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Abstract

Classic Hodgkin lymphoma (CHL) characteristically shows few malignant cells in a microen-

vironment comprised of mixed inflammatory cells. Although CHL is associated with a high

cure rate, recent studies have associated poor prognosis with absolute monocyte count in

peripheral blood and increased monocyte/macrophages in involved lymph nodes. Thus, the

role of monocytic infiltration and macrophage differentiation in the tumor microenvironment

of CHL may be more relevant than absolute macrophage numbers to defining prognosis in

CHL patients and potentially have therapeutic implications. Most studies identify tumor-

associated macrophages (TAMs) using markers (e.g., CD68) expressed by macrophages

and other mononuclear phagocytes, such as monocytes. In contrast, Class A Scavenger

Receptor (SR-A/CD204) is expressed by tissue macrophages but not monocytic precursors.

In this study, we examined SR-A expression in CHL (n = 43), and compared its expression

with that of other macrophage markers. We confirmed a high prevalence of mononuclear

cells that stained with CD68, CD163, and CD14 in CHL lymph nodes. However, SR-A pro-

tein expression determined by immunohistochemistry was limited to macrophages localized

in sclerotic bands characteristic of nodular sclerosis CHL. In contrast, SR-A protein was

readily detectable in lymph nodes with metastatic tumor, extra-nodal CHL, T cell/histiocyte-

rich large B cell lymphoma, and resident macrophages in non-malignant tissues, including

spleen, lymph node, liver and lung. The results of SR-A protein expression paralleled the

expression of SR-A mRNA determined by quantitative RT-PCR. These data provide evi-

dence that tumor-infiltrating monocyte/macrophages in CHL have a unique phenotype that

likely depends on the microenvironment of nodal CHL.

Introduction

Tumor-associated macrophages (TAMs) modulate the development and progression of vari-

ous cancers. In classic Hodgkin lymphomas (CHL), the number of TAMs exceeds the number

of malignant Hodgkin and Reed Sternberg (HRS) cells [1, 2]. The importance of TAMs in

CHL is exemplified by several reports indicating that primary treatment failure and decreased
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overall survival of adult CHL patients is associated with TAM density, measured by CD68,

CD163 or colony-stimulating factor 1 receptor (CSF1R) immunoreactivity in diagnostic

lymph node specimens [3–8]. In contrast, other studies have shown no prognostic association

with CD68 or CD163 expression in adult CHL [9–12]. These discrepant results may relate to

diverse patient populations, disease characteristics (e.g., morphologic subtype and EBV status),

the methods and threshold values used to quantify macrophage infiltration, or the differentia-

tion/activation state of TAMs [6, 7, 13].

Antibodies commonly used to immunohistochemically define TAMs in CHL include

CD68, CD163, CD14, or CSF1R. Monoclonal antibodies to CD68 (KP1 and PG-M1) recognize

macrosialin, a glycoprotein associated with lysosomes/endosomes, and bind to tissue macro-

phages, monocytes, granulocytic precursors, and fibroblasts [14–16]. CD163 is a glycoprotein

belonging to the scavenger receptor superfamily [17, 18]. CD163 immunostaining is largely

restricted to peripheral blood monocytes and subpopulations of tissue macrophages [18, 19].

Similarly, CSF1R is a receptor tyrosine kinase expressed on myeloid cells, including mono-

cytes, macrophages, and osteoclasts [20, 21]. CD14 is marker of mature monocytes, and is vari-

ably expressed on tissue macrophages and follicular dendritic cells [22, 23]. Thus, each of these

commonly used “macrophage-specific” markers may be detected on monocytes and other cell

types.

The class A scavenger receptor (SR-A; CD204), a pattern recognition cell surface receptor

that mediates endocytosis, adhesion, phagocytosis, and cell signaling, is induced during mono-

cyte to macrophage differentiation [24–28]. SR-A expression is restricted to tissue macro-

phages with little detectable expression in other cell types [29, 30]. SR-A expression has been

detected on TAMs in gliomas [31], pancreatic [32], kidney [33], esophageal [34], lung cancer

[35], and T cell lymphoma [36]. SR-A expression by TAMs is associated with tumor progres-

sion in some, but not all of these tumor types [37]. Based on cell expression pattern, SR-A may

be a more specific marker that distinguishes TAMs from other cell types and monocytes.

Because SR-A is a marker of differentiated macrophages, we compared the expression pat-

tern of CD68, CD163, CD14 and SR-A in CHL tumor microenvironment. We found that

most of the cells identified with CD68 and/or CD163 were negative for SR-A, with SR-A stain-

ing limited to macrophages in the collagenous bands characteristic of nodular sclerosis CHL

(NSCHL). Notably, SR-A expression was readily detected in resident macrophages of the

spleen, lymph node, liver, and lung, and in both nodal T cell/histiocyte-rich large B cell lym-

phoma (THRLBCL) and nodal metastatic carcinoma. The results of SR-A protein expression

by immunohistochemistry paralleled SR-A mRNA expression determined by quantitative

RT-PCR. The lack of SR-A expression on infiltrating cells in the microenvironment of nodal

CHL, independent of histologic subtype, Epstein Barr viral (EBV) status and relapsed disease,

indicates that these cells are immunophenotypically distinct from resident macrophage popu-

lations and TAMs in THRLBCL and nodal metastatic carcinoma.

Materials and methods

Sample selection

In this retrospective case analysis, we reviewed 43 cases of CHL (41 nodal and 2 non-nodal-

liver and spleen), 4 cases of THRLBCL, and 5 lymph nodes with metastatic colon cancer. The

diagnosis of CHL and THRLBCL were reviewed and confirmed by two clinical hematopathol-

ogists (GP and CY) based on morphologic features and immunohistochemical studies as

defined by the WHO Classification [38, 39]. Nonmalignant tissues known to have differenti-

ated macrophages, including spleen (n = 2), lymph node (n = 1), liver (n = 2), and lung (n = 2)

were selected as positive controls for antibody staining. Formalin-fixed and paraffin-
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embedded tissue (FFPE) specimens were sectioned at 5 μm for immunohistochemical staining

or at 10 μm for RNA isolation. This study was reviewed by the University of Arkansas for Med-

ical Sciences Institutional Review Board (IRB) which determined that this project is not

human subject research as defined in 45 CFR 46.102.

Immunohistochemistry

All cases of CHL were immunostained with antibodies to SR-A and CD68 with a subset also

immunostained with antibodies to CD163 (n = 18) and/or CD14 (n = 22). Cases of THRLBCL,

metastatic tumor, and control tissues were also immunostained with antibodies to SR-A,

CD68, CD163, and CD14. Immunohistochemistry was performed using two monoclonal anti-

bodies to SR-A (MRS1; clone OTI9ES; 1:150 and clone UMAB 246; 1:600; OriGene), CD68

(Clone KP-1; Roche), CD163 (Clone MRQ-26 Cellmarque), CD14 (Clone EPR3653; Ventana),

CD30 (Clone Ber-H2; Ventana) and CD20 (Clone L26 Ventana). Antigen retrieval and immu-

nostaining for SR-A was performed manually in the UAMS Experimental Pathology Core

using heat-induced epitope retrieval in 1mM EDTA in 10mM Tris buffer (pH 9.0) at>15 PSI

(Biocare) for 20 minutes. Tissue sections were then incubated with goat anti-mouse (SR-A)

followed by avidin-biotin-peroxidase complex (Dako) and developed with diaminobenzadine.

All other antibodies were processed on an automated stainer (Ventana).

The intensity, pattern, and percent of CD68, CD163, CD14 and SR-A (clone OTI9ES) posi-

tive cells for each case was recorded by a third pathologist blinded to the final pathology (MQ).

A second SR-A antibody (clone UMAB246) was used to stain a representative case for each tis-

sue in order to confirm staining results with OTI9ES, but was not quantified. Statistical analy-

sis was performed using a one-way ANOVA and Tukey’s post-hoc test to compare relative

staining in control tissues, lymph nodes with metastatic tumor and CHL.

RNA isolation and reverse transcription

Total RNA was extracted from sections of FFPE tissues using an RNA isolation kit (Qiagen

RNeasy1 FFPE; Valencia CA) according to the manufacturer’s recommendations. Briefly,

two 10 μm thick sections from paraffin embedded tissue blocks were deparaffinized, incubated

in lysis buffer containing proteinase K and DNase, and then applied to RNA-binding columns.

The columns were washed with ethanol and RNA eluted in water. RNA samples were analyzed

spectrophotometrically on a Nanodrop (NanoDrop 1000 Spectrophotometer, Thermo Fisher

Scientific Inc, Wilmington, DE). Only samples with OD 260/280 ratio 1.7–2.1 were used for

reverse transcription. cDNA was synthesized from 1 μg RNA by using the high capacity cDNA

reverse transcription kit (Applied Biosystems) according to manufacturer’s recommended

protocol.

Real time quantitative PCR

A subset of recent (<4 years old) CHL lymph node cases (2 NSCHL, 2 MCCHL, 1 LRCHL),

lymph nodes with metastatic tumor, and control tissues were randomly selected for quantita-

tive real-time PCR (qRT-PCR) analysis. qRT-PCR was performed using predesigned Applied

Biosystems Taqman1 real-time PCR gene expression assays (ThermoFisher) using 25 ng of

cDNA and 10 nM gene-specific DNA primers [SR-A (Assay ID# Hs00234007), CD163 (Assay

ID# Hs00174705), CD68 (Assay ID# Hs02836816), and GAPDH (#Hs03929097)] in a 20 μl

reaction. An Applied Biosystems StepOne1 Plus Real-Time PCR System was used for amplifi-

cation using the assay-specified optimized parameters. Total RNA that was not reverse tran-

scribed was used as a negative control. SR-A and CD163 expression in tissues were normalized

to CD68 in the same sample, and then the normalized expression was compared with

SR-A expression in CHL
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expression in THP-1 cells (ATCC, TIB202) that were differentiated to macrophages by cultur-

ing for 3 days in medium containing 200 ng/ml phorbol myristic acid (PMA).

Results

The forty-three cases of CHL identified in the pathology database and analyzed in this study

are summarized in Table 1. Of the 43 cases, 33 (77%) were subclassified as nodular sclerosis

(NSCHL) variant, six cases (14%) were mixed cellularity (MCCHL), two cases were lympho-

cyte rich (LRCHL) (4.5%), and two cases (4.5%) were extra-nodal (i.e., unclassified). The

majority of cases involved lymph nodes (38/43), were EBV negative (19 of 27 cases with

known EBV status), and represented diagnostic tumor specimens (33/43); the remaining ten

specimens were relapsed disease.

SR-A expression in nodal CHL

CHL histologic variants (NSCHL, MCCHL, LRCHL) were immunostained for CD30 to iden-

tify malignant HRS cells, and for CD68, CD163, and CD14 to identify TAMs (Fig 1). Consis-

tent with previous reports, CD68, CD163, and CD14 antibodies strongly stained cells in the

CHL tumor microenvironment in each of the variants. A majority of cells that were positive

for CD68 (reference marker for macrophages) were also stained with CD163 and CD14. In

contrast, the pattern of SR-A staining was distinctly different than that of CD68, CD163, and

CD14. Specifically, SR-A immunostaining was negative in macrophages that were in close

proximity to CD30 positive HRS tumor cells (i.e., TAMs). When detected, SR-A positive mac-

rophages were only associated with the sclerotic bands associated with NSCHL. The staining

pattern of SR-A in nodal CHL was similar when detected using a different monoclonal SR-A

antibody (clone UMAB246).

The overall results comparing CD163, CD14, and SR-A (OTI9ES) staining of TAMs in

CHL with that of CD68 (reference marker for macrophages) are summarized in Fig 2. There

was strong overlap (67%, p = 0.0003) between CD163 and CD68 staining of cells in tissues (Fig

2A). Similarly, CD14 stained 72% (p = 0.002) of the CD68 positive cells. There was no differ-

ence (p = 0.81) between CD163 and CD14 with respect to staining CD68 positive cells. Impor-

tantly, SR-A showed a pattern of staining in CHL that was significantly different than CD68,

CD163, and CD14, with an overall staining of 15% (p<0.0001) of the CD68 positive cells (Fig

2A). Consistent with SR-A staining in fibrotic bands of NSCHL, this subtype tended to have

more SR-A positive cells than other CHL subtypes, although this difference was not significant

(p>0.05); Fig 2B). Although the number of cases was low, there was no apparent differences in

staining overlap based on positive EBV status (green), relapsed disease (blue) or both (red).

Table 1. Summary of cases.

Number

(% total)

Site (n) EBV+

(n = 27)

Relapsed

(n = 10)

Nodal CHL Subtype

Nodular Sclerosis 33

(77%)

Lymph node (31)

Mediastinum (2)

3

1

8

0

Mixed Cellularity 6

(14%)

Lymph node (5)

Mediastinum (1)

1

1

1

0

Lymphocyte Rich 2

(4.5%)

Lymph node (2) 0 0

Extra-nodal (unclassified) 2

(4.5%)

Spleen (1)

Liver (1)

1

1

1

0

https://doi.org/10.1371/journal.pone.0224621.t001
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Fig 1. Expression pattern of monocyte/macrophage markers in nodal CHL. Shown are hematoxylin and eosin

(H&E) and immunostaining patterns of different cellular markers in FFPE sections from representative CHL

SR-A expression in CHL
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However, given that SR-A was not detected in the tumor microenvironment of any of the

nodal CHL cases, it is reasonable to conclude that the lack of SR-A expression in this environ-

ment is independent of EBV status and relapsed disease.

SR-A expression in tissue macrophages

Resident macrophages are found in several tissues including splenic red pulp cords, lymph

node, liver (Kupffer cells), and lung (alveolar macrophages). Given the unexpected absence of

SR-A staining in TAMs compared to CD68, CD163 and CD14 in nodal CHL, we examined

the staining pattern of these immunohistochemical markers in tissue-resident macrophage

populations. Both CD68 and CD163 stained red pulp mononuclear cells in the spleen, sinus

histiocytes in the lymph node, hepatic Kupffer cells, and alveolar macrophages of the lung (Fig

3). The staining pattern of CD14 differed from that of CD68 and CD163, being positive in a

small subset of mononuclear cells in the splenic red pulp, nodal and hepatic sinuses, pulmo-

nary parenchyma and hepatic sinusoidal lining cells; but negative in alveolar macrophages and

hepatic Kupffer cells. As reported previously [23], CD14 also uniquely labeled follicular den-

dritic cells in the germinal centers of lymph nodes. In contrast to the staining pattern of nodal

CHL, SR-A staining of tissue-resident macrophages in these tissues was similar to both CD68

and CD163 (Fig 3).

The overall results comparing CD163, CD14, and SR-A staining of resident mononuclear

cells with that of CD68 are summarized in Fig 4. There was no difference between CD163 and

CD68 staining of cells in tissues (p = 0.363); whereas, CD14 stained 16% (p<0.0001) of the

CD68 positive cells. The low degree of overlap reflects CD14 staining many cells that were not

CD68 positive (Fig 3). Although the overall cellular staining of SR-A in tissues was lower than

that of CD68 (60%; p = 0.014), SR-A showed a staining pattern similar to both CD68 and

CD163 (Fig 3), with the lowest amount seen in lymph nodes where SR-A staining was limited

to mononuclear cells in the sinus (Fig 3).

SR-A expression in other malignancies and non-nodal CHL

Having established that SR-A staining differed between nodal CHL and tissue-resident macro-

phages, we examined the staining patterns of the monocyte/macrophage markers in other

tumor microenvironments including lymph nodes with metastatic colon cancer, CHL involv-

ing the liver, and THRLBCL. Similar to CHL, THRLBCL is a B cell lymphoma with a small

number of malignant B cells in a background of reactive T cells and histiocytes. The goal of

these studies was to determine if SR-A stains TAMs in lymph nodes involved by a different B

cell lymphoma and metastatic carcinoma and in CHL involving non-nodal tissue. As shown in

Fig 5, CD68, CD163, CD14, and SR-A staining (OTI9ES and UMAB246) were detected in

nodal THRLBCL and lymph nodes with metastatic colon cancer. Interestingly, in contrast to

SR-A staining of nodal CHL, SR-A expression in TAMs of extra-nodal CHL (liver) was com-

parable to both CD68 and CD163 (Fig 5). Using CD68 as a reference macrophage marker, we

found the overall cellular overlap in these malignancies was 101% (p = 0.88) for CD163, 60%

(p = 0.06) for CD14, and 60% (p = 0.02) for SR-A (Fig 6).

morphologic variants [nodular sclerosis (NSCHL, left panels), mixed cellularity (MCCHL, middle panels) and

lymphocyte rich (LRCHL, right panels)]. CD30 immunoreactivity was used to identify malignant HRS cells.

Antibodies to CD68, CD163 and CD14 were used to stain monocyte/macrophages, and staining patterns for these

antibodies compared with that of SR-A using two different monoclonal antibodies (clones OTI9ES and UMAB246).

Notably, monocyte/macrophages in proximity to the malignant cells in nodal CHL were positive for these three

monocyte/macrophage markers. In contrast, antibody staining for SR-A in nodal CHL was limited to the fibrotic

bands characteristic of NSCHL.

https://doi.org/10.1371/journal.pone.0224621.g001
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Fig 2. Analysis of CD163, CD14, and SR-A expression compared to CD68 in CHL lymph nodes. Tissue sections of nodal CHL

stained with CD68, CD163, CD14, and SR-A (OTI9ES) were scored by a pathologist. (A) The graph depicts the percent of CD68

positive cells that were also stained with CD163, CD14, or SR-A. � denotes significant differences (p<0.05) from CD68 assessed by

SR-A expression in CHL
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SR-A expression by qRT-PCR

The absence of SR-A staining determined by immunohistochemistry indicates that TAMs in

nodal CHL are phenotypically different than resident tissue macrophages, and TAMs in other

one-way t-test; # denotes significant difference (p<0.05) from CD163 and CD14 determined by one-way ANOVA and Tukey’s post-

hoc test. (B) SR-A staining relative to CD68 in nodal CHL based on morphologic subtype. As shown in Fig 1, SR-A staining of the

NSCHL was detected in fibrotic bands (Green symbol: EBV positive cases; Blue symbol: relapsed disease; Red symbol: EBV positive,

relapsed disease).

https://doi.org/10.1371/journal.pone.0224621.g002

Fig 3. Expression pattern of monocyte/macrophage markers in spleen, lymph node, liver, and lung. Shown are

representative H&E and immunostaining patterns of resident tissue monocyte/macrophages in FFPE sections of

spleen, lymph node, liver, and lung. SR-A staining (OTI9ES and UMAB246) shows a similar pattern to CD68 and

CD163 in the splenic cords and sinus histiocytes (lymph nodes), Kuppfer cells (liver) and alveolar macrophages (lung).

CD14 staining was different from the other macrophages markers in splenic red pulp cords, Kuppfer cells (liver), and

alveolar macrophages (lung).

https://doi.org/10.1371/journal.pone.0224621.g003
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Fig 4. Analysis of CD163, CD14 and SR-A expression compared to CD68 in resident tissue monocyte/macrophages. A)

Tissue-resident monocyte/macrophages in FFPE sections of spleen, lymph node, liver, and lung were immunostained and scored

SR-A expression in CHL

PLOS ONE | https://doi.org/10.1371/journal.pone.0224621 November 12, 2019 9 / 19

https://doi.org/10.1371/journal.pone.0224621


malignancies including extranodal CHL, THRLBCL, and lymph nodes with metastatic carci-

noma. To provide additional support for this observation, we quantified CD68, CD163, and

SR-A expression by qRT-PCR of RNA isolated from FFPE blocks in a subset of cases and dif-

ferentiated human THP-1 macrophages (Fig 7). To account for potential differences in macro-

phage numbers, the expression of CD163 and SR-A were normalized to CD68 in the same

sample, and then results expressed as a fraction of CD68 expression detected in THP-1 macro-

phages. CD163 expression was readily detected in nodal CHL (NSCHL, MCCHL variants),

lung and liver (tissue) and did not differ between NSCHL and MCCHL subtypes (Fig 7A). In

contrast, SR-A expression, which was readily detected in both lung and liver, could not be reli-

ably detected in nodal CHL, except at low levels in NSCHL (Fig 7B).

Discussion

Increased macrophage infiltration has been associated with adverse prognosis in adult nodal

CHL. This association was originally established from results of gene expression profiling that

showed over-representation in the gene signatures of monocyte/macrophages and from

immunohistochemistry using antibodies to CD68 [4]. To provide additional insight regarding

the immunophenotype of TAMs in CHL, cases of nodal CHL were immunostained for SR-A.

In contrast to CD68, CD163, and CD14 which are expressed by monocytes and macrophages,

SR-A expression is restricted to differentiated tissue macrophages. Our results show that cellu-

lar SR-A immunoreactivity is similar to that of CD68 in nonmalignant tissue-resident macro-

phages (Figs 3 and 4), lymph nodes with metastatic carcinoma, nodal THRLBCL and extra-

nodal CHL (Figs 5 and 6). In contrast, the mononuclear cells in nodal CHL strongly express

CD68, CD163 and CD14, but SR-A expression in nodal CHL was not detected in the cell-rich

tumor microenvironment and was limited to the sclerotic bands characteristic of the NSCHL

(Fig 1). The findings of decreased SR-A protein expression by immunohistochemistry paral-

leled qRT-PCR results showing a lack of SR-A mRNA in nodal MCCHL and low-level tran-

scripts in nodal NSCHL. SR-A staining of resident tissue macrophages, macrophages in extra-

nodal CHL, and macrophages other tumor microenvironments support the conclusion that

the lack of SR-A staining of mononuclear cells in nodal CHL reflects a monocytic phenotype

that is unique to the microenvironment of nodal CHL.

Notably, SR-A expression was identified on CD68 positive macrophages in the fibrotic

bands characteristic of NSCHL (Fig 1). Malignant HRS cells induce IL-6 secretion by fibro-

blasts [40], and secrete cytokines such as IL-13, TNF-α and TGF-β that not only modulate

SR-A expression in human monocyte-derived macrophages [41–44], but also increase fibro-

blast proliferation and deposition of a collagen-rich extracellular matrix characteristic of

the NSCHL [45]. SR-A mediates the adhesion of macrophages to extracellular matrix and

may enhance their retention at sites of matrix deposition (e.g., sclerotic bands) [46–56].

This matrix-rich environment may be distinct from that of the cell-rich, matrix-poor envi-

ronment in nodal CHL. Expression of SR-A only in the sclerotic bands characteristic of

nodal NSCHL suggests that macrophages in this matrix-rich microenvironment may be

exposed to factors, such as collagen, that regulate macrophage retention and monocyte-

macrophage differentiation.

for the percent of CD68 positive cells that also stained with CD163, CD14, or SR-A (OTI9ES). Symbols represent the percent of

CD68 positive cells that were co-stained in individual samples. Bars depict the means and range for the individual tissue type. B)

Average of CD68 positive monocyte/macrophages that also stained with CD163, CD14, or SR-A across tissue types. Bars depict

the mean and SEM. � denotes significant differences (p<0.05) from CD68 assessed by one-way t-test; # denotes significant

difference (p<0.05) from CD163 determined by one-way ANOVA and Tukey’s post-hoc test.

https://doi.org/10.1371/journal.pone.0224621.g004
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Fig 5. Expression pattern of monocyte/macrophage markers in nodal T cell/histiocyte-rich large B cell Lymphoma

(THRLBCL), nodal metastatic colon cancer, and hepatic CHL. Shown are representative H&E and immunostaining

SR-A expression in CHL
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The absence of SR-A expression in nodal CHL could arise from different mechanisms.

First, SR-A expression may be selectively down-regulated in macrophages in the immediate

tumor microenvironment. Macrophage migration inhibitory factor (MIF) and macrophage

colony-stimulating factor (M-CSF), cytokines that regulate SR-A expression [57], are present

in the CHL tumor microenvironment. Treatment of primary monocytes with M-CSF stimu-

lates their differentiation into macrophages and increases SR-A expression [21, 58–61]. Other

factors, including TLR ligands [62], high glucose [63], and ligands for SR-A [59] also increase

macrophage expression of SR-A. Interestingly, following removal of stimulus, SR-A expression

returns to its original basal level [59]. In contrast, IL-6, IFN-γ, TNF-α, and TGF-β reportedly

reduce SR-A expression by 50–70% in human monocyte-derived macrophages [41–44]. How-

ever, to our knowledge there are no reports of signals that completely inhibit macrophage

expression of SR-A. Therefore, it seems unlikely that the absence of SR-A expression by TAMs

in the immediate tumor microenvironment in nodal CHL results from the selective repression

of SR-A transcription.

SR-A expression is absent in monocytes and becomes expressed during their differentiation

into macrophages [24–28]. Thus, another mechanism for the lack of SR-A expression in

TAMs of nodal CHL is that SR-A expression was not upregulated during the differentiation of

recruited monocytes. In support of such a possibility, GM-CSF reportedly significantly

reduces, although does not completely block, the induction of SR-A expression during the dif-

ferentiation of human monocyte-derived macrophages [64]. Although we cannot exclude the

possibility that failure to detect SR-A in nodal CHL results from a failure to induce SR-A dur-

ing macrophage differentiation, it seems unlikely because TAMs in extra-nodal CHL, TAMs

in other tumors, and resident tissue macrophages all express SR-A indicating that such a

mechanism would be unique to TAMs in the tumor microenvironment of nodal CHL.

An alternative explanation is that TAMs in the microenvironment of nodal CHL are not

fully differentiated macrophages. In addition to not expressing SR-A, this possibility is sug-

gested by the finding that the inflammatory cells strongly express the monocyte marker CD14,

as well as CD163 and CD68, antigens shared by monocytes and macrophages. This is relevant

because adverse outcome in CHL patients is predicted by an absolute monocyte count >750

cells/μL in peripheral blood at diagnosis [65]. Further, in CHL patients with relapsed disease

post-allotransplant, tumor-infiltrating mononuclear cells are derived from circulating mono-

cytes and not resident macrophages [66]. Functionally, Vari et al recently showed that in adult

CHL PD-L1/CD163/CD14 expressing mononuclear cells suppress NK cell activation [67].

Together, these results indicate a potential role for recruited monocytes in CHL pathogenesis.

Overall, our results indicate that in nodal CHL, regardless of morphologic variant, EBV sta-

tus or relapsed disease, monocytes are recruited into the tumor microenvironment but do not

differentiate into a TAM phenotype characteristic of tissue-resident macrophages or TAMs in

other settings. Therefore, identifying the unique factors in the nodal microenvironment of

CHL that underlie monocyte infiltration and result in restricted differentiation will advance

our understanding of the complexity of TAM phenotypes and may suggest novel therapeutic

strategies for treating CHL patients.

patterns of monocyte/macrophages in FFPE sections of nodal THRLBCL (left panels), nodal metastatic colon

carcinoma (center panels) and extra-nodal CHL (right panels). CD20 identifies malignant B cells in THRLBCL,

cytokeratin (CK) shows malignant metastatic tumor cells, and CD30 detects malignant HRS cells in CHL. SR-A

staining (OTI9ES and UMAB246) shows a similar pattern to CD68, CD163 and CD14 in each tissue.

https://doi.org/10.1371/journal.pone.0224621.g005
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Fig 6. Analysis of CD163, CD14, and SR-A expression in TAMs. A) Tumor-associated macrophages present in sections of

THRLBCL, metastatic colon cancer, and hepatic CHL were immunostained and scored for the percent of CD68 positive cells that

SR-A expression in CHL
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also stained with CD163, CD14, or SR-A (OTI9ES). Symbols represent the percent of CD68 positive cells that were co-stained in

individual samples. Bars depict the means and range for the individual tumor types. B) Average of CD68 positive TAMs that also

stained with CD163, CD14, or SR-A across tumor types. Bars depict the mean and SEM. � denotes significant differences (p<0.05)

from CD68 assessed by one-way t-test; # denotes significant difference (p<0.05) from CD163 determined by one-way ANOVA and

Tukey’s post-hoc test.

https://doi.org/10.1371/journal.pone.0224621.g006

Fig 7. CD163, CD14 and SR-A expression in nodal CHL, lung and liver assessed by qRT-PCR. Total RNA was prepared from

FFPE sections of nodal NSCHL (n = 2) and MCCHL (n = 2), from tissue (lung and liver), and differentiated THP-1 macrophages

(positive control). After reverse transcription, qRT-PCR was used to quantify expression of CD68, CD163, and SR-A. Relative

expression of CD163 and SR-A in macrophages was calculated by normalizing their Ct values to that of CD68 in the same sample

(ΔCt), and then to their expression in THP-1 macrophages (ΔΔCt). CD163 expression was readily detected in nodal CHL and

lung/liver (tissue), and to a lesser extent in NSCHL and MCCHL. SR-A expression was readily detected in tissue, but was only

detected at very low levels in NSCHL and not detected (ND) in MCCHL.

https://doi.org/10.1371/journal.pone.0224621.g007
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