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Abstract: Vaccination is a practical method to provide protection against porcine reproductive and
respiratory syndrome virus (PRRSV), but current PRRSV vaccines show limited efficacy against
divergent field strains. Lineage 1 PRRSV includes virulent strains such as NADC30 and MN184 and
now has become one of the most prevalent viruses in Korea. Accordingly, there is an urgent need to
develop a new vaccine for Korean lineage-1 strains. In this study, a vaccine candidate against Korean
lineage-1 PRRSV, vCSL1-GP5-N33D, was developed by reverse genetics technology. vCSL1-GP5-
N33D was designed as a hypo-glycosylated chimeric virus containing the glycoprotein 5 ectodomain
region of the Korean lineage-1 wild-type strain. An inactivated vaccine of vCSL1-GP5-N33D was
applied to a PRRS-endemic farm and elicited high serum virus neutralization (SVN) antibody titers.
The vaccinated group induced SVN antibody titers of 4.40 (log2) ± 2.46, which were approximately
2-fold higher than those of the negative control at 8-weeks post-vaccination. Moreover, 60% of
pigs in the vaccinated group displayed SVN antibody titers of ≥5 (log2), while none of the pigs in
the negative control exhibited SVN antibody titers of ≥5 (log2). The overall results of the animal
experiment suggest that the vCSL1-GP5-N33D inactivated vaccine is a promising vaccine candidate.

Keywords: PRRSV; chimera; vaccine; Korea; GP5; neutralizing antibodies

1. Introduction

Porcine reproductive and respiratory syndrome virus (PRRSV), the etiological agent
of PRRS, is a pathogen that adversely impacts global swine production in the economic
aspects [1]. PRRSV belongs to the family Arteriviridae, order Nidovirales, and has a linear
positive-sense single-stranded RNA genome of 15 kb [2]. The PRRSV genome includes 10
open reading frames (ORFs). ORFs 1a and 1b encode 16 nonstructural proteins essential
for viral replication, and ORFs 2a, 2b, 3-7, and 5a encode structural proteins, including
glycoprotein (GP) 2a, E, GP3, GP4, GP5, M, N, and ORF5a proteins, respectively [3].

Major clinical features of PRRS are respiratory disease in growing pigs and reproduc-
tive failure in breeding animals [4]. Vaccination is regarded as a practical way to confer
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protection against PRRSV and prevent clinical signs [5,6]. Both modified live virus (MLV)
vaccines and inactivated vaccines are commercially available. The MLV vaccines provide
efficacious homologous protection but have safety issues such as reversion to virulence
and provide incomplete cross-protection [3,7]. The inactivated vaccines are safe but are
known to be less effective even against homologous challenges [4,6]. All vaccines have
advantages and disadvantages, although there is broad agreement that current PRRSV
vaccines provide limited efficacy against heterologous field viruses, which is closely related
to the variable characteristic of the PRRSV genome [6].

PRRSV is divided into two species; Betaarterivirus suid 1 (i.e., PRRSV-1) and Betaar-
terivirus suid 2 (i.e., PRRSV-2) [8]. PRRSV-1 and PRRSV-2 share 60% nucleotide sequence
identity and high levels of genetic variation (>20%) exist within each species [9]. Accord-
ingly, PRRSV-1 and PRRSV-2 are further divided into four subtypes and nine lineages,
respectively, based on the phylogenetic analysis of ORF5 nucleotide sequences [10]. Among
the various strains, lineage 1 PRRSV-2 is currently the most prevalent strain in the USA
and has become one of the major pathogens in Korea as well [9,11]. In Korea, lineage 5
was dominant from 2014 (46.7%) to 2019 (31.1%), but the lineage 1 population increased
to the second-largest population from 2014 (1.8%) to 2019 (29.6%) [12]. Lineage 1 contains
virulent strains such as NADC30 and MN184 and many field isolates of lineage 1 were
also reported to be virulent [9,10,13]. In the USA, Prevacent PRRS (Elanco, Indianapolis,
IN, USA), a PRRSV MLV vaccine derived from a lineage-1 strain, has been commercially
available since 2018 [4]. In Korea, however, there are no lineage-1 vaccines available at
present. Therefore, a new vaccine against Korean lineage-1 strains is needed for the control
of the disease.

PRRSV vaccines are traditionally produced by successive passage in cell lines such
as MARC-145 cells [14]. Therefore, it takes years to generate a vaccine candidate, and
vaccines for MARC-145-unadpative strains cannot be produced. In this study, reverse
genetics technology was utilized to develop a vaccine against a MARC-145-unadpative
lineage-1 PRRSV isolated in Korea. The vaccine candidate was designed as a chimeric
virus containing the hypo-glycosylated GP5 ectodomain region of the target virus. An
inactivated vaccine using this mutant virus was administered to a PRRS-positive herd, and
vaccine performance was measured by clinical signs and antibody production.

2. Materials and Methods
2.1. Cells and Viruses

MARC-145 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% fetal bovine serum (FBS) and 1% antibiotic/antimycotic solution [15].
Porcine alveolar macrophages (PAMs) were collected from lungs of PRRS-free piglets
and maintained in RPMI 1640 medium supplemented with 10% FBS and 1% antibi-
otic/antimycotic solution. All cultures were maintained at 37 ◦C in a humidified incubator
containing 5% CO2.

A PRRSV-2 isolate CSNA11 (Genbank accession no: OM777142) and KU-PRRSV-2020-
002 (Genbank accession no: OM037453) were isolated from a Korean farm and used in this
study. CSNA11 and KU-PRRSV-2020-002 belonged to lineages 5 and 1 in the phylogenetic
tree, respectively.

2.2. Generation of Mutant Viruses

A DNA-launched infectious clone of PRRSV, pCSNA11, was constructed by assem-
bling seven fragments that cover the entire genome of the CSNA11 strain and used as the
backbone for cloning in this study (Figure 1A). CSNA11 strain grew to high titers in MARC-
145 cells, so infectious clone-derived viruses were expected to have good replicative fitness.
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Figure 1. Design of CSNA11 infectious clone and alignment of glycoprotein (GP) 5 amino acid
sequences of viruses. (A) Schematic diagram of CSNA11 infectious clone. The restriction enzyme
sites used for assembling the infectious clone and the length of each fragment are indicated above the
genomic construct. CMV: cytomegalovirus; HHRz: hammerhead ribozyme; HDVRz: hepatitis delta
virus ribozyme. (B) Alignment of amino acid sequences of the GP5 N-terminal domain of viruses.
Amino acids identical to those of the KU-PRRSV-2020-002 strain are represented as dots, and the
ectodomain region (31 amino acids, 93 bp) is indicated by the black box.

A chimeric cDNA clone, pCSL1-GP5-wt, was designed in silico using Geneious Prime
(Biomatters, Auckland, New Zealand) to replace the GP5 ectodomain region of CSNA11
with that of KU-PRRSV-2020-002 strain (Figure 1B). The fragment containing the chimeric
GP5 sequence was synthesized de novo (GenScript, Hong Kong, China) and cloned into
the full-length cDNA clone to replace the backbone sequence. The chimeric cDNA clone
(pCSL1-GP5-wt) was then used to generate a mutant plasmid, pCSL1-GP5-N33D, carrying
a GP5 glycosylation site mutation by the QuikChange II XL site-directed mutagenesis kit
(Agilent, Palo Alto, CA, USA) according to the manufacturer’s instructions (Figure 1B).

Recombinant infectious clones were transfected into MARC-145 cells using the Via-
Fect transfection reagent (Promega, Madison, WA, USA) according to the manufacturer’s
protocol. At 96 h after transfection, culture supernatants were collected and passaged onto
MARC-145 cells.

2.3. Indirect Immunofluorescence Assay (IFA)

IFA was performed at 48 h postinfection (p.i.) to detect the viral antigens and confirm
the rescue of viruses. Infected MARC-145 cells were fixed and stained with mouse mon-
oclonal antibody to PRRSV-2 nucleocapsid (N) protein (Median diagnostics, Chuncheon,
Korea), which were then incubated with anti-mouse Alexa Fluor 488-labeled secondary
antibody (Thermo Fisher Scientific, Cleveland, OH, USA).
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2.4. Growth Properties and Kinetics of Rescued Viruses

For comparison of the growth properties of rescued viruses, viral titers were deter-
mined in MARC-145 cells and PAMs by titration and expressed as 50% tissue culture
infectious dose (TCID50)/mL.

Growth kinetics of rescued viruses were compared in MARC-145 cells. Confluent
monolayers of MARC-145 cells in 96-well plates were infected with the rescued viruses at
a multiplicity of infection (MOI) of 0.1. After 1 h of viral absorption at 37 ◦C, cells were
washed twice and incubated in a fresh medium. At 12, 24, 48, 72, and 96 h p.i., culture
supernatants were collected and stored at −70 ◦C until use. Viral titers were measured by
titration in MARC-145 cells and expressed as TCID50/mL.

2.5. Preparation of Inactivated Vaccine

The inactivated vaccine was produced by diluting the mutant virus, vCSL1-GP5-N33D,
to 2 × 107 TCID50/mL and inactivating the virus with binary ethylamine (BEI) as previously
described [16,17]. Briefly, a BEI stock solution of 0.1 M was prepared by cyclization of
0.1 M 2-bromoethylamine hydrobromide in 0.175 M NaOH for 1 h at 37 ◦C. Then, BEI was
added to the diluted virus (2 × 107.0 TCID50/mL) in a final concentration of 1 mM. After
incubation with agitation at 37 ◦C for 24 h, BEI inactivation was terminated by adding
a sodium thiosulfate stock solution of 1 M to a final concentration of 0.1 mM. The BEI-
treated virus was passaged onto the MARC-145 cells to verify that the virus was completely
inactivated and not infective. The inactivated vaccine of 107.0 TCID50/1 mL/dose was
manufactured by mixing the viral antigen with Montanide IMS1313 VG adjuvant (SEPPIC,
Castres, France) in a 1:1 ratio.

2.6. Animal Experiment

A farrow-to-finisher farm (550 sows) endemically infected with a wild-type PRRSV-2
strain, KU-PRRSV-2020-002, was selected to evaluate the effect of the inactivated vaccine
of vCSL1-GP5-N33D. This farm of crossbred (large white-landrace-duroc triple cross)
swine was under a routine vaccination program for porcine circovirus-2 and Mycoplasma
hyopneumoniae.

A total of 15 three-week-old castrated piglets were randomly divided into two groups
by the random number generator (SPSS Inc., Chicago, IL, USA). Groups A and B consisted
of 10 and 5 pigs each, the sample size of which was determined by the resource equation
method [18]. The piglets were housed in separate pens and acclimatized for 4 days before
the initiation of the experiments. The investigators were blinded to the group allocation
throughout the experiments.

Group A was immunized intramuscularly (IM) at the left side of the neck (needle
23G, 1” long) with the inactivated vaccine of vCSL1-GP5-N33D (107.0 TCID50/1 mL/dose).
Group B was injected IM (same condition as group A) with phosphate-buffered saline
(PBS) and acted as a negative control. Clinical symptoms were monitored daily during
the experiment, and body weights were recorded at 8 weeks post-vaccination (wpv).
Enzyme-linked immunosorbent assay (ELISA) titers were measured on sera of 0, 4, 6,
and 8 wpv using the IDEXX PRRS X3 Ab Test (IDEXX Laboratories, Inc., Columbus, OH,
USA) following the manufacturer’s instructions. Sera collected at 0 and 8 wpv were also
assessed for the amount of PRRSV-specific neutralizing antibodies using the serum virus
neutralization (SVN) test.

There were no inclusion or exclusion criteria, and no animals, experimental units, or
data points were excluded from this study. All experimental protocols were approved by
the Institutional Animal Care and Use Committee of Konkuk University (No. KU21117).

2.7. SVN Test

An SVN test was performed in MARC-145 cells using the mutant virus, vCSL1-GP5-N33D.
Heat-inactivated serum samples were serially diluted two-fold in the medium. Each diluted
sample was then mixed with an equal volume of virus containing 4 × 103.0 TCID50/1 mL. The
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mixtures were incubated at 37 ◦C for 1 h and inoculated onto confluent MARC-145 cell
monolayers in 96-well plates. The cells were monitored daily for cytopathic effect (CPE),
and antibody titers were measured by CPE after 5 days of incubation.

2.8. Statistical Analysis

Researchers were blinded for group allocation during the data analysis process. Due
to the small sample size of groups A (n = 10) and B (n = 5), nonparametric tests including
the Kruskal–Wallis test and Fisher’s exact test were used to analyze the differences between
the groups. The data were presented as mean ± standard deviation (SD), and a p-value of
≤0.05 was considered to be statistically significant. The statistical analysis was performed
using IBM SPSS Statistics for Windows, Version 25.0 (IBM Corp., Armonk, NY, USA), and
graphs were drawn by GraphPad Prism for Windows, Version 6.01 (GraphPad Software,
San Diego, CA, USA).

3. Results
3.1. Generation of Mutant Viruses

A PRRSV field isolate KU-PRRSV-2020-002 was isolated and grew to high titers in
PAMs but failed to grow in MARC-145 cells. According to a previous study, chimeric
viruses containing gene regions of a MARC-145-unadaptive strain were not rescued or
displayed retarded growth [19]. To attain a mutant virus with fine replicative fitness, the
GP5 ectodomain region (93 bp) was selected for substitution of the gene regions instead
of the whole structural protein-coding region (3.3 kb) of KU-PRRSV-2020-002 (Figure 1B).
The GP5 ectodomain region includes three sites (amino acid positions 32–34, 38–39, and
57–59) related to cross-neutralization among PRRSV strains [20]. Therefore, the degree of
cross-neutralization can be significantly increased by changing these three sites of mutant
viruses into homologous amino acids with KU-PRRSV-2020-002. To further induce high
levels of neutralizing antibodies, the hypo-glycosylated mutant virus was generated by
amino acid substitution of GP5 N33 with D (Figure 1B). Previous studies reported that
the hypo-glycosylated virus exhibits enhanced immunogenicity because the neutralizing
epitope is exposed by deglycosylation [21,22]. Rescue of the mutant viruses, vCSL1-GP5-wt
and vCSL1-GP5-N33D, was confirmed by IFA in MARC-145 cells (Figure 2A).

3.2. Characterization of Mutant Viruses

Growth curve results show that the growth kinetics of the two mutant viruses (vCSL1-
GP5-wt and vCSL1-GP5-N33D) were comparable to those of the parental virus (vCSNA11)
(Figure 2B). The parental and mutant viruses reached peak titers at 72 h p.i., although
vCSL1-GP5-wt showed slightly lower peak titers than vCSNA11 and vCSL1-GP5-N33D.

The rescued viruses were able to grow in PAMs, which are the primary target cells
for PRRSV in vivo. The viral titers in PAM cells were 400- to 2500-fold lower than those in
MARC-145 cells (Figure 2C).

3.3. SVN Antibody Production upon Inoculation of Inactivated Vaccine of the Mutant Virus

In regard to the clinical signs, both groups (group A and B) remained normal through-
out the study. The body weights of the vaccinated group (group A) at 8 wpv were relatively
higher than those of the negative control (group B) (29.2 kg ± 4.2 vs. 27.4 kg ± 5.0), but
the differences were not significant (p > 0.05) (Figure 3A, Supplementary Table S1). In the
vaccinated group, 90% of pigs exhibited body weights of ≥25 kg, while only 40% of pigs in
the negative control weighed ≥25 kg at 8 wpv (Table 1).
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Figure 2. Characterization of mutant viruses. The in vitro growth characteristics were compared
among vCSNA11, vCSL1-GP5-wt, and vCSL1-GP5-N33D. (A) Indirect immunofluorescence assay
(IFA) was performed in MARC-145 cells to confirm the rescue of viruses. Bar, 200 µm. (B) The
MARC-145 cells were infected at an MOI of 0.1 to compare the growth kinetics of rescued viruses.
(C) Growth properties of rescued viruses were compared by titration in MARC-145 cells and PAMs.

Table 1. Results of the animal experiment: body weight and serum virus neutralization (SVN)
antibody titer of the two groups at 8 weeks post-vaccination (wpv). The proportion of pigs showing
body weight of <25 kg or ≥25 kg and pigs with an SVN antibody titer of <5 (log2) or ≥5 (log2) of the
vaccinated group (group A, Vac) and negative control (group B, NC) at 8 wpv.

Group
Two-Tailed p Value

A (Vac) B (NC)

Body weight at 8 wpv <25 kg 1/10 3/5 0.077
≥25 kg 9/10 2/5

SVN antibody titer at 8 wpv <5 (log2) 4/10 5/5 0.044
≥5 (log2) 6/10 0/5

Sera of the vaccinated group and negative control collected at 0 wpv tested positive
by ELISA (Figure 3B, Supplementary Table S1). At 4, 6, and 8 wpv, high sample-to-positive
(S/P) values (>1.00) were detected in both groups, and the S/P values were comparable
between the two groups.

Based on the SVN test results, the vaccinated group induced approximately 2-fold
higher SVN antibody titers, i.e., 4.40 (log2) ± 2.46 vs. 2.40 (log2) ± 1.52, than the negative
control at 8 wpv (Figure 3C, Supplementary Table S1).
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The proportion of pigs displaying SVN antibody titers of ≥5 (log2) at 8 wpv was
significantly (p ≤ 0.05) higher in the vaccinated group than in the negative control (Table 1).
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Figure 3. Results of the animal experiment: vaccine performance under field conditions. A farrow-to-
finisher farm infected with PRRSV-2, KU-PRRSV-2020-002, was selected for the animal experiment.
A total of 15 three-week-old piglets were randomly divided into groups A and B, which consisted
of 10 and 5 pigs, respectively. Group A was immunized intramuscularly (IM) with the vCSL1-GP5-
N33D inactivated vaccine (107.0 TCID50/1 mL/dose), while group B was injected IM with PBS as
negative control (NC). (A) Body weight at 8 weeks post-vaccination. The 25 kg was represented by
the horizontal dotted line. (B) Antibody response measured by ELISA. The horizontal dotted line
indicates the cutoff value of the test. (C) Neutralizing antibody titer measured against vCSL1-GP5-
N33D. The horizontal dotted line indicates the cutoff value of the test.

4. Discussion

The GP5 of PRRSV is a major envelope glycoprotein and thus acts as the main target
for neutralizing antibodies [21]. The epitope in the GP5 ectodomain is reported to be the
primary neutralization epitope of PRRSV [23]. In the GP5 ectodomain, there are three
critical sites (amino acid positions 32–34, 38–39, and 57–59) that are known to determine
the susceptibility to neutralizing antibodies [20]. According to a previous study, the titers
of neutralizing antibodies were 0 (log2) when one critical site was identical between the
two PRRSV strains but raised to 3 (log2) by point mutation of another critical site into
homologous amino acid [20]. In this study, the entire GP5 ectodomain, including all three
critical sites, was replaced with that of the lineage-1 PRRSV-2 strain (i.e., KU-PRRSV-2020-
002) to elicit neutralizing antibodies in an enhanced manner.

The neutralizing antibody responses against PRRSV are generally slow and weak,
which is related to the glycan-moieties present on the GP5 ectodomain [24]. N34 (it could be
N33 or N35 in some strains), N44, and N51 are used for N-linked glycosylation to generate
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fully glycosylated wild-type PRRSV GP5 [21]. These N-glycans mask the nearby major
neutralization epitope and save the virus from neutralization [24]. Accordingly, the loss
of glycan residues exposes the neutralization epitope and enhances the immunogenicity
of the virus [21]. A previous study has shown that a mutant PRRSV carrying a single
deglycosylation mutation at GP5 N44 induced 2-fold higher levels of neutralizing antibodies
compared to the wild-type virus [22]. Likewise, mutant PRRSVs with single or double
deglycosylation mutations at GP5 N34 and N55 produced 2- to 3-fold higher neutralizing
antibody titers than the wild-type virus [21]. In this research, a single deglycosylation
mutation at GP5 N33 was applied to the chimeric virus of KU-PRRSV-2020-002 to increase
the production of neutralizing antibodies. The hypo-glycosylated chimeric virus (i.e.,
vCSL1-GP5-N33D) was then produced as an inactivated vaccine that can be safely applied
to a swine herd.

In previous studies, PRRSV inactivated vaccines have shown questionable efficacy,
especially in PRRS-free herds [4]. The immunogenicity of inactivated vaccines was so low
that ELISA antibody responses were not detected for as long as 10 wpv, and the vaccines
did not evoke any detectable level of protective immunity after challenges [25,26]. However,
improved immunogenicity was observed in inactivated vaccines with hypo-glycosylated
GP5 [16,27]. FL12/GP5DM is a mutant PRRSV with double deglycosylation mutations at
GP5 N34 and N51, and pigs vaccinated with FL12/GP5DM inactivated vaccine displayed
neutralizing antibody titers of 3 (log2) at 6 wpv [16]. Furthermore, the FL12/GP5DM
inactivated vaccine conferred protection against homologous challenges, as demonstrated
by significantly lower levels of viremia and microscopic lung lesion scores compared to
the unvaccinated group [16]. Similarly, K418/GP5DM, a mutant PRRSV with double
deglycosylation mutations at GP5 N33 and N51, was applied as an inactivated vaccine to a
PPRS-positive herd and elicited high neutralizing antibody titers of 4.6 (log2) at 7 wpv [27].
Consistent with the results of previous studies, an inactivated vaccine of vCSL1-GP5-N33D
induced high SVN antibody titers of 4.4 (log2) at 8 wpv in a PRRS-positive herd.

The production of neutralizing antibodies is usually limited in PRRSV infection, and
PRRSV-infected pigs can clear the virus in the absence of neutralizing antibodies [28].
Nevertheless, it is generally accepted that a sufficient amount of neutralizing antibodies can
protect pigs from PRRSV infection [29]. The amount of neutralizing antibodies needed for
protection is higher in piglets than in sows, presumably because of the age dependence of
the PRRSV infection [30]. In piglets, a neutralizing antibody titer of ≥3 (log2) can block the
viremia, and a titer of ≥5 (log2) provides complete protection against PRRSV infections [30].
The present study attained a mean neutralizing antibody titer of ≥3 (log2), and 60% of pigs
had an antibody titer of ≥5 (log2). The result implies vCSL1-GP5-N33D inactivated vaccine
is protective against PRRSV infections through high levels of neutralizing antibodies.

In the current study, there were no significant differences in the body weights between
the vaccinated group and the negative control. However, the mean body weights were
relatively higher in the vaccinated group than in the negative control, so the results were
interpreted as an improvement in the growth performance of pigs. Previous studies have
shown that conventional administration of the inactivated vaccine to PPRS-positive herds
can significantly improve the health status of pigs, which agrees with the results of the
present study [31,32].

The efficacy of a PRRSV inactivated vaccine also depends on the viral inactivation
method and the adjuvant [33,34]. In a previous study, PRRSV was inactivated by various
procedures and examined for the intactness of the viral entry-associated domains [33]. Of
the inactivation methods, including formaldehyde, glutaraldehyde, ultraviolet radiation,
gamma irradiation, and BEI, the latter could preserve the entry-associated domains and
was regarded as safe from photoproducts or free radicals. In this study, high neutralizing
antibody titers were observed in pigs vaccinated with BEI-inactivated virus, which indicates
that entry-associated domains as well as neutralizing epitopes were conserved during
inactivation. Meanwhile, diverse adjuvants, including Incomplete Freund’s Adjuvant,
16% aluminum hydroxide colloidal gel, and oil-in-water (o/w) diluent, were assessed



Vet. Sci. 2022, 9, 165 9 of 11

for immunogenicity in combination with PRRSV antigens [34]. The choice of adjuvants
influenced the immunogenicity of neutralizing epitopes, and o/w adjuvant induced the
strongest neutralizing antibody responses. The present study used Montanide IMS1313
VG adjuvant based on previous publications [16,27] and confirmed that the vaccine was
appropriately immunogenic and effective.

5. Conclusions

To the best of our knowledge, this is the first study to develop a vaccine against Korean
lineage-1 PRRSV. In summary, a vaccine candidate against lineage-1 PRRSV was success-
fully generated using reverse genetics technology and named vCSL1-GP5-N33D. vCSL1-
GP5-N33D was administered to a PRRS-positive farm in the form of an inactivated vaccine
and induced high levels of SVN antibody. Since this study is not a vaccination/challenge
experiment, the protective efficacy of the vaccine candidate needs to be further evaluated
under experimental conditions. Nevertheless, the vCSL1-GP5-N33D inactivated vaccine
showed good performance in a PRRS-positive herd and proved to be a promising vaccine
candidate. The inactivated vaccine of vCSL1-GP5-N33D is expected to contribute to PRRS
control by imposing a therapeutic effect in PRRS-endemic Korean farms through high SVN
antibody titers. Furthermore, the methodology used in the generation of vCSL1-GP5-N33D
(i.e., the platform of chimeric hypo-glycosylated virus) can be applied to the production of
new vaccines against emerging PRRSV variants.
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