper traces are the cord dorsum potentials showing the group I afferent volleys. (f) The maximal Ia EPSPs 
are significantly reduced in the MNs from SOD1G93A mice (whereas resting potentials, input conductances and membrane time constants are 
unchanged). Adapted from Bączyk, Alami et al. (2020)
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Genetic interventions may also have an impact on both ex-
citation and inhibition. For instance, Lalancette-Hebert et al. 
(2016) demonstrated, in an ALS mouse model, that a genetic 
ablation of gamma MNs, which reduced the spindle activa-
tion, increases the mouse survival time. However, while Ia 
proprioceptive spindle afferents excite MNs they also very 
efficiently excite inhibitory interneurons which act on MNs; 
in particular interneurons which mediate the so-called Ia re-
ciprocal inhibition (Baldissera et al. 1981). The net effect on 
MNs (less excitation or less inhibition) of genetic ablation of 
gamma MNs is therefore unclear, and prevents a consistent 
conclusion for the mechanism responsible for the extended 
survival. To investigate the mechanism at work, interventions 

must selectively target alpha MNs, or excitatory or inhibitory 
synapses acting onto them.

In this line, Saxena et al. (2013) performed in vivo chemo-
genetic manipulations, using viral vectors specifically target-
ing lumbar MNs in adult presymptomatic double transgenic 
SOD1G93A/ChAT-cre mice. The virus expressed in MNs, the 
pharmacologically selective actuator module either coupled 
to 5HT3-transmembrane domain for neuronal depolarization 
(to enhance the excitability), or to glycine-receptor transmem-
brane domain for neuronal hyperpolarization (to decrease the 
excitability) (Magnus et al. 2011). Enhancing MN excitability 
reduced the amount of misfolded SOD1 protein, the endo-
plasmic reticulum stress in the FF-type MNs, and delayed the 

F I G U R E  2  Excitatory synapses onto MNs are impaired in the SOD1G93A mice and are restored through activation of the cAMP/PKA signaling 
pathway. (a) Drawing illustrating a normal excitatory synapse in a WT mouse. (b) In the presymptomatic SOD1G93A mice (~ 50 days old), the 
GLUR subunits of the AMPA receptors and the scaffold proteins (Shank1, Homer) are less expressed in the postsynaptic side of excitatory 
synapses. At the same time, the presynaptic element does not seem affected. The postsynaptic disruption is responsible for a significant decrease of 
the EPSP amplitude (Bączyk, Alami et al., 2020). (c) Activation of the cAMP/PKA pathway, either through intracellular iontophoretic ejection of 
Sp-AMP (a cAMP agonist) or through CNO-activation of a DREADD G(s) specifically inserted in MN using an AAV9 vector, partially restores the 
synaptic impairment, entailing a firing increase and a burden decrease of disease markers such as misfSOD1, LC3A and p62 aggregates (Bączyk, 
Alami et al., 2020). The authors would like to thank Prof. Francesco Roselli who has drawn a preliminary draft of this figure and Dr. Marin Manuel 
who has prepared the final version
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denervation of the neuromuscular junctions in the correspond-
ing MUs. Conversely, reducing MN excitability had opposite 
effects (Saxena et al., 2013). This seminal work demonstrated 
a causal link between changes in MN intrinsic excitability 
and vulnerability. Furthermore, recent experiments targeting 
excitatory synapses on MNs of ALS mice (Bączyk, Alami 
et al., 2020) showed that in presymptomatic SOD1G93A mice, 
monosynaptic Excitatory Post-Synaptic Potentials (EPSPs) 
(either from Ia spindle afferents or from descending sys-
tems) are functionally depressed in spinal MN (EPSPs are 
about 30% smaller, Figure 1d–f). This depression is caused 
by a molecular disruption of the postsynaptic cell (reduced 
amount of GluR subunits and scaffolded proteins, Figure 2; 
Bączyk, Alami et al., 2020). Bączyk, Alami et al. (2020) also 
demonstrated that the synaptic impairment can be rescued 
using a viral vector to express a DREADD(Gs) specifically 
into MNs of the double transgenic SOD1G93A/ChAT-cre 
mice. Pharmacologic activation of DREADD(Gs) activated 
the cAMP/PKA signaling pathway eliciting membrane inser-
tion of GluR4 subunits and restoration of excitatory synapses. 
This elicits an improvement of disease markers (misfolded 
SOD1 proteins, LC3A autophagic structures and P62 inclu-
sions) through the enhancement of neuronal firing (Figure 
2c; Bączyk, Alami et al., 2020). This work demonstrated that 
reduced excitation of MN at a presymptomatic stage contrib-
utes to the pathogenesis in ALS. On the contrary, increased 
excitation provides some neuroprotection of MNs.

Altogether, recent experiments, specifically targeting MNs, 
show that restoring MN intrinsic excitability or synaptic exci-
tation has a beneficial impact on the disease pathobiochemis-
try. Gene therapy might then be envisioned to produce such a 

restoration. However, human gene therapy still requires a lot 
of development in order to (a) massively and specifically tar-
get MN, (b) control the cellular and immune responses, and (c) 
avoid side effects such as neoplastic tumors. There is evidently 
a real interest to develop noninvasive methods that could re-
store intrinsic excitability or synaptic excitation of MNs. In this 
framework, we will present new data showing that tsDCS may 
actually induce long-lasting restoration of MN excitability and 
synaptic inputs, with the hope that tsDCS has the potential to 
deliver some neuroprotection in ALS.

1.2 | Translational implications of direct 
current stimulation

The idea that electrical fields can influence the activity of 
spinal networks was introduced quite early. In the classi-
cal experiments it was already clear that the membrane of 
neurons is traversed by ionic currents that are responsible 
not only for action potentials (Hodgkin & Huxley, 1952), 
but also for excitatory and inhibitory postsynaptic poten-
tials (Coombs et al., 1957). Spinal polarization was soon 
shown to modify the effectiveness of synaptic activation 
(Eccles et al., 1962) indicating that direct current stimula-
tion can alter membrane ionic currents. Externally applied 
electrical currents gained further recognition as a neuro-
modulatory technique at the turn of the new century with 
the introduction of trans-cranial direct current stimulation 
(tDCS) (Nitsche & Paulus, 2000). In this technique, direct 
current applied by electrodes located on the scalp modi-
fies the activity of both cortical (Nitsche & Paulus, 2000) 

F I G U R E  3  Schematic diagram of the experimental designs to investigate short-term (a), persistent, long-lasting (b) effects of acute tsDCS, and 
adaptive changes in response to chronic tsDCS application (c) in rat MNs

a

b

c
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and subcortical (Bączyk & Jankowska, 2014; Bolzoni et al., 
2013) regions. Therapeutic benefits of tDCS have recently 
been reported in motor rehabilitation (Bai et al., 2019), pain 
management (Ramger et al., 2019) and even psychiatric 
disorders (Kuo et al., 2017).

tsDCS was introduced by Cogiamanian et al. (2008) to induce 
long-lasting alterations of the conduction velocity in the human 
lemniscal pathway. Excitability alteration of neuronal tracts by 
tsDCS was then shown to reduce nociception (Cogiamanian 
et al., 2011; Truini et al., 2011) or to modify H-reflex (Lamy 
et al., 2012; Winkler et al., 2010). Subsequently tsDCS was 
used for a variety of treatments including to ameliorate idio-
pathic restless leg symptoms (Heide et al., 2014), modulate cor-
tico-spinal excitability (Bocci et al., 2015; Knikou et al., 2015; 

Murray et al., 2018), improve motor unit recruitment (Bocci 
et al., 2014), aid motor rehabilitation (Hubli et al., 2013), reduce 
spasticity (Ardolino et al., 2018; Paget-Blanc et al., 2019), and 
reduce pain (Berra et al., 2019; Choi et al., 2019).

1.3 | Effects of TSDCS on spinal 
neuronal networks

Despite a large number of translational studies, our basic 
knowledge of how tsDCS affects neuronal networks remains 
limited. It is already clear that tsDCS affects not only nerve 
fibers and spinal tract excitability, but it can also modulate 
intraspinal connectivity (Lenoir et al., 2018). Extensive 

T A B L E  1  Summary of relative changes of membrane properties of MNs in response to acute or chronic application of tsDCS in rats

1 2 3 4 5

During 
polarization

15-min postpolarization 
period

30-min postpolarization 
period

60-min postpolarization 
period

5-week chronic 
polarization

Anodal polarization

RMP (mV) ↑ 10% – – – –

RIN (MΩ) – – – – ↑ 27%

Rheo (nA) ↓ 23% ↓ 38% ↓ 31% – –

VT (mV) – ↓ 15% ↓ 13% – ↓ 8%

Cathodal polarization

RMP (mV) ↓ 12% – – – –

RIN (MΩ) – – – – –

Rheo (nA) – ↓ 28% – – –

VT (mV) ↓ 20% – – – –

Columns 1 and 2 indicate short-term effects (see Figure 3a), based on data recorded from single MNs during, and 15 min after tsDCS (0.1 mA) application, compared 
to control recordings before the onset of polarization (averaged across MNs in anodal [N = 10] or cathodal [N = 10] polarization groups, Bączyk et al., 2019); 
columns 3 and 4 present long-lasting effects (see Figure 3b), based on data averaged across separate groups of neurons, recorded during the first 30 min (N = 22 for 
anodal tsDCS, N = 21, for cathodal tsDCS), and between 30 and 60 min (N = 21 for anodal tsDCS, N = 22, for cathodal tsDCS) after the offset of tsDCS (0.1 mA), 
respectively, compared to the prepolarization group (N = 36) from which records were made prior to the onset of tsDCS (Bączyk et al., 2020a); column 5 shows 
chronic effects (see Figure 3c), based on data averaged for MNs recorded after repeated transcutaneous application of anodal (N = 39) or cathodal (N = 43) tsDCS 
(0.5 mA, 15 min daily, for 5 weeks), compared to the sham control group (N = 41; Bączyk et al., 2020b). Statistically significant changes of respective parameters (an 
increase or a decrease) are expressed in percentages in regard to prepolarization or sham control values at p < 0.05. Columns 1 and 2, RM ANOVA with a post hoc 
Tukey's test (for data with normal distribution and equal variance) or the Friedman tests with post hoc analysis of data with paired Kruskal–Wallis or Student's t-test 
(for repeated nonparametric comparisons). Columns 3 and 4, two-way ANOVA with a post hoc Tukey's test. Column 5, one-way ANOVA with a post hoc Tukey's 
test. RMP, resting membrane potential; RIN, input resistance; Rheo, rheobase current; VT, voltage threshold for spike generation

F I G U R E  4  Summary of the changes in the frequency–current (f–I) relationship during rhythmic steady-state firing (SSF) for MNs subjected 
to various polarization protocols. The linear relationship between the discharge frequency and injected current was assessed for each MN on 
the equation y = ax + b, where a determines the slope of the relationship in the primary range. Short-term effects of anodal (a) and cathodal (b) 
polarization as in Figure 3a and Table 1 (columns 1 and 2) (Bączyk et al., 2019). (c) Long-lasting effects of polarization as in Figure 3b and Table 
1 (columns 3 and 4) (Bączyk et al., 2020a). (d) Chronic effects of polarization as in Figure 3c and Table 1 (column 5) (Bączyk et al., 2020b). 
Filled and open circles represent the average values for each group, while horizontal and vertical whiskers represent the SD values. “*” indicates 
significant effect of anodal polarization regarding the minimum and the maximum SSF current, the minimum and the maximum SSF frequency, 
and the f–I slope, at p < 0.05. “#” indicates significant effect of cathodal polarization for respective parameters, at p < 0.05. (a) and (b) RM 
ANOVA with a post hoc Tukey's test (for data with normal distribution and equal variance) or the Friedman tests with post hoc analysis of data 
with paired Kruskal–Wallis or Student's t-test (for repeated nonparametric comparisons). (c) Two-way ANOVA with a post hoc Tukey's test. (d) 
One-way ANOVA with a post hoc Tukey's test
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animal studies have provided further evidence that tsDCS 
can directly affect spinal MN activation through both syn-
aptic and axonal mechanisms (Ahmed, 2014). Significant 
improvement of our understanding of tsDCS actions came 
from the works of the E. Jankowska group who methodo-
logically investigated how tsDCS influences the excitability 

of cutaneous and Ia afferents (Bolzoni & Jankowska, 2015), 
activity-independent plasticity (Jankowska et al., 2016), 
myelinated nerve fibers activity (Jankowska, 2017), postac-
tivation depression and presynaptic inhibition (Kaczmarek 
et al., 2017), as well as excitability of nerve fibers and 
their terminal branches in the presence of 4-aminopyridine 

a

c

b

d
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(Kaczmarek & Jankowska, 2018). The most recent study 
from the group suggests that branching points of primary 
afferent fibers are especially sensitive to DC current (Li 
et al., 2020).

One may wonder whether tsDCS mimics the actions 
of the spinal cord polarization produced by the electri-
cal fields present around active neurons. Some electrical 
fields have amplitudes on the order of several millivolts, 
and can be detected at significant distances from cells ac-
tive during locomotion (Noga et al., 1995). It is therefore 
possible that these fields influence the activity of neigh-
boring cells and this concept was tested by Nelson (1966) 
in an elegant experiment that demonstrated MN activity 
can be influenced by subthreshold activation of synergis-
tic neurons. More recently a similar concept was tested 
by Bączyk and Jankowska (2018) who showed that the 
excitability of myelinated nerve fibers can be modified by 
local field potentials evoked by stimulation of peripheral 
afferents.

The effects of tsDCS depend on the polarity of the 
applied current. In mice, spinal cord excitability was 
increased following cathodal polarization, but reduced 
during anodal tsDCS (Ahmed, 2014). In rats, the elec-
tromyographic responses from reticulospinal and 

rubrospinal pathways were facilitated by cathodal tDCS 
and depressed by anodal tDCS (Bolzoni et al., 2013). 
Furthermore, intraspinally applied cathodal current rep-
licated the effects of tsDCS and strongly increased MN 
synaptic excitation by acting on the afferents to MNs, 
and these actions were consistently facilitatory with 
cathodal DC and depressive with anodal DC (Bolzoni & 
Jankowska, 2015; Kaczmarek & Jankowska, 2018). On 
the other hand, presynaptic inhibition and post activation 
depression were both facilitated by tsDCS in a polari-
ty-independent fashion (Kaczmarek et al., 2017). In the 
cat, in contrast to rats, anodal tDCS facilitated the activa-
tion of reticulospinal neurons (Bolzoni et al., 2013) and 
the actions of pyramidal tracts on MNs (Bączyk et al., 
2014).

One important feature of tsDCS is its long-term ef-
fects. Multiple studies performed both in human (Berry 
et al., 2017; Bolzoni et al., 2017; Kuck et al., 2018) and an-
imal preparations (Bączyk & Jankowska, 2018; Bolzoni & 
Jankowska, 2015; Jankowska, 2017) indicate that the effects 
of polarization last up to several hours after the cessation of 
the stimulation. This phenomenon is of crucial importance 
when designing tsDCS interventions aimed at inducing long-
term neuromodulation.

F I G U R E  5  Short-term and long-lasting effects of polarization in SODG93A mice. (a) Monosynaptic EPSPs, evoked by stimulation of the 
triceps surae nerve, recorded from the same MN, before, and during anodal polarization. (b) as in (a), but records made in a different animal before 
and during cathodal polarization. (c) Examples of EPSPs recorded in the control (white), long-lasting anodal (red), and long-lasting cathodal 
(green) polarization groups. (d) Distribution of EPSP amplitudes within control, long-lasting anodal, and long-lasting cathodal polarization groups. 
Each data point represents a single MN, while box-plots cover 25% of the upper and lower data range with horizontal lines showing the median. 
Notice a strong, 32% increase in EPSP amplitude following anodal polarization (without any change in input resistance). Difference in mean EPSPs 
amplitude is significant between control and long-lasting anodal polarization groups (p < 0.01, Mann–Whitney test)

a b

c d
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1.4 | Effects of TSDCS on intrinsic and 
synaptic properties of MNS

How does spinal polarization act at the level of a single spinal 
MN? The recent development of intracellular MN recordings 
coupled with spinal polarization in vivo (Bączyk & Krutki, 
2020), enabled the direct investigation of short-term, long-
lasting and chronic tsDCS-induced alterations of MN elec-
trophysiological properties (Figure 3).

Both anodal and cathodal tsDCS elicit polarity-dependent 
changes in threshold and firing properties of MNs which ap-
pear immediately after onset of polarization and outlast the 
duration of tsDCS application by at least 15  min (Bączyk 
et al., 2019; Table 1, Figure 4a,b). The major effects of anodal 
intervention act toward potentiation of MN firing, whereas 
cathodal polarization acts mainly toward firing inhibition. 
Moreover, the effects of anodal polarization are generally 
more pronounced and uniform than those evoked by cathodal 
polarization.

Significant long-lasting effects of anodal tsDCS caus-
ing potentiation of firing of MNs were shown to persist in 
MNs up to 60 min after the offset of polarization (Bączyk 
et al., 2020a; Table 1, Figure 4c). The effects of cathodal 
polarization were less prominent and shorter-lasting, and 
were not observed 30 min after the offset of tsDCS. These 
observations are consistent with several other studies in 
rats and cats reporting that the effects of polarization last 
up to 2  hr after cessation of the stimuli (Bączyk et al., 
2014; Bolzoni & Jankowska, 2015; Bolzoni, Bączyk, et al., 
2013; Bolzoni, Pettersson, et al., 2013). The larger impact 
of anodal tsDCS compared to cathodal tsDCS may appear 
surprising but marginal effects of cathodal polarization on 
activity of MNs were also observed in other animal studies 
(Bolzoni et al., 2013). In vitro experiments combined with 
computational neuron models (Lafon et al., 2017) suggest 
that these differences might be explained by the fact that 
anodal polarization has a synergistic effect on somatic and 
dendritic compartments, whereas under cathodal polariza-
tion the effects on the two compartments tend to cancel 
each other.

Chronic tsDCS elicits adaptive changes in electrophysio-
logical properties of lumbar spinal MNs due to repeated and 
consistent alterations in activity of spinal circuitry (Bączyk 
et al., 2020b). Anodal polarization evokes adaptations in MN 
properties in such a way that excitability is increased and firing 
is facilitated, whereas chronic cathodal polarization has no sig-
nificant effects (Table 1, Figure 4d). Chronic DC polarization 
can increase the MN excitability and therefore suggests that 
this technique may be used to deliver neuroprotection in ALS 
(Bączyk, Alami et al., 2020; Saxena et al., 2013).

The main advantage of DC polarization is that it is not in-
vasive and can be easily used in humans. However preclinical 
animal studies have to be performed before starting clinical 

trials. Preliminary results indicate that anodal tsDCS can en-
hance the excitatory synaptic inputs to MNs in the SOD1G93A 
mouse model of ALS (Figure 5a,b). Interestingly this effect 
persists up to 60  min after the end of polarization (Figure 
5c,d). Moreover, when ALS mice were chronically treated 
with daily anodal or cathodal polarization for 2 weeks, EPSP 
amplitudes of DC-treated SOD1G93A mice were significantly 
larger in the anodal polarization group than in the nonpo-
larized group, whereas no change was seen in the cathodal 
polarization group (not shown). Altogether these results 
indicate that in SOD1G93A mice tsDCS evokes polarity-de-
pendent MN plasticity. Although the functional and survival 
analysis of tsDCS effects on ALS mice are ongoing, these 
preliminary findings already provide a proof of concept for 
further tsDCS application in ALS management.

2 |  CONCLUSION

Recent experiments suggest that vulnerable MNs become 
intrinsically hypoexcitable (as seen in a loss of their ability 
to discharge repetitively) and that their excitatory synapses 
are impaired in the SOD1G93A mice. Pharmacological and 
chemogenetics interventions that aimed at restoring either 
the intrinsic excitability or the synaptic strength were shown 
to ameliorate the disease phenotype. In parallel, other ex-
periments showed that anodal tsDCS enhances the intrinsic 
excitability of spinal MNs and the effect outlasts the stimula-
tion period. Moreover, preliminary results show that anodal 
tsDCS also elicits long-lasting enhancement of EPSPs in 
SOD1G93A mice, compensating the EPSP impairment ob-
served in these mice. We suggest that chronic anodal tsDCS 
may be useful in the management of ALS patients.
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