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The prevalence of psychiatric disorders has increased in recent years. Among existing mental disorders, major depressive disorder
(MDD) has emerged as one of the leading causes of disability worldwide, affecting individuals throughout their lives. Currently,
MDD affects 15% of adults in the Americas. Over the past 50 years, pharmacotherapy, psychotherapy, and brain stimulation
have been used to treat MDD. The most common approach is still pharmacotherapy; however, studies show that about 40% of
patients are refractory to existing treatments. Although the monoamine hypothesis has been widely accepted as a molecular
mechanism to explain the etiology of depression, its relationship with other biochemical phenomena remains only partially
understood. This is the case of the link between MDD and inflammation, mitochondrial dysfunction, and oxidative stress.
Studies have found that depressive patients usually exhibit altered inflammatory markers, mitochondrial membrane
depolarization, oxidized mitochondrial DNA, and thus high levels of both central and peripheral reactive oxygen species (ROS).
The effect of antidepressants on these events remains unclear. Nevertheless, the effects of ROS on the brain are well known,
including lipid peroxidation of neuronal membranes, accumulation of peroxidation products in neurons, protein and DNA
damage, reduced antioxidant defenses, apoptosis induction, and neuroinflammation. Antioxidants such as ascorbic acid,
tocopherols, and coenzyme Q have shown promise in some depressive patients, but without consensus on their efficacy. Hence,
this paper provides a review of MDD and its association with inflammation, mitochondrial dysfunction, and oxidative stress and
is aimed at thoroughly discussing the putative links between these events, which may contribute to the design and development
of new therapeutic approaches for patients.

cognitive behavioral therapy, while for moderate to severe
cases, antidepressants are indicated [1]. The full benefit of
the medications occurs 4 to 6 weeks after initiation of admin-

Major depressive disorder (MDD) is a public health problem
characterized as a mental disorder and is one of the leading
causes of occupational or social disability worldwide.
According to the World Health Organization [1], 322 million
people are affected by this disorder, which is currently more
predominant among women than men.

First-line treatment for depression includes talk thera-
pies, antidepressant medications, or a combination of both.
Patients suffering from mild depression are indicated for

istration [2].

Less than half of patients worldwide (in many countries,
representing less than 10%) receive these treatments. In
addition, other difficulties include lack of resources and/or
skilled professionals, diversity of clinical manifestations,
social stigma associated with mental disorders, and inaccu-
rate assessment [1]. Despite the approaches available to treat
MDD, only about one-third of depressed patients achieve
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remission upon receiving antidepressant treatment, and
treatment response rates appear to drop with each subse-
quent retry [3, 4].

Currently available antidepressant therapies focus on
modulating monoamine transmission, or they may limit it,
as depression is a very broad disease and involves a sequence
of events, and monoamine medications do not have a wide
range of options. To assist the large number of refractory
patients in recent years, the addition of atypical antipsy-
chotics to antidepressants has been common and has some
benefit [5]. Nevertheless, many patients continue to suffer
from this disabling disease.

Treatment-resistant depression (TRD) is associated with
increased functional impairment, mortality, morbidity, and
long-term recurrent or chronic episodes [6, 7]. Therefore, an
improved response to treatment by identifying predictive risk
factors for nonresponse may help better disease prognosis [8].

Major depressive disorder has been associated with alter-
ations in neurotransmitter biosynthesis, altered membrane
receptor expression, alterations in cortical structure volume,
and desensitization of the hypothalamic-adrenal-pituitary
(HPA) axis [9]. HPA axis dysregulation causes excessive
release of cortisol, a fundamental hormone for maintaining
homeostasis, as it has numerous catabolic functions and
anti-inflammatory action. However, its excessive production
can suppress the immune system [10]; thus, inflammatory
responses are triggered through the activation of macrophages
and lymphocytes, as well as microglia and astrocytes [11]. The
first studies on depression date back to the 1980s, and since
then, the findings show that inflammation could play an
important role in the pathophysiology of this disease [12-14].

In fact, several studies have shown changes in
interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-a),
interferon gamma (IFN-y), and C-reactive protein (CRP)
levels [15-17] in depressed patients. Some of these cytokines
activate the enzymes indoleamine 2,3-dioxygenase (IDO)
and tryptophan 2,3-dioxygenase (TDO) from the kynurenine
pathway, diverting tryptophan from its main route of seroto-
nin production [18-20].

A growing body of evidence [21] indicates that inflam-
mation may further cause deleterious changes in mitochon-
drial function, affecting oxidative phosphorylation and
membrane polarity. These changes may lead to oxidative
and nitrosative stress and apoptosis, events associated with
the pathogenesis and pharmacological resistance of MDD
[18, 21-23]. Thus, mitochondria should be considered a cru-
cial target for the development of new antidepressant drugs,
and specific forms of mitochondrial dysfunction can be iden-
tified as biomarkers to customize treatment and aid in early
diagnosis [21]. In this paper, we discuss the involvement of
inflammation, mitochondrial dysfunction, and oxidative
stress in the etiology and pharmacological resistance of
MDD as pathways for future therapeutic approaches.

2. Methodological Approach

Three hundred and seven (307) articles were selected from
the search in the MEDLINE database. We used a combina-
tion of one or more of the following mesh-terms:
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Medline database

Mesh-terms used: treatment-resistant depression,
major depressive disorder, redox imbalance,
mitochondria, neuroinflammation, and
antioxidants.

Step 1

Inclusion of 307 studies

Summary analysis
- Main scopus of our discussion
- Describe the importance of oxidative stress and
neuroinflammation on treatment-resistant
depression

Step 2

Inclusion of 214 studies

Step 3 Construction of the narrative review

FiGure 1: Flowchart of the search methodology performed.

treatment-resistant depression, major depressive disorder,
redox imbalance, mitochondria, neuroinflammation, and
antioxidants. The terms cited must appear in the title, key-
words, or abstract of the article. After this search, we ana-
lyzed the abstract of each article and only those that
contemplated the main scope of our discussion and could
help us to describe the importance of oxidative stress and
neuroinflammation on treatment-resistant depression were
selected. Thus, 214 studies were included, which were ana-
lyzed and used to construct the rationale of our narrative
review. Figure 1 illustrates the search methodology.

3. Inflammatory Hypothesis of Depression:
HPA Axis Desensitization

Acute activation of the HPA axis plays a crucial role in
responding appropriately to acute stress events. However,
prolonged activation of the axis and a sustained increase of
glucocorticoids are well documented and related to MDD
[24]. Depressive individuals have an increase in plasma corti-
sol concentration and a decrease in HPA axis sensitivity to
dexamethasone [25, 26]. Briefly, the alpha glucocorticoid
receptor (GRa) mediates the negative feedback of the HPA
axis, i.e., the ability of the cortisol to inhibit its secretion. In
contrast, in depression and chronic stress situations, a
decrease in GRa expression in the hypothalamus and pituitary
leads to the desensitization of negative feedback, which in turn
leads to HPA axis hyperactivity and a sustained increase in
synthesis and secretion of glucocorticoids [27, 28].
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The lack of adequate glucocorticoid-mediated inhibitory
control promotes increased immune signaling, as demon-
strated by increased levels of cytokines and proinflammatory
cells activated by glucocorticoids [16, 29]. Lymphocytes from
patients with MDD are also resistant to the suppressive
effects of dexamethasone in vitro [30]. Glucocorticoid resis-
tance and an intensification of proinflammatory signaling
are found in about 85% of MDD studies [31]. Proinflamma-
tory cytokines are also involved in glucocorticoid resistance
by decreasing GR expression and function, leading to a
pronounced increase in inflammatory responses [32]. These
studies confirm that glucocorticoid resistance increases corti-
sol production and increased inflammatory signaling, which
are coexisting biological responses and influence the thera-
peutic response in depression.

The antidepressant treatment enhances the synthesis of
brain-derived neurotrophic factor (BNDF) and promotes
neurogenesis. However, drug actions appear to depend on
glutathione reductase (GR) activation, and glucocorticoid
activation of GRa decreases neurogenesis. This contradiction
may be related to the different effects of GRa due to its
binding to different agonists and modifications of their
phosphorylation state. Different antidepressants act on the
glucocorticoid receptor and increase neurogenesis through
mechanisms dependent on the activation of protein kinase
A (PKA) and its signaling cascade [33]. However, cortisol
decreases neurogenesis through upregulation of the kinase
gene induced by serum and glucocorticoids (SGK1) [34].
This in vitro evidence demonstrates PKA antidepressant-
induced positive regulation and cortisol-induced expression
of SGK1 [34, 35]. These data indicate that persistent signaling
of glucocorticoids and norepinephrine, in a situation of
psychosocial stress, trauma, or persistent stressful events,
contributes to exaggerated inflammation responses, desensi-
tizing GRa and activating transcription of proinflammatory
genes.

Peripherally released cytokines can reach the central
nervous system (CNS) through three distinct pathways: the
blood-brain barrier, the circumventricular organs, or the
vagus nucleus of the solitary tract. When cytokines reach
the CNS, they directly and indirectly affect the metabolism
of neurotransmitters, which can stimulate apoptosis and
decrease neurogenesis, affecting essential circuits for behav-
ior maintenance. They alter the metabolism of serotonin,
dopamine, and glutamate, which are neurotransmitters
involved in mood regulation [16]. As serotonin levels decline,
production of melatonin is impaired, which, in turn, disrupts
the biological clock that controls neuronal physiological pro-
cesses, including the sleep-wake cycle [36, 37]. This combina-
tion of factors accentuates depressive symptoms, as well as
oxidative stress and inflammation in the CNS [38, 39]. A
promising drug for treating circadian rhythm in psychiatric
diseases is ramelteon (RMT), a melatonin receptor agonist
[40]. Previous evidence indicates that RMT has neuroprotec-
tive, antioxidant, and anti-inflammatory activities [41].

Controlling inflammation in MDD patients is crucial. In
response to stress, the innate immune system activates the
“sterile inflammatory response” which releases molecules
into the extracellular space. The Danger-Associated Molecu-

lar Pattern (DAMP) binds to Pattern Recognition Receptors
(PRRs) expressed on the cytosol or innate immune cell mem-
branes that may be NOD (NLR) or Toll (TLR) receptors. The
cascade triggering of these PRRs leads to the activation of
NLRP3 inflammasome and caspase-1 [42]. NLRP3 in turn
activates IL-6, TNF-«, and IFN-y, which may increase the
activity of indoleamine 2,3-dioxygenase (IDO), an enzyme
involved in the synthesis of kynurenine (KYN) from the
amino acid tryptophan (TRP) [43, 44].

Tryptophan is an essential amino acid and is the primary
precursor of serotonin. Activation of IDO reduces serotonin
synthesis through a shift of tryptophan to the kynurenine
pathway. In the brain, kynurenine is metabolized by the fol-
lowing cellular pathways: (1) neural progenitor cells and
microglia, generating 3-hydroxykynurenine (3-HK) and qui-
nolinic acid (QA), and (2) astrocytes, producing kynurenic
acid (KA). The metabolite, 3-HK, is involved in oxidative
stress. QA is an N-methyl-d-aspartate (NMDA) receptor
agonist that promotes the increased release of glutamate
and blocking its reuptake by astrocytes [45]. Increased glu-
tamate is known to cause neurotoxicity because excess neu-
rotransmitter triggers an influx of Ca** into the cell, which
in turn can generate a potassium leak in the cell. This depo-
larizes the mitochondrial membrane, generating ROS and
oxidized mitochondrial DNA (ox-mtDNA), which reacti-
vates NLRP3 [46, 47]. Influx of Ca®* may also activate
other pathways that lead to mitochondrial dysfunction by
reducing SIRT3 (Figure 2). This set of results can lead to
excitotoxicity and neurodegeneration in essential brain
areas of depressed individuals (Figure 2). In fact, an
increase in QA concentration in the brain and cerebrospi-
nal fluid of depressive individuals suffering from suicide
was already found [48, 49]. In addition, increased QA con-
centration has been associated with oxidative stress and
lipid peroxidation [50].

The reduction in serotonin synthesis by cytokines may
also reduce dopamine synthesis. Injection of IFN-y into rats
resulted in a decreased concentration of tetrahydrobiopterin
(BH4) and dopamine in the amygdala and raphe nuclei [51].
The BH4 is an essential cofactor for the regular activity of the
enzyme tyrosine hydroxylase, which is the critical enzyme in
the dopamine biosynthesis pathway [16]. The impact of
cytokines on reducing synthesis and dopaminergic action
in the brain can lead to a decreased motivation and pleasure
(anhedonia), an essential and classic symptom of depressive
behavior.

3.1. Neuroinflammation and the Role of Microglia. Some clin-
ical studies suggest that microglia have a modified morphol-
ogy and function in depressive individuals, with a less
branched phenotype and less capacity for glutamate reuptake
and maintenance of homeostasis [52, 53]. Moreover, in a
study using positron emission tomography, individuals who
presented a depressive episode demonstrated an increase in
translocating protein (TSPO) labeling, which is a neuronal
marker of inflammation [54]. Postmortem studies found an
increase in the expression of cytokines and complement
pathways in the prefrontal cortex and hippocampus of
depressive individuals [55, 56], suggesting that neuroimmune
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FI1GURE 2: Danger-Associated Molecular Pattern (DAMP) binds to the Pattern Recognition Receptors (PRRs) expressed on the cytosol or in
innate immune cell membranes. The cascade triggered by these PRRs leads to NLRP3 inflammasome and caspase-1 activation, which can
activate IL-13 and IL-18. Oxidized mitochondrial DNA (ox-mtDNA) and mitochondrial reactive oxygen species (ROS) also activate the
inflammasome. NF-«B, through the transcriptional activation pathway, generates tumor necrosis factor alpha (TNF-«) and interleukin-6
(IL-6). Proinflammatory cytokines IL-1f and IL-18 activate the enzymes IDO and TDO of the kynurenine pathway, degrading tryptophan
into kynurenine. These two cytokines further activate KMO, which is the enzyme that directs kynurenine to be degraded to 3HK and
quinolinic acid, both neurotoxic agents, over the kynurenic acid, a neuroprotective agent. Kynurenic acid is an NMDA receptor agonist
and increases glutamate levels and consequently intracellular calcium. Excessive amounts of ROS are produced over the kynurenine pathway.

dysregulation may represent a pathophysiological mechanism
in depressive patients.

Changes in neuronal functions that occur concurrently
with microglial activation imply reciprocal interactions
between these two structures, and these responses may not
only lead to neuroinflammation but also affect other essential
functions of the CNS, such as neurotransmission. Morpho-
logical changes in microglia induced by neuroinflammation
generally do not lead to acute neurotoxicity but may contrib-
ute to neuronal dystrophy after stress. Furthermore, expo-
sure to psychosocial and environmental stress causes
neuronal activation and release of glutamate and norepi-
nephrine in corticolimbic brain regions, such as the prefron-
tal cortex, amygdala, and hippocampus [57]. This evidence
suggests that dysfunctional neuronal activation associated
with increased glucocorticoids leads to neuronal dystrophy
in corticolimbic brain regions following chronic exposure
to stress. For example, repeated stress caused dendritic atro-
phy and loss of synapses on pyramidal neurons in the pre-
frontal cortex of rats [58, 59], and these effects were also
achieved after chronic corticosterone administration [60].
These neurobiological alterations contribute to the change
in excitatory-inhibitory activity in the prefrontal cortex, a
critical region for the maintenance and control of motivated
behaviors, which is critically affected in depression [61, 62].

The increased release of DAMPs from the high mobility
moiety (HMGBI1) box 1 protein caused the activation of
microglia and increased gene expression of proinflammatory

cytokines [63]. Studies suggest that increased NLRP3 and IL-
1B activation in the prefrontal cortex are mediated by the
activation of microglia in chronic stress situations and that
these responses are reversed under chronic treatment with
fluoxetine [64].

Recent studies have also demonstrated that anxiolytics
and antidepressants can block or reverse microglial activa-
tion. Administration of imipramine during a social defeat
protocol reduced IL-6 expression in microglia and attenuated
depressive-like behavior [65]. This result is similar to other
studies, which found that selective serotonin reuptake inhib-
itors produce an anti-inflammatory response in microglia
[66]. These findings raise important questions. (1) Do the
interventions mentioned above aimed at normalizing mono-
amine neurotransmission exert their primary effects through
neurotransmitter homeostasis? (2) Or can the inhibition of
microglial activation be considered their primary mechanism
of action? These results suggest that the pharmacological
treatments currently used against depression may produce
their therapeutic effects by enhancing neurotransmission
and modulating microglial functions and inflammation.
Understanding neuronal function and microglia and the
distinction of molecular and cellular pathways that contrib-
ute to the maintenance of neuronal and microglial function
after repeated exposure to stress may provide new insights
into potential therapeutic targets.

Additional studies must be conducted to examine the
relationships between microglia and neurons and, at the
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same time, to find out if the interaction between these cells
contribute to the stress-induced inflammation. In addition,
how can interventions involve these mechanisms to provide
effective therapeutic benefits?

3.2. Inflammation and Treatment Resistance. The develop-
ment of biomarkers capable of predicting the response to
depression treatment is clinically important. These bio-
markers could be critical for classifying patient subtypes
and a good alternative for prescribing specific treatments if
patients are resistant to the conventional antidepressant
drug.

A recent review by Roman and Irwin [67] describes that
proinflammatory cytokines (mainly IL-1f, IL-6, and TNF-
«) may be useful biomarkers for investigating the presence
or level of baseline inflammation during screening for
depression. However, the choice of these immune bio-
markers is limited due to the lack of standardization of assays
for clinical application. The authors also cite a study in prog-
ress by Janssen Research & Development, LLC (Clinical-
Trials.gov Identifier: NCT02902601), which is investigating
the safety and tolerability of a new agent, JNJ 54175446, in
patients with depression. JNJ 54175446 is a P2X7 purinergic
receptor agonist capable of indirectly modulating inflamma-
some activation.

Despite decades of research about depression, we still
lack a deeper understanding of the pathophysiology and
mechanisms involved in drug resistance. In other areas,
such as in diabetes or heart disease [68], a large genomic
association between these illnesses and the molecular tar-
gets of marketed drugs is known, with high treatment effi-
cacy. Unfortunately, the situation is entirely different in
psychiatry, where none of the currently used drugs has a
strong correlation with potential candidate biomarkers
for Genome-wide Association Studies (GWAS) [69]. The
genetic risk variants identified so far cover a broad spec-
trum of biological processes but are enriched for neurode-
velopmental or synapse-related genes and are not directly
related to the targets of current clinical medications. Taken
together, these findings point to new avenues for antide-
pressant therapy, suggesting entirely new biology for these
disorders and the urgent need to reconsider other factors
involved with depression and drug resistance.

Many clinical factors have been related to the nonthera-
peutic response, including psychiatric comorbidities such as
anxiety disorders, personality disorders, and bipolar disorder
[70-72]. In addition, comorbidities of cardiovascular dis-
eases, diabetes, and cancer have also been associated with
an inefficient response to antidepressants [73]. Interestingly,
these clinical conditions are associated with inflammation
[16, 45, 74]. Investigation of the pathways involved with the
pathophysiology of MDD has produced numerous promis-
ing therapeutic targets for treatment-resistant depression
(TRD). Among these new markers, there is a particular
interest in the inflammatory pathways and their link with
oxidative and nitrosative stress [75-79].

We will now explore data about how inflammation and
the outcomes that are related to it may influence the response
to antidepressant treatment. A meta-analysis of 35 studies

evaluating inflammatory markers before and after antide-
pressant treatment found that patients who were not
responders were more likely to have a higher inflammatory
profile at baseline and follow-up treatment than the
responders [8]. In a study by Lindqvist et al., IL-6 decreased
significantly in patients responding to selective serotonin
reuptake inhibitors but did not reduce their concentrations
in patients refractory to the treatment [80]. In a study of
241 depressive patients, Uhrer et al. indicated that the con-
centration of C-reactive protein (CRP) promoted a differen-
tially predicted response to escitalopram and nortriptyline.
Other studies found higher levels of CRP and other proin-
flammatory cytokines early in the study, and these inflamma-
tory markers were associated with a weaker response to
serotonin reuptake inhibitor antidepressants, including esci-
talopram, fluoxetine, and a low dosage of venlafaxine [81]. In
a study by Haroon et al., patients who participated in multi-
ple treatment trials and who failed symptom remission
exhibited higher plasma concentrations of TNF-y, sTNFR2,
IL-6, and CRP compared to depressive individuals who
responded efficiently. Following a body mass index (BMI)
correction criterion, TNF-a, sTNF-R2, and IL-6 were the
markers most associated with the number of failed treatment
attempts [82].

Preclinical and clinical studies suggest that a decrease
in NMDA receptor activity and an increase in AMPA
receptors lead to favorable mood outcomes [83]. Increased
stimulation of AMPA over NMDA receptors leads to an
increase in calcium and sodium influx and a strengthen-
ing of intracellular signaling that enhances BDNF expres-
sion, leading to improved neuroplasticity and neuronal
function [73, 77, 78]. Thus, increased AMPA activity
and decreased NMDA activity may be essential outcomes
for mood enhancement and cognition and promising tar-
gets for TRD [79, 83-85].

Using a preclinical model of inflammation, administra-
tion of lipopolysaccharide (LPS) has been shown to induce
depressive-like behavior through NMDA receptor stimula-
tion [86]. Briefly, LPS induces a depressive-like behavior by
activating IDO [87], leading to an increase in the KYN/TRP
ratio and an increase in the formation of QA [88], an agonist
of the NMDA receptor. The discovery reinforced the impor-
tance of the NMDA receptor for depression influenced by
inflammation in which ketamine improves the signs of dis-
tress by strengthening glutamatergic neurotransmission
through AMPA receptors [86]. The use of ketamine for other
purposes, including the treatment of MDD, has been studied
[89]. Several studies have already shown an improvement in
antidepressant response, including for patients with TRD.
These findings will be discussed below in the section on
new therapeutic perspectives.

The information above suggests that a portion of
depressive patients has a high inflammatory profile and
that such inflammation may be associated with failure in
multiple treatment attempts. Thus, in patients with a his-
tory of failed antidepressant treatment, clinicians could
evaluate and consider the use of therapies that act on
the inflammatory profile or molecules that are related to
inflammation.
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4. Adjuvant Therapies

Many studies using TNF-« antagonists (infliximab); nonste-
roidal anti-inflammatory drugs (NSAIDs); ketamine, natural
anti-inflammatory agents, such as omega-3 polyunsaturated
fatty acid and curcumin; and an NMDA receptor antagonist
have gained attention. Among the aforementioned agents,
infliximab has been the most evaluated for the treatment
of TRD.

4.1. TNF-«a Antagonist (Infliximab). The TNF-« antagonists
are used clinically in autoimmune disorders to prevent a sys-
temic inflammatory response. The reduction in microglia
activation with the use of TNF-« antagonists may be particu-
larly relevant for TRD [90]. A recent meta-analysis (n = 2370
) of seven randomized controlled trials using anticytokine
agents (e.g., adalimumab, etanercept, tocilizumab, and inflix-
imab) in conditions of chronic inflammation (e.g., rheuma-
toid arthritis) reported moderate antidepressant efficacy
(standardized mean difference (SMD) =0.40, 95% confi-
dence interval (CI) =0.22,0.59) [91].

The antidepressive efficacy of infliximab alone has been
investigated and reported as a primary outcome among
adults with mood disorders. This randomized controlled
clinical trial tested the efficacy of intravenous infliximab
(5mg/kg) administered at baseline and weeks 2, 4, and 6 of
a 12-week protocol in a sample of 60 patients with TRD.
The study found no difference between the treated and con-
trol groups; however, when patients were categorized for
their inflammatory status based on (PCR) > 5 mg/L, a signif-
icant antidepressant effect was noted. Sixty-two percent of
patients with TRD who received infliximab achieved a 50%
reduction in HDRS scores, compared to only 33% of patients
in the placebo group [92].

Although infliximab may be useful for a subset of patients
with TRD, who also have increased inflammatory bio-
markers, further studies are needed to confirm or refute this
hypothesis. In addition, the number of adverse effects may be
a limiting factor, as infliximab increases the risk of infection
due to its potent anti-inflammatory effect.

4.2. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). Proin-
flammatory cytokines can trigger an inflammatory cascade in
the brain, which includes increased activity of cyclooxygen-
ase (COXs) that are critical enzymes in the production of
prostaglandins [93]. Drugs targeting the cyclooxygenase-1
(COX-1) and cyclooxygenase-2 (COX-2) enzymes might have
a beneficial effect on depressive patients with elevated levels of
inflammatory cytokines. COX-2 expression is detected in syn-
aptic dendrites and excitatory postsynaptic endings, especially
on the cortex, hippocampus, and amygdala, whereas COX-1 is
expressed in microglia and perivascular cells [94]. A study by
Choi et al. [95] demonstrated that mice with COX-1 deficiency
had a decrease in neuronal degeneration, microglial activation,
and expression of proinflammatory cytokines and PGE2 after
exposure to LPS.

However, COX-2 may play a neurotoxic or anti-
inflammatory role, depending on the initial stimulus. The
results of studies using animal models, especially with cele-
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coxib treatment (a selective COX-2 inhibitor), are contradic-
tory. In a chronic mild stress model in rats, treatment with
celecoxib for 21 days reversed depressive behavior [96]. In
another preclinical model of depressive-like behavior (bul-
bectomy), the use of celecoxib for 14 days reversed depressive
behavior in treated rats. The concentration of the proinflam-
matory cytokines IL-1 and TNF-« in the prefrontal cortex
and hypothalamus decreased, probably due to the reduction
of PGE2 synthesis [97]. However, COX-2 may also have a
neuroprotective function in response to an inflammatory
challenge. Deletion of COX-2 may result in increased neuro-
nal damage in the hippocampus and increased expression of
TNF-a, IL-6, and IL-1f. Chronic administration of celecoxib
for six weeks caused an increase in IL-1p levels in the brain of
mice exposed to LPS [98].

NSAIDs, especially acetylsalicylic acid (ASA) and cele-
coxib, were also tested in an attempt to improve response
in patients with TRD. Acetylsalicylic acid irreversibly inhibits
COX-1 and COX-2, thus decreasing prostaglandin and
thromboxane levels, and the production of TNF-« and IL-6
[99]. In 2013, Berk et al. published a systematic review that
evaluated the role of ASA in the treatment of mental illness,
evaluating studies from 1996 to 2012 [100]. Some evidence
suggests beneficial effects for aspirin in mood disorders,
through an improvement in the clinical response time to
antidepressants [101]. That study found that patients who
used fluoxetine associated with ASA had a higher rate of
remission for depressive symptoms than the fluoxetine
group. In another study with 70 depressive patients, adminis-
tration of aspirin in combination with fluoxetine conferred a
further reduction of oxidative stress parameters compared to
fluoxetine monotherapy [102]. Despite the lack of significant
clinical improvement and linear scientific data, NSAIDs act
positively on many of the biochemical and molecular out-
comes cited in the text. However, the use of NSAIDs chron-
ically provides significant adverse effects to be considered
and does not demonstrate a congruency in the results.

4.3. Ketamine: NMDA Antagonist. Interest in using ketamine
to treat TRD has increased in the last decade. The long-term
beneficial actions of ketamine on the central nervous system
are very evident; however, there are not enough studies to
discuss the long-term effects of a single ketamine administra-
tion on the functioning of neural circuits in MDD [103]. Pre-
vious evidence demonstrates that ketamine may increase the
expression and synthesis of BDNF [103, 104]. The antide-
pressant effects of ketamine were inhibited in mice with
BDNEF deletion as well as after infusion of an anti-BDNF anti-
body into the prefrontal cortex [105]. Furthermore, preclinical
studies show that ketamine exerts its antidepressant effects by
increasing the expression of mammalian rapamycin target
protein (mTOR), which modulates cell growth, proliferation,
motility, survival, and protein synthesis [103, 106]. These
observations provide insight into why the decreased levels of
BDNF associated with depressive symptoms could be reversed
through the rapid actions of ketamine. Several clinical studies
have tested ketamine as an antidepressant agent for TRD.

In a recent meta-analysis [107], seven randomized
controlled trials (RCTs) using intravenous infusion and
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intranasal ketamine evaluated its antidepressant effect in
patients with MDD and bipolar depression. Ketamine was
associated with higher clinical remission rates in the control
groups (saline or midazolam) 24 hours (OR 7.06, NNT =5),
three days (OR 3.86, NNT =6), and seven days (OR 4.00,
NNT = 6) after remission. Ketamine is associated with tran-
sient psychotomimetic effects; however, these signs do not
persist chronically [107].

In addition, several clinical trials were conducted to eval-
uate the role of ketamine in TRD. In a randomized, placebo-
controlled, double-blind, crossover study, 18 patients with
TRD received an infusion of ketamine (0.5 mg/kg) with a
one-week interval between each administration. Patients
who received ketamine obtain significant improvement in
evaluations compared to placebo subjects. The positive effect
was apparent within 110 minutes after injection and
remained over the following days [108]. In other clinical
studies, similar results have been observed [109, 110]. In
two case-control studies, ketamine had an antisuicidal effect
in the TRD subjects [111, 112].

Despite the promising effects of ketamine in patients with
TRD, opinions about its use to treat MDD are still polarized,
mainly because of its side effects. Some of the most common
effects are dissociations related to depersonalization, as well
as perceptual disturbances and mental confusion. The risk
for the development of psychotic states, agitation, and depen-
dence is also referred to as an adverse effect [113]. Neverthe-
less, ketamine is clearly a potent, rapid-acting antidepressant
for TRD, which is entirely different from conventional anti-
depressants that take days to weeks before a crucial antide-
pressant effect is observed [114]. Therefore, ketamine may
be a useful alternative for TRD. ESKETAMINE (ESK), its
derivative, is a new NMDA drug recently approved by the
FDA for intranasal use in TRD treatment. A recent system-
atic review reported that the intravenous infusion of ESK
causes rapid and sustained antidepressant activity in refrac-
tory patients with MDD and TRD, as well as in patients with
MDD at imminent risk of suicide [115]. However, despite its
effectiveness, further preclinical and clinical studies are
needed to investigate the long-term eflicacy and safety of
intranasal ESK. Another recent FDA-approved drug for
treating TRD is Symbyax, which combines olanzapine (an
atypical antipsychotic) and fluoxetine (a selective serotonin
reuptake inhibitor) [116, 117]. A recent study of 25 patients
treated with Symbyax for 8 weeks showed a decline in amyg-
dala activity and right ventromedial prefrontal metabolism,
and these events were correlated with improvement in
depression after the intervention [118].

5. The Relation between Inflammation and
Oxidative Stress

In the brain, oxidative stress and its related cellular damage are
easily spread due to the physiological and physical characteris-
tics of this organ, as well as the high metabolic rate of its cells,
which make it highly dependent on an efficient mitochondrial
oxidative phosphorylation system (OXPHOS). Mitochondria
are intracellular organelles required for numerous cellular
functions, including control of energy metabolism and regula-

tion of ROS production, calcium homeostasis, and apoptosis.
During the inflammatory process, released interleukins are
capable of activating the KYN pathway, which generates
catabolites, called TRYCATS that cause a high calcium influx
inducing mitochondrial dysfunction along with an impair-
ment in the cellular antioxidant system [119, 120]. This
becomes a cycle as the mitochondrial dysfunction and poten-
tial losses of the mitochondrial membrane lead to a rapid
increase in the production of mitochondrial reactive oxygen
species (MROS), which are also activators of the inflamma-
some (NLRP3) [121] (Figure 2).

The macrophages involved during the inflammatory pro-
cess have a P2X7 receptor (P2X7R), which is a cationic chan-
nel highly dependent on exogenous ATP. Activation of this
channel causes potassium efflux, altering mitochondrial
membrane potential and generating mtROS and oxidized
mitochondrial DNA, which are released into the cytosol by
directly activating NLRP3 [46]. Potassium efflux may also
occur due to high levels of calcium from the kynurenine
pathway (Figure 2).

The increase in ROS production is associated with a
reduction in neuronal metabolism. This metabolic worsening
may be associated with the reduced ability to convert external
energy into substrates required for ATP biosynthesis, mainly
due to mitochondrial dysfunction [122]. Metabolic stress and
increased ROS production can lead to advanced glycation
end products (AGEs) and lipid peroxidation end products
in neurons [123].

A study by Anamika et al. reports that influx of Ca** acti-
vates neural nitric oxide synthase (nNOS) and nitric oxide
release occurs. This nitric oxide can be combined with other
types of ROS to form peroxynitrite (ONOO-), a highly
unstable radical [124]. Excess nitric oxide may decrease
SIRT3 activity and expression, causing mitochondrial dys-
function [125].

Sirtuins are NAD+-dependent histone deacetylases.
Because they require NAD+ for their activity, the cellular
level of sirtuins represents the redox status of cells and, thus,
serves as metabolic stress sensors [125]. SIRT3 in particular is
an isoform present in mitochondria, whose function is to
modulate activity of several important mitochondrial pro-
teins, to induce adaptive changes during bioenergetic deficits,
and to regulate mitochondrial biogenesis and dynamics, ROS
metabolism, ATP production, and maintenance of mito-
chondrial integrity [126, 127].

SIRT3 is also related to mitochondrial permeability tran-
sition pore (mPTP) blockade of the pores, preventing the
release of cytochrome C and thus preventing apoptosis
[125, 128]. All these changes can occur from the reduction
of SIRT3, including low ATP production, which is very com-
mon in neurodegenerative diseases, including depressive
patients [125].

With the reduction of SIRT3, the antioxidant defense
mechanism also changes, since SIRT3 deacetylates the
antioxidant enzyme MnSOD, and mitochondria are the
main site of ROS generation, reducing antioxidant the imme-
diate target of oxidation damage [129, 130]. The enzyme
MnSOD catalyzes the conversion of superoxide anions
(0™ into hydrogen peroxide (H,0,) and oxygen (O,).
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F1GURE 3: The increase of intracellular calcium activates neural nitric oxide synthase (nNOS), causing increased NO levels. This will decrease
SIRT3, which acts as a key to control mitochondrial dysfunction. As SIRT3 activity decreases, mitochondrial permeability transition pores
(mPTPs) open, which release cytochrome C, causing a decrease in ATP levels and inducing apoptosis. NO can also bind to ROS from the
kynurenine pathway, generating peroxynitrite (ONOO), a highly unstable free radical. Reduction of SIRT3 deacetylates complex I NADH
dehydrogenase, specifically in the NDUFA9 subunit, which interacts with two other ATP synthase subunits (FO and F1). When SIRT3 is
reduced, PDH activation is inadequate for the citric acid cycle, resulting in low levels of NADH and reduced activity of complex I. In
addition, SIRT3 promotes deacetylation of MnSOD, an antioxidant enzyme that scavenges superoxide anion produced over the pathway.
Another impaired antioxidant enzyme is GSH, because during the inflammatory process, the enzyme KMO, an enzyme dependent on
NADPH, is activated, thus reducing the availability of this coenzyme for antioxidant defense systems. In parallel, TNF-«a phosphorylates
tyrosine 304 in subunit I of cytochrome C oxidase in complex IV, leading to further mitochondrial damage.

Reduced MnSOD activity is the immediate target of oxida-
tion damage [129, 130].

SIRT3 regulates the tricarboxylic acid cycle (TCA) by
activating PDH (pyruvate dehydrogenase complex), the first
enzyme that catalyzes the entry of pyruvate into the pathway
of oxidative energy production [131]. In addition, SIRT3 can
deacetylate mitochondrial complex I, specifically subcomplex
9 (NDUFA9) [132, 133]. SIRT3 is likely to regulate the
expression of some complex IV subunits and is also related
to the two subunits of ATP synthase FO-F1 [126, 134, 135].
Thus, inflammation generated by HPA axis imbalance leads
to mitochondrial dysfunction, which in turn causes excessive
ROS production.

A redox imbalance in the brain might be involved in the
pathogenesis of depression beyond being related to other risk
factors such as increased inflammation, impaired plasticity,
and reducing neuron signaling [136]. Under physiological
conditions, ROS and reactive nitrogen species (RNS) are reg-
ulated by antioxidant pathways, including enzymatic and
nonenzymatic compounds. In excess or in situations where
the antioxidant system is impaired, these species may dam-
age lipids, proteins, and DNA. In depressed patients, the anti-

oxidant system is also compromised because inflammation
activates the KMO (kynurenine 3-monooxygenase) enzyme
that degrades kynurenine into 3-hydroxykynurenine and
other neurotoxic metabolites. The KMO enzyme is
NADPH-dependent, so if the availability of this coenzyme
is reduced, NADPH-dependent antioxidant defense systems
are compromised, including glutathione (GSH) and catalase
(CAT), which are key enzymes for reducing H,0, in O,
and H,0 [137] (Figure 3).

MDD is usually accompanied by a decrease in antioxi-
dant enzyme activities and total antioxidant capacity
(TAC). A recent meta-analysis identified lower TAC and
some antioxidant parameters in acute episodes of depressed
patients, as well as serum paraoxonase, uric acid, albumin,
and zinc levels. On the other hand, higher oxidative damage
products, including red blood cell (RBC) malondialdehyde,
serum MDA and 8-F2-isoprostanes, and serum peroxide
were found in MDD patients [138]. Table 1 summarizes oxi-
dative/antioxidative markers in drug-naive patients with
depression.

In the oxidative stress pathway, superoxide dismutase
(SOD) is the primary antioxidant enzyme able to protect cells
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TaBLE 1: Markers of oxidative stress and antioxidants related to drug-naive patients.

Study population

Outcome in DP

Reference

247 DP and 248 HC
77 adult DP and 47 HC

19 adolescent DP and 8HC
50 aged DP and 55 HC

50 DP and 50 HC

21 DP and 40 HC

332 symptomatic patients,
141 DP and 622 HC

49 adult DP and 49 HC

60 DP and 40 HC
322 aged DP
15 DP and 19 HC

82 adult DP and 94 HC
45 adult recurrent DP and 33 HC

1 MDA

T CP in DP at early stage;
| GPx activity at late stage

| GSH
T 8-OHdAG

T MDA levels and | SOD activity;
no differences for CAT

T CAT and SOD activities
T 8-OHdAG

T TBARS and NO;
| SH; no differences for SOD

T MDA levels; | SOD activity,
nitrite and vitamin C levels
| Vitamin C levels

T MDA and GR;
1 SOD and GPx1

Islam et al. [139]
Diniz et al. [140]

Freed et al. [141]
Lindgqvist et al. [80]

Camkurt et al. [142]
Tsai and Huang [143]

Black et al. [144]
Kaufmann et al. [145]

Bajpai et al. [146]
Gariballa [147]
Rybka et al. [148]

T CP
1NO

Magalhaes et al. [149]
Talarowska et al. [150]

| GPx and GSH levels;

70 aged DP and 35 HC

T GR and SOD activities;

Kodydkova et al. [151]

no differences for CAT

38 aged DP and 72 HC
35 DP and 35 HC

T 8-OHdAG
1 CoQ10 levels

Kupper et al. [152]
Maes et al. [153]

DP: depressive patients; HC: healthy controls; MDA: malondialdehyde; CP: carbonyl protein; GPx: glutathione peroxidase; SOD: superoxide dismutase; CAT:
catalase; 8-OHdG: 8-hydroxydeguanosine; TBARS: thiobarbituric acid reactive species; NO: nitric oxide; SH: sulthydryl; GR: glutathione reductase; GSH:

glutathione; CoQ10: coenzyme Q10.

from damage caused by ROS. Disturbances in SOD activity
are usually found in depressive patients, but the findings
are still inconsistent with respect to the direction of this dis-
ruption [154]. Decreased SOD activity has been identified in
MDD patients [148]. However, other studies reported
increased SOD and catalase (CAT) activity in MDD patients
[151]. Recently, Tsai and Huang found that serum SOD and
CAT activities were significantly higher in the acute phase of
MDD patients, suggesting that increased activities of both
antioxidant enzymes might be indicators of acute depressive
episodes on MDD [143].

Glutathione (GSH) is the most abundant low-molecular-
weight thiol in the human body. It plays an important role in
protecting cells and their components against ROS and rep-
resents a sensitive and consistently endogenous marker of
oxidative stress [155]. The pathway that maintains intracellu-
lar GSH homeostasis comprises GSH redox cycling, which
includes GSH oxidation by glutathione peroxidase (GPx)
during detoxification of hydrogen peroxide (H,0,) or
organic hydroperoxide and GSH reduction by glutathione
reductase (GR) [155]. Peripheral measures in serum and
plasma have already demonstrated a decrease in GPx activity
in MDD patients [141]. In addition, negative correlations
between GPx activity and severity of depressive symptoms
were found, suggesting an impaired antioxidant protection
in MDD [156]. Recently, a study using proton magnetic res-

onance spectroscopy to measure in vivo brain GSH in adoles-
cents with MDD found low occipital GSH levels [141].

Production of H,O, is balanced by catalytic action of
antioxidant enzymes, such as CAT and GPx, and proteins
with antioxidant function (peroxiredoxins) that act on
H,0, quickly and in synergy modulating the overall peroxide
signal [157]. The transcription factor Nrf-2 (nuclear factor
erythroid 2-related factor 2) is another target that seems to
play an important role in redox homeostasis. At low
oxidative stress levels, Nrf-2 is activated and stimulates
the transcription of antioxidative genes, leading to the cyto-
protective effects. Supporting the hypothesis that increased
ROS plays a significant role in depression, Mellon et al.
reported that genes regulated by Nrf-2 were elevated in
MDD patients and decreased after effective antidepressant
treatment [158]. In addition, a recent preclinical study with
rodents found that vulnerability to depression resulted from
a persistent state of oxidative stress, mediated by Nrf-2 dys-
function, which was reversed by treatment with antioxi-
dants [159].

Several studies that evaluated lipid peroxidation in MDD
patients suggest that increased serum levels of MDA, a
product resulting from the reaction between ROS/RNS and
lipids, are strongly associated with MDD [160]. A recent
meta-analysis indicated that 8-hydroxy-2'-deoxyguanosine
(8-OHAG) and F2-isoprostanes, which are measurements of
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oxidative DNA and lipid damage, respectively, are the two
oxidative stress markers most consistently elevated in depres-
sion, usually with small to moderate effect sizes [144].
Increased MDA levels have also been found in patients with
recurrent depression [148, 161, 162].

Increased levels of oxidative stress are also associated
with larger cognitive impairment and one potential mecha-
nism underlying neuroprogression and accelerated aging in
mood disorders [163, 164]. Depression is known to be asso-
ciated with accelerated brain aging [165]. One recent preclin-
ical study that proposed a new model for aging brain found
that oxidative stress at physiological levels may cause hippo-
campal dysfunction, specifically involving astrocytes, even
before apoptosis detection [166]. Furthermore, a large body
of evidence points to overproduction of ROS as one of the
main causes of neuronal changes by inducing cell death and
consequent atrophy of brain specific regions [167]. Smaller
hippocampal volume has been associated with slower antide-
pressant response in late-life depression and increased
peripheral oxidative stress in depressive patients [80, 168,
169]. All together, these findings may represent part of the
interplay between oxidative stress, hippocampal volume,
and treatment response.

The mechanisms of antidepressants against damage
induced by excessive oxidative stress seem to be involved
with remission of depressive symptoms and patients’ recov-
ery [136]. Evidence indicates that antidepressants may act
to restore and normalize the activity of enzymes (such as
SOD, GPx, GST, and GR) iNOS and xanthine oxidase
(XO), increasing TAC levels, decreasing 8-OHdG and nitric
oxide (NO) levels as well as lipid and protein oxidation and
attenuating cell death induced by H,O,. Table 2 shows the
effects of antidepressant drugs on redox metabolism in
clinical, preclinical, and mammalian cell culture models.

In general, antidepressants decrease oxidative damage
markers in responsive patients, without altering this damage
in nonresponsive patients (Table 2). However, there is no
consensus about enzyme antioxidant defenses, as expected.
Some studies found increased activity of antioxidant
enzymes, while others observed a decrease. Most of these
studies measured activity and nonexpression of enzymes,
and this activity varies constantly and is not a static measure.
Changes in enzyme activity are required to maintain or
attempt to maintain cellular redox balance and occur in a
matter of milliseconds. Studies with medicated depressive
patients used different models, doses, and treatment times,
which makes it difficult to compare their results. In addition,
it remains unknown whether the effect of antidepressants on
redox metabolism is direct or indirect or even a result of only
improving the depressive state. Indirect effects can be medi-
ated by different proteins, transcription factors, or anti-
inflammatory effects. Thus, identifying the mechanisms
responsible for the effects of antidepressants on redox metab-
olism is extremely important, because this is closely associ-
ated with the presence of symptoms in depressive patients.

Although many studies indicate increased lipid peroxida-
tion in MDD, the first study was recently published that eval-
uated this parameter in TRD patients. Sowa-Kucma et al.
found that TRD was accompanied by high levels of lipid per-
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oxidation compared with non-TRD patients [189]. Another
previous study investigated baseline OS markers (e.g., vita-
min C and GPx) as predictors of antidepressant treatment
response, finding negative results [190]. Other oxidative
stress markers have been associated with poorer treatment
response in MDD. Lindqvist et al. found higher baseline
levels of F2-isoprostanes in nonresponders and a significant
increase in 8-OHAG over the course of treatment in these
patients [80].

Although antidepressant drugs have been shown to exert
antioxidant effects in some study models (Table 2), it is
unknown whether this is a direct or indirect effect of antide-
pressants. Together, lipid, protein, and DNA oxidative dam-
age has been indicated as promising biomarkers for MDD
patients under treatment; however, no clinical evidence for
their use has yet been found. Nevertheless, there is evidence
for the use of some antioxidants as a therapeutic approach
for MDD. One promising candidate is N-acetylcysteine
(NACQ), a glutathione precursor that decreases inflammation
and apoptosis, modulates levels of glutamate, promotes neu-
rogenesis [191], and improves mitochondrial function [192].
These effects seem to be responsible for the remission of neu-
rological symptoms in psychiatric diseases [193]. Berk et al.
in a randomized carried 12-week study with a very expressive
sampling (n = 269) reported antidepressant effects of NAC in
patients with more severe depression (MADRS score of 25 or
more) [194]. Furthermore, NAC exerts antioxidant effects in
the anterior cingulate cortex of MDD patients in a multicen-
ter RCT [195]. A recent study also described that chronic
treatment with NAC improves depressive behavior and anx-
iety and spatial learning deficits as well as reverses patholog-
ical changes in the hippocampus in an animal model of
neonatal depression [196].

Besides NAC, other antioxidants have been studied for
their possible antidepressant effects. Recently, Abuelezz
et al. reported that treatment with CoQl0 reversed
depressive-like behavior, reduced lipid peroxidation, and
restored GSSH and CAT levels in animals exposed to a
chronic unpredictable mild stress (CUMS) protocol [197].
In addition, CoQ10 was able to recover the balance in kynur-
enine/serotonin levels by downregulating hippocampal IDO-
1. Jahangard et al. found in a randomized study involving 89
patients with bipolar disorder, currently in a depressive epi-
sode, a significant increase in total thiol groups (TTG) and
TAC, as well as a significant reduction in TNF-a, IL-10,
and NO levels, after CoQ10 adjuvant therapy (200 mg/day)
[198]. Corroborating with these findings, a decrease in
CoQ10 levels was observed in TRD patients [153].

In turn, zinc (Zn) is an essential compound involved in
several cellular processes and plays an important role against
OS in the brain. Its neuroprotective properties include the
blocking of excitotoxic Ca®" influx and the upregulation of
cellular antioxidant systems [199]. Clinical evidence points
to an association of Zn deficiency and depressive behavior.
According to the previous reports, Zn supplementation can
improve mood in TRD patients [200]. Likewise, Zn adminis-
tration increased BDNF expression and ameliorated the effi-
cacy of antidepressant treatment, which can be relevant in
the management of TRD [201, 202].
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Curcumin, a potent anti-inflammatory plant metabolite,
has been reported as a promising agent for the treatment of
MDD [203-205]. Animal study models have already
highlighted the potential of curcumin as an antidepressant
[206, 207] with similar effects as fluoxetine and imipramine
[208]. A meta-analysis that compared the use of curcumin
with placebo demonstrated significant clinical efficacy of cur-
cumin in improving depressive symptoms. Significant anti-
anxiety effects were also reported [209]. Naqvi et al.
demonstrated in a recent study using the CUMS protocol
in rats that supplementation with curcumin (200 mg/kg) sig-
nificantly attenuated the symptoms of depression and anxi-
ety, reduced OS, and improved antioxidant status [210].
Curcumin also improved memory function and exhibited
an inhibitory effect on acetylcholinesterase (AchE) activity.
Similar results, demonstrated by Wang et al., showed that
curcumin attenuated behavioral disorders associated with
poststroke depression (PSD) in an animal model. These
effects seem to be mediated by the control of Ca** levels in
the CNS exhibited by curcumin [211].

Resveratrol (RES), another phenolic compound with rec-
ognized antioxidant activity, also has been studied as an anti-
depressant agent, but few studies have been conducted. Its
beneficial effects on learning, memory, and anxiety [212] as
well as on depressive-like behavior were reported [213].
Recently, in a study employing CUMS protocol, rats received
RES (40 or 80 mg/kg/day) or fluoxetine (10 mg/kg/day) for
four weeks. RES was able to reduce inflammation and apo-
ptosis in the hippocampus and prefrontal cortex as well as
expression of Akt/Akt and p-GSK3B/GSK3f proteins,
achieving results similar to fluoxetine [214].

Considering all the evidence mentioned above, new
investigations focusing on antidepressant effects of antioxi-
dants or drugs with antioxidant activity should be performed,
since the use of these compounds may emerge as a novel
range of adjuvant therapy for resistant MDD management.

6. Limitations of the Current Research and
Challenges Ahead

While this narrative review further supports that inflamma-
tion, mitochondrial dysfunction, and oxidative stress can be
recognized as the central event in MDD, the question of
why these events are still uncontrolled with conventional
drug treatment remains unanswered. The few studies avail-
able on antidepressants and their clinical effects on inflam-
mation/oxidation/mitochondrial ~dysfunction are often
inconclusive or biased. Despite that, the combined evidence
indicates that ATP depletion, oxidative stress, and inflamma-
tory responses can activate apoptotic mechanisms that lead
to neurodegeneration, a common feature in depressive
patients. The data presented here demonstrate that MDD
activates inflammation pathways through nuclear, cytosolic,
and mitochondrial proteins, which can serve as a starting
point for the screening of new drugs. However, the future
challenge is to find effective new drugs that target inflamma-
tion and mitochondria, thus reducing cases of refractory
patients. Finally, although the biochemistry mechanisms
linked to the immune response in depression are gradually

13

being elucidated, further research is needed to test these
hypotheses in vivo.
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