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Abstract: Liver cirrhosis is one of the most prevalent chronic liver diseases worldwide. In addition
to viral hepatitis, diseases such as steatohepatitis, autoimmune hepatitis, sclerosing cholangitis
and Wilson’s disease can also lead to cirrhosis. Moreover, alcohol can cause cirrhosis on its own
and exacerbate chronic liver disease of other causes. The treatment of cirrhosis can be divided
into addressing the cause of cirrhosis and reversing liver fibrosis. To this date, there is still no clear
consensus on the treatment of cirrhosis. Recently, there has been a lot of interest in potential treatments
that modulate the gut microbiota and gut-liver axis for the treatment of cirrhosis. According to
recent studies, modulation of the gut microbiome by probiotics ameliorates the progression of liver
disease. The precise mechanism for relieving cirrhosis via gut microbial modulation has not been
identified. This paper summarizes the role and effects of the gut microbiome in cirrhosis based on
experimental and clinical studies on absorbable antibiotics, probiotics, prebiotics, and synbiotics.
Moreover, it provides evidence of a relationship between the gut microbiome and liver fibrosis.
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1. Introduction

Cirrhosis refers to scarring of liver tissue caused by long-term damage that prevents
the liver from functioning properly. It is also called the end-stage of liver disease because
it occurs after other stages of liver injury [1]. This can lead to serious, life-threatening
complications such as bleeding, liver failure, or encephalopathy. There is currently no
improved cure for liver cirrhosis. The only way is to manage symptoms and complications,
in addition to slowing the progression of cirrhosis. If the liver is severely damaged, the only
treatment option may be a liver transplant. The cost burden of cirrhosis treatment ranges
from $14 million to $2 billion, depending on the cause of the disease [2].

Recently, several diseases have been found to be influenced by processes in the gut
microbiome. Gut microbiome has also been implicated in interactions with certain drugs,
including some psychiatric medications. Many studies have been performed to slow the
progression of liver disease due to the modulation of the gut microbiome in nonalcoholic
fatty liver disease [3,4]. These results showed that such changes in the gut microbial
community can cause disorders in immune regulation which leads to disease.

Cirrhosis patients have altered gut-liver axis related to gut and systemic inflammation
associated with changes in liver disease severity, damage to the gut barrier, and changes in
the composition and function of gut microbiota [5]. Additionally, previous studies have
reported that Lachnospiraceae and Ruminococcaceae are associated with the development of
cirrhosis [6,7]. In addition to these changes, it is demonstrated that alteration in the function
of bacteria which includes increased release of endotoxin and decreased conversion of
primary bile acids to secondary bile acids may lead to cirrhosis [8]. Therefore, it can
be surmised that the modulation of the gut microbiome plays an important role in the
progression of cirrhosis.

Research on the relationship between dysbiosis and cirrhosis may not only predict the
onset of cirrhosis but may also lead to discovery of novel treatments. Previous studies have
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demonstrated that microbiota targeted biomarkers can be a useful tool for the diagnosis
of various diseases which includes liver cirrhosis [9]. Based on this, recent studies using
antibiotics, probiotics, prebiotics, and synbiotics are being performed to suppress the
progression of liver fibrosis by the modulation of the gut microbiome.

2. Liver Cirrhosis

Liver cirrhosis is defined as the late stage of liver fibrosis caused by several forms of
liver disease and conditions, including hepatitis and chronic alcoholism [1]. It results from
excessive production of extracellular matrix under chronic injury [10]. The mechanism of
liver fibrosis is variable, depending on causes such as alcohol, hepatitis virus, or bile acids.
The first step generally involves damage to liver cells by an injury that generates oxygen
free radicals and inflammatory materials, following which Kupffer cells and inflammatory
cells are activated and recruited. And then hepatic stellate cells are activated. This is the
general mechanism of liver fibrosis [11–13]. Hepatic stellate cells, which occur in the space
of Disse, play a major role in liver fibrosis [12].

Although liver fibrosis is a local reaction of the liver to chronic injury, serum levels of
fibrogenic cytokines, extracellular matrix proteins, and degradation products are markedly
increased in cases of advanced fibrosis (bridging fibrosis or cirrhosis) [14]. The matrix
metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases,
are proteins important in the matrix degradation. The finding that MMPs are expressed
in hepatic injury indicates degradation of normal extracellular matrix may contribute to
liver fibrosis. In a previous report, MMPs and microbiome are associated with fibrosis
in respiratory disease [15]. MMPs play a central role in extracellular matrix remodeling
in normal physiology. Each MMPs are associated with different stages of liver injury,
including disease resolution, liver inflammation, fibrosis, cirrhosis and hepatocellular
carcinoma.

The most common causes of cirrhosis are viral hepatitis (HV), nonalcoholic steatohep-
atitis (NASH), and alcoholic liver disease (ALD) [16]. Hepatocellular carcinoma (HCC)
occurs in the background of a cirrhotic liver [17]. However, there is still no clear consensus
for cirrhosis treatment Therefore, thus far, the goal of cirrhosis treatment is management of
symptoms and complications.

In the past, the liver damage resulting from illness, excessive drinking of alcohol,
or other cause was considered to be irreversible. Recently, however, many studies utilizing
animal models provided evidence that cirrhosis may be reversible. In addition, some
clinical studies have also shown the regression of cirrhosis on repeated biopsy samples [18].
Further research should be conducted in regards to therapeutic agents that may play a role
in reversing cirrhosis.

3. Gut Microbiome

The gut microbiota in the human digestive tract consists of bacteria, protozoa, fungi,
archaea, and viruses [19]. The gut microbiota is a complex ecosystem with a total mass
of about 1–2 kg per person [20]. Most people have a population of bacteria in the gut
that is about 10-factor number of cells in the body [21]. The gut microbiota is responsible
for preventing and eliminating the invasion of pathogens, in addition to maintaining the
balance of the immune system and preventing autoimmunity [22,23]. The gut microbiota
is associated with essential health benefits, particularly in regards to immune homeostasis.

Birth and breastfeeding help form an infant gut microbiota that gradually matures
in childhood in response to environmental exposure, after which the gut microbiota is
relatively stable until changes in immune function leads to diminishing diversity [24].
Humans have an interdependent relationship with the gut microbiota. More than 90% of
human gut microbiota consists of four major divisions: Bacteroidetes, Firmicutes, Proteobac-
teria, and Actinobacteria [25]. However, in those with compromised immune systems or
with a progressive disease, the proportion and diversity of the intestinal microorganisms
are different when compared to those of healthy people. In regards to this subject, animal
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models and patients of various diseases had their microbiota analyzed for composition
and diversity [26].

In our previous study, we have demonstrated that mice on westernized diet were as-
sociated with decrease in Bacteroidetes and increased Firmicutes in their gut when compared
to normal mice [3]. According to other studies, gut microbiota plays an important role in
the host, which includes host immunity, food digestion, intestinal endocrine regulation,
drug action and metabolism, and toxin elimination [27].

Metagenomic pyrosequencing of stool microbiota has given the way for the finding
of novel genes from plenty microorganisms, and the analysis of whole genomes from
community DNA sequence data [28]. Patients with cirrhosis revealed marked decrease
in the functional genes involved in nutrient processing, including amino acids, lipids
and nucleotides metabolism [28]. In a previous report, ammonia production and gamma-
aminobutyric acid biosynthesis were enriched in patients with liver cirrhosis by their
comparative metagenomic analysis with gene functional classification [9].

4. Gut-Liver Axis

The gut and liver communicate through tight bidirectional links through the biliary
tract, portal vein, and systemic circulation [29]. The close relationship between the gut
and liver underlies the modulatory effect of gut microbiota on liver health [30]. Moreover,
dysbiosis, which refers to quantitative and qualitative changes in gut microbiota and its
overgrowth, may lead to an increase in intestinal permeability. As a result, endotoxins are
transferred to the portal vein, leading to the activation of signaling pathways of various
inflammatory cytokines in the liver [20]. Microbial products serving as pathogen-associated
molecular patterns bind to toll like receptor (TLR) and activate the Kupffer cells, stimulating
innate immune responses, including inflammatory cytokines. Various toxin binds to
TLR4 and activates TLR9 [31]. TLR2 is bound by lipoprotein or peptidoglycan of Gram
(+) microbiota [32]. Plasma endotoxin levels are elevated with the progression of liver
cirrhosis [33].

Bile acid is the important factor in the axis between the liver and the gut. The main
primary bile acids are synthesized by the liver and are combined with taurine or glycine
to be secreted into bile. Thereafter, the synthesized bile is stored in the gallbladder and
delivered to the small intestine. Gut microbiome generate secondary bile acids, including
deoxycholic acid and lithocholic acid, by deconjugation and dihydroxylation and are
reabsorbed into the enterohepatic circulation at the ileum. bile acids are important not only
for the absorption of vitamins and dietary fats but also as ligands for the nuclear receptor
farnesoid X receptor and the Takeda-G-protein coupled receptor [34,35]. Therefore, the
close interaction between the gut and the liver can be a major factor in the pathogenesis of
liver damage and liver disease progression.

5. Dysbiosis and Bacterial Translocation

Dysbiosis is a term for a microbial imbalance or maladjustment inside the body. This
state of imbalance can be caused by changes in the number of microbes in a particular
population that can have a profound influence on energy and immune homeostasis, which
result in significant metabolic and immunologic effects on the host [36]. This persistent
imbalance of gut microbial community is accompanied by a wide range of systemic symp-
toms of gastrointestinal diseases such as inflammatory bowel disease and irritable bowel
syndrome, obesity, type 2 diabetes, and atopy [37]. As such, the imbalance of the microbiota
can serve as an indicator for pathological state.

Dysbiosis is associated with gut barrier dysfunction and immunity since the micro-
biota and its products modulate barrier function by affecting the epithelial inflammatory
response and mucosal repair function [38]. Previous studies have shown that cirrhosis
is associated with altered immune responses that potentially allows dysbiosis or altered
microbiota in the stool, intestinal mucosa, ascites, liver, serum, and saliva [39]. For this
reason, many studies are being performed to investigate the possibility of alleviating cir-



Int. J. Mol. Sci. 2021, 22, 199 4 of 16

rhosis by modulating the gut microbiome. Dysbiosis of the gut is related with various
human diseases such as obesity [40], metabolic disease [41], diabetes mellitus [42], vascular
disease [43], chronic liver disease [44,45] and neuroinflammatory disease [46]. Neuropsy-
chologically, bidirectional interaction (gut-brain axis) between brain and gut microbiome
via neurological or immunological mechanisms is closely related with dysbiosis.

Bajaj et al. suggested that the recto-sigmoid mucosa-microbiota in cirrhosis revealed a
lower abundance of autochthonous bacteria (Subdoligranulum, Dorea, and Incertae Sedis XIV
other) and a higher abundance of potentially pathogenic bacteria (Enterococcus, Clostridium,
Burkholderia, and Proteus) [47]. Other study demonstrated that Veillonella, Megasphaera,
Dialister, Atopobium and Prevotella were increased in cirrhotic patients [6].

Theoretically, considering the recovery function of the intestinal microflora to a healthy
state, the modulation of dysbiosis might be considered as a potential therapeutic option for
treating liver cirrhosis. This hypothesis has been recently demonstrated by some strong
evidences [48–52] (Figure 1).
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Figure 1. Dysbiosis and diseases. AST, aspartate aminotransferase; ALT, alanine aminotransferase; T-BIL, total bilirubin;
ALB, albumin; MDA, malondialdehyde; SOD, superoxide dismutase; GSH, Glutathione; CTP, Child-Turcotte-Pugh; MELD,
model for end-stage liver disease; Col, Collagen; Timp, tissue inhibitor of metallopeptidase; TGF, transforming growth
factor; α-SMA, alpha-smooth muscle actin; TNF- α, tumor necrosis factor alpha; Zo-1, zonula occludenes-1; BA, bile acids;
BCL-2, b-cell lymphoma 2.

In fibrosis and cirrhosis, intestinal dysbiosis, gut barrier dysfunction, and systemic
immunologic dysfunction cause bacterial translocation [53]. Bacterial translocation, is
defined as the migration of viable intestinal microorganisms or their products to the
mesenteric lymph nodes or other sites. The liver is a central immunological organ that
is composed with innate immune cells and constantly exposed to circulating endotoxins
derived from intestinal microbiome [54]. Intestinal immune dysregulation due to intestinal
immune system abnormalities is main event in patients with cirrhosis. With cirrhosis
progression, intestinal immune dysregulation and gut dysbiosis worsened.

6. Treatment for Cirrhosis

The liver is the organ that metabolizes and detoxifies various compounds. Therefore,
toxicity from the most common and serious drug should be considered. Therefore, recent
studies are trying to find a treatment for liver disease using pharmabiotics. The main
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approach in the treatment of liver cirrhosis is anti-fibrosis therapy that targets the liver
fibrosis-generating mechanism irrespective of the cause of cirrhosis. In order to develop
effective treatments for liver fibrosis, the molecular pathogenesis and treatment of liver
fibrosis have been exhaustively investigated over the last two decades. As a result, some
candidates with anti-fibrotic effects in animal experiments have been found; however,
most of these have not been verified for use in human beings. Recently, since intestinal
microbes have been identified as the cause of liver disease, treatment using intestinal
microbes has emerged. Summarizing the reported data, modulation-related therapeutic
effects were mostly associated with inflammation, and the use of pharmabiotics has shown
improvement in inflammatory and immune mechanisms.

6.1. Cirrhosis and Antibiotics

People with cirrhosis, especially those with decompensated cirrhosis, have an in-
creased risk of bacterial infection, which can further promote other hepatic decompensa-
tion, including liver failure [55]. In theory, antibiotics may eliminate deleterious bacteria
and their efficacy in treating liver disease has been proven in research [56]. For this reason,
many studies are being performed to investigate antibiotics treatment in the context of
cirrhosis (Table 1). Traditional antibiotics may not be effective in controlling microbiota
due to side effects and the emergence of antibiotic resistance [57]. Nevertheless, treatment
with rifaximin has shown promising results in relieving cirrhosis while modulating gut
microbiota. Furthermore, ingestion of probiotics can ameliorate cirrhosis of the liver, in
addition to many immune effects involving various cytokines such as IL-6, TNF-a, and
IL-1B. Rifaximin is a gastrointestinal selective antibiotic with a wide range of antimicrobial
activity, minimal drug interactions and negligible effect on the overall gut microbiome [58]
(Table 1). In a study in EtOH-induced liver injury in obese mice, treatment with rifaximin
increased proportion of the Bacteroidales and decreased alanine aminotransferase (ALT)
and triglycerides (TG) levels via modulation of small intestine [59].

Most treatments for hepatic encephalopathy patients rely on manipulation of the
intestinal environment, so antibiotics acting on the gut represent the main treatment strat-
egy [60]. In previous research, rifaximin treatment effects were shown to decrease the risk
of recurrent encephalopathy [61]. Patients with cirrhosis who developed candidemia also
were shown with a lower rate of candidemia when treated with rifaximin [62]. Cirrhotic
patients with refractory ascites when given rifaximin were associated with mitigated ascites
and increased survival [63]. As such, rifaximin may be effective but how it affects these
therapeutic outcomes remains unknown. It is not yet clear to what extent antibiotics can
control the composition and diversity of gut microbiota in a variety of clinical settings.
Another study showed that rifaximin-α treatment had no effects on macrophage activation
and disruption of fibrosis [64]. Another previous study has shown that in cirrhotic patients,
treatment by rifaximin reduced Veillonellaceae and secondary/primary BA ratios [65]. It sug-
gests that cirrhosis is associated with a reduced conversion of primary to secondary Bas,
which is associated with the abundance of major gut microbiota such as Enterobacteriaceae,
Lachonospiraceae, Ruminococcaceae and Blautia. In a randomized controlled trial of patients
with advanced cirrhosis, treatment with norfloxacin did not reduce mortality, but signif-
icantly reduced the incidence of Gram-negative bacterial infections without increasing
infections due to multiple resistant bacteria [66].

Antibiotics have a significant direct or indirect effect on the intestinal microbiota
and some changes disappear immediately after stopping antibiotic treatment, but others
remain indefinitely [67]. Antibiotics for cirrhosis prevent bacterial infection and other
cirrhosis complications such as recurrent varicose bleeding and death. However, their
widespread use has led to development of antibiotic resistance, which makes standard em-
pirical antibiotics for suspected infections ineffective and perhaps reduces the effectiveness
of antibiotic prophylaxis. To prevent the occurrence of antibiotic resistance, an empirical an-
tibiotic strategy, step-down rules, and antibiotic pharmacokinetics, and pharmacodynamic
administration strategies should be formulated.
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Moreover, antibiotics affect the bacteria that cause infections as well as the resident
microbiota [68]. Antibiotics are used with the intention of removing pathogenic bacteria and
inhibiting proliferation, but due to their broad-spectrum activity, they can indiscriminately
kill or inhibit a subset of symbiotic microbes [69]. It may result in the decrease of taxonomic
richness, diversity, and evenness of the community. Although this side effect has long been
appreciated, advances in sequencing technologies enable a detailed study of how antibiotics
alter the gut microbiome. Direct effects on the immune system, reproducibility in terms of
duration and frequency of antibiotic exposure, antibiotic resistance, and individualized
response to the same treatment all influence the outcome of antibiotic studies. It is necessary
to develop strategies to mitigate the effects of antibiotics on the immune system.

Table 1. Animal and human studies using antibiotics.

Conditions Treatment Main Results Ref

Animal EtOH-induced liver
injury in obese mice Rifaximin

(↓): ALT, TG
(↑): Proportion of the
Bacteroidales

[59]

Human

HE Rifaximin (↓): Recurrent
encephalopathy [61]

Cirrhosis developing
candidemia Rifaximin (↓): Rate of candidemia [62]

Cirrhotic patients with
refractory ascites Rifaximin

(↑): Ascites and
survival of cirrhotic
patients

[63]

Cirrhosis Rifaximin-α

No effects on
macrophage activation
and disruption of
fibrosis

[64]

Cirrhosis Rifaximin
(↓): Veillonellaceae,
secondary/primary BA
ratios

[65]

Advanced cirrhosis Norfloxacin

(↓): Incidence of
Gram-negative
bacterial infection
(↑): Survival of patients
with low ascites protein
concentration

[66]

Cirrhosis
Poorly/non-
absorbable
antibiotics

(↓): Hepatic venous
pressure gradient [70]

HE (review) Antibiotics
Rifaximin

Improve cognition,
inflammation, quality
-of-life and driving
simulator performance

[60]

↑ indicates an increase in condition, ↓ indicates a decrease in condition, ALT, alanine aminotransferase; BA, bile acids; HE, hepatic
encephalopathy; TG, triglycerides

6.2. Cirrhosis and Probiotics

Probiotics are defined as live microorganisms such as bacteria or yeasts of human
origin that provide health benefits when consumed [71]. Many studies have been conducted
on patients with non-alcoholic fatty liver disease and irritable bowel syndrome using
different types of probiotics in different settings [72,73] (Table 2). Current studies have
shown that probiotics regulates the gut microbiota by promoting the growth of beneficial
bacteria and reducing harmful bacteria in the gut [74,75].
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Bile duct ligation (BDL) is a surgical method that is used to induce liver fibrosis.
It leads to acute progress to cirrhosis with portal fibrosis [76]. In the BDL model, BA de novo
synthesis was decreased after the administration of Lactobacillus rhamnosus GG. In addition,
the administration resulted in the reduction of aspartate aminotransferase (AST), ALT,
alkaline phosphatase, and total bilirubin (TBIL) serum levels and α-SMA, Col1, Col3,
and transforming growth factor (TGF)-β mRNA levels [77]. Carbon tetrachloride (CCl4)
is typically used to create models of liver fibrosis and cirrhosis [78]. In a study using
CCl4 injection to induce liver cirrhosis in mice, mixture of S. cerevisiae and L. acidophilus
protected mice from inflammation, hepatic oxidative stress by reducing MAPK signaling
and increasing SIRT1 signaling [79]. In another study, L. fermentum and L. plantarum
administration was associated with reduced AST, ALT, MDA, SOD, GSH, and interleukin
(IL)-1β levels; in contrast Bcl-2 was increased [80]. In rats CCl4 injection and treatment with
L. salivarius LI01, and Pediococcus pentosaceus LI05 were associated with reduction of the
collagen type 1a (Col1a), tissue inhibitor of metallopeptidase 1 (Timp1), and TGF-β when
compared with the control group. Moreover, these strains increased the expression of tight
junction protein Zo-1 [81]. In the EtOH-induced model, combination with L. fermentum
resulted in reduced AST, ALT, iNOS, and Hsp60 [82]. This study suggests probiotics are
associated with therapeutic potential in alcoholic liver disease. Mixture of L. paracasei,
L. casei, and Weissella confusa treatment significantly lowered serum enzyme levels, less
inflammation, and less fibrosis on TAA-induced liver fibrosis in rats [83]. In this experiment,
rats were fed 109 CFU/mL microbial cells daily by oral gavage.

In a human study, randomized patients were given VSL#3 probiotics for 6 months.
Patients who received probiotics were associated with decreased hepatic encephalopathy
incidence, and child–pugh score (CTP) and model for end-stage liver disease (MELD)
scores were also reduced [84]. In another study, Bifidobacterium breve, L. acidophilus, L.
plantarum, L. paracasei, L. bulgarius and Streptococcus thermophilus treatment of patients with
hepatic encephalopathy improved CTP score and psychometric hepatic encephalopathy
scores [85]. In clinical trials, the effects of treatment with the probiotic L. rhamnosus
GG in patients with cirrhosis were evaluated [86]. This study showed that ingestion
of L. rhamnosus GG decreased Enterobacteriaceae, endotoxemia and tumor necrosis factor
(TNF)-α. The fecal microbiome composition of Lachnospiraceae was increased and harmful
bacteria was reduced after ingestion of L. rahmnosus GG. The study concluded that L.
rhamnosus GG modulates the gut microbiome, metabolome and endotoxemia in cirrhosis
patients. In another study, treatment by C. butyricum combined with B. infantis in minimal
hepatic encephalopathy in hepatitis B virus-induced cirrhosis patients were associated
with decreased Enterococcus, Enterobacteriaceae, and ammonia levels [87]. Moreover, their
cognitive ability was improved.

Subsequently, various studies with patients and animal models of liver fibrosis are
aiming to investigate the improvement of liver fibrosis and cirrhosis following the ingestion
of probiotics. However, well-designed long-term clinical trials with probiotics are required
to assess the probiotics’ effects on the progression of liver disease and regression of liver
fibrosis. Further research to elucidate the mechanism underlying the role of probiotics in
modulating the gut microbiome study is required.

6.3. Cirrhosis and Prebiotics

Prebiotics were first identified and defined as an indigestible food ingredient that
has a beneficial effect on improving host health by selectively stimulating the growth or
activity of bacteria by Roberfroid and Gibson in 1995 [88]. Namely, prebiotics are food
ingredients that induce the growth or activity of beneficial microorganisms in the gut.
The food ingredients can feed the gut microflora, and the products of their breakdown such
as short chain fatty acids are released into the blood circulation, which affect not only the
gastrointestinal tract, but also other distant organs [89]. Sources of prebiotics include breast
milk, soybeans, inulin, raw oats, unrefined wheat, unrefined barley, yacon, undigestible
carbohydrates, and undigestible oligosaccharides [90].
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Table 2. Animal and human studies using probiotics.

Conditions Treatment Main Results Ref

Animal

BDL L. rhamnosus GG

(↓): BA de novo synthesis, ALT, AST, ALP,
TBIL, a-SMA, Col1, Col3, TGF-β, Timp1,
Mmp2, F4/80, TNF-α, IL-6, IL-1B
(↑): FGF-15, BA excretion

[77]

CCl4

Mixture of
Saccharomyces cerevisiae
+ L. acidophilus

(↓): hepatic oxidative stress, ER stress,
inflammation, MAPK signaling, AST, ALT,
Col1, α-SMA
(↑): SIRT1 signaling

[79]

L. fermentum

(↓): Inflammation, AST, ALT, MDA, SOD,
GSH, IL-1β, Bax, TNF-α, Caspase 3↓,
NF-κB, p65
(↑): Bcl-2

[80]

L. plantarum
(↓): ALT, AST, MDA, SOD, GSH, IL-1β,
TNF-α, Bax, NF-κB p65, Caspase
(↑): Bcl-2

L. salivarius LI01
(↓): AST, ALT, GGT, TLR2,4,5,9, intestinal
barrier integrity, Col1a, Timp1, TGF-B
(↑): Zo-1 [81]

P. pentosaceus LI05 (↓): AST, ALT, GGT, TLR2,4,5,9, Col1a,
Timp1, TGF-β(↑): Zo-1

EtOH L. fermentum (↓): steatosis score, iNOS, Hsp60, AST, ALT [82]

TAA Mixture of L. paracasei +
L. casei + W. confusa

(↓): serum enzyme levels, inflammation,
fibrosis [83]

Human

Cirrhosis with HE

VSL #3: L. (acidophilus +
delbrueckii
subspbulgaricus + casei +
plantarum) +
Bifidobaceria (breve +
longum + infantis) + S.
salivarius
subspthermophilus

(↓): CTP score, MELD score, IL-1β, IL-6,
TNF-α, Indole, Renin, Aldosterone,
Brain-type natriuretic peptide

[84]

Cirrhosis without overt HE

B. breve, L. acidophilus, L.
plantarum, L. paracasei,
L. bulgaricus, S.
thermophilus

(↓): CTP score, psychometric hepatic
encephalopathy scores [85]

Cirrhotic with MHE L. rhamnosus GG
(↓): Enterobacteriaceae, endotoxemia, TNF-a
(↑): Clostridiales, Lachnospiraceae relative
abundance

[86]

Minimal MHE in
HBV-induced Cirrhosis

Clostridium butyricum +
B. infantis

(↓): Enterococcus, Enterobacteriaceae,
ammonia level
(↑): Cognitive ability

[87]

↑ indicates an increase in condition, ↓ indicates a decrease in condition, ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST,
aspartate aminotransferase; α-SMA, alpha-smooth muscle actin; BA, bile acids; Bax, Bcl-2-associated X protein; BCL-2, b-cell lymphoma
2; BDL, bile duct ligation; CCl4, carbon tetrachloride; Col; Collagen, type; CTP, Child-Turcotte-Pugh; EtOH, ethylalcohol; GGT, gamma
glutamyl peptidase; GSH, Glutathione; HBV, hepatitis B virus; HE, hepatic encephalopathy; HSP, heat shock proteins; IL, interleukin;
iNOS, inducible nitric oxide synthase; MAPK, mitogen-activated protein kinase; MDA, malondialdehyde; MELD, model for end-stage
liver disease; MHE, minimal hepatic encephalopathy; Mmp, matrix metallopeptidases; NF-κB, nuclear factor kappa-light-chain-enhancer
of activated B cells; SIRT, selective internal radiation therapy; SOD, superoxide dismutase; TAA, thioacetamide; TG, triglycerides; TGF,
transforming growth factor; TBIL, total bilirubin; Timp, tissue inhibitor of metallopeptidase; TLR, toll-like receptor; TNF- α, tumor necrosis
factor alpha; Zo-1, zonula occludenes-1

Garlic consumption is known to be beneficial in various liver diseases [91]. In one
study, ingestion of garlic polysaccharides reduced the ratio of AST, ALT, TGF-B1, and TNF-a
in the acute liver failure model [87] (Table 3). In addition, garlic polysaccharides affected the
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gut microbiota, resulting in an increase in Lachnospiraceae and Lactobacillus and a decrease
in Facklamia and Firmicutes. With the CCl4-injected mice, which is a widely known liver
cirrhosis model, studies on intake of various prebiotics have been performed. Ingestion
of polysaccharides from Grifola frondosa decreased AST, ALT, TBIL, MDA, TNF-α, IL-
1β, and IL-6, and increased SOD and GSH-Px [92]. In this study, it was reported that
polysaccharides from Grifola frondosa inhibited oxidative stress and inflammatory reactions
to regulate the TGF-β1 / Smad signaling pathway and slow the progression of liver fibrosis.
In addition, the ingestion of Dendrobium officinale polysaccharide was shown to alleviate
fibrosis tissue and reduce intestinal mucosa damage [93]. Because the expression of Bax
and caspase-3 proteins was downregulated, the expression of occludin, claudin-1, zonula
occludenes-1 and Bcl-2 proteins was upregulated. In another study, olive oil combined
with Lycium barbarum polysaccharide improved hepatocellular death, inflammation, and
fibrosis markers in liver cirrhosis induced rat model [94]. It was shown that TGF-β1,
TNF-α, and Timp-1 were decreased, and IL-10, IL-10/TNF-α were increased. Inulin is an
indigestible storage polysaccharide that is found in many vegetables [95]. In the alcohol
animal model, inulin was shown to increase intestinal content of propionic acid, butyric
acid and valeric acid [96]. Short chain fatty acids with a small number of carbon atoms,
such as propionic acid and butyric acid, are partially absorbed and are reported to inhibit
cholesterol synthesis in the liver and promote the decomposition of low density lipoprotein
cholesterol [97].

Non-absorbable disaccharides are recommended as the main treatment for hepatic
encephalopathy since their beneficial effects involve the reduction of the intestinal pro-
duction and absorption of ammonia [98]. Lactitol, one of the non-absorbable disaccharide,
is a crystalline powder sweetener similar in sweetness to sugar [99]. In a previous study,
a randomized clinical trial was performed in which people with cirrhosis and hepatic
encephalopathy were given lactitol [100]. Although there were no statistical differences
between randomized clinical trials when evaluating hepatic encephalopathy, lactitol intake
was associated with beneficial effects on the quality of life. It also had beneficial effects on
mortality versus placebo.

Table 3. Animal and human studies using prebiotics.

Conditions Treatment Main Results Ref

Animal

ALF Garlic polysaccharide
(↓): AST, ALT, MDA, TC, TG, TGF-β1, TNF-α,
Lachnospiraceae, Lactobacillus
(↑): SOD, GSH-Px, GSH, Firmicutes, Facklamia

[87]

CCl4

Polysaccharides from
Grifola frondosa

(↓): AST, ALT, TBIL, MDA, TNF-α, IL-1β, IL-6
(↑): SOD, GSH-Px [92]

Dendrobium officinale
polysaccharide

(↓): Bax, caspase 3, TNF-α, α-SMA
(↑): occludin, claudin-1, ZO-1, Bcl-2 TEER, IL-10 [93]

Olive oil combined
with Lycium barbarum
polysaccharides

(↓): TGF- β1, TNF-α, Timp-1
(↑): IL-10, IL-10/TNF-α [94]

ALD Inulin (↓): iNOS, inflammation, TNF-α
(↑): propionate, butyrate, valeric, IL-10 [96]

Human Cirrhosis with HE Lactitol (↓): Mortality [100]

↑ indicates an increase in condition, ↓ indicates a decrease in condition, ALD, alcoholic liver disease; ALF, alcoholic liver fibrosis; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; α-SMA, alpha-smooth muscle actin; Bax, Bcl-2-associated X protein; CCl4,
carbon tetrachloride; GSH, glutathione; HE, hepatic encephalopathy; IL, interleukin; MDA, malondialdehyde; SOD, superoxide dismutase;
TC, total cholesterol; TG, triglycerides; TGF, transforming growth factor; TBIL, total bilirubin; TNF-α, tumor necrosis factor-alpha

A number of studies continue the investigation of new polysaccharides for the devel-
opment of effective treatments for liver damage and liver disease [101]. Further research on
the mechanism by which probiotics can play a role as a therapeutic agent for liver cirrhosis
by modulating the gut microbiome is further needed.
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6.4. Cirrhosis and Synbiotics

Synergistic combinations of probiotics and prebiotics are defined as synbiotics [90].
Synbiotics were developed to overcome possible survival difficulties for probiotics. As well
as promoting the growth of probiotics and bacteria, synbiotics contribute to a more efficient
homeostasis in the gut and maintenance of a healthy body [102].

In a previous study, hepatic encephalopathy patients were treated with a mixture of
four probiotics (L. paracasei + L. plantarum + L. mesenteriodes + P. pentosaceus) in combination
with four fibers (oat bran, pectin, resistant starch, and inulin) [103] (Table 4). There were
no significant differences between randomized groups at baseline. In cirrhosis patients
with minimal hepatic encephalopathy and not overt hepatic encephalopathy showed
that treatment of synbiotics which consisted of mixture of four probiotics (P. pentoseceus
+ L. mesenteroides + L. paracasei + L. plantarum) with three fibers (beta glucan + pectin +
resistant starch) was associated with decreased TBIL levels in serum and increased albumin
levels [104].

Table 4. Human studies using synbiotics.

Conditions Treatment Main Results Ref

Human

HE

Mixture of 4 probiotics (L. paracasei + L.
plantarum + Leuconostoc mesenteriodes +
P. pentosaceus) with 4 fibers (oat bran,
pectin, resistant starch, and inulin)

No change in cognitive
function [103]

Cirrhosis with MHE

Mixture of 4 probiotics (P. pentoseceus +
Leuconostoc mesenteroides + L. paraacasei
+ L. plantarum) with 3 fibers (beta
glucan + pectin + resistant starch)

(↓): TBIL
(↑): ALB [104]

↑ indicates an increase in condition, ↓ indicates a decrease in condition, ALB, albumin; HE, hepatic encephalopathy; MHE, minimal hepatic
encephalopathy; TBIL, total bilirubin

7. Cirrhosis and Gut Microbiome

The liver is the organ that is in closest contact with the gut tract and is exposed to a sub-
stantial number of bacterial components and metabolites. Previous studies have proposed
that microbiota-based biomarkers may be a tool to diagnose cirrhosis [9]. For example,
cirrhosis patients have increased bacteremia, increased levels of serum lipopolysaccharides,
and increased intestinal permeability [105].

Alcoholic liver disease is caused by various factors which includes genetics, immune
system, dietary components, and the gut microbiota. In a previous study, a subgroup
of alcoholic liver disease patients exhibited dysbiosis with lower median abundances of
Bacteroidetes and higher levels of Proteobacteria [106]. Certain microorganisms can induce
alcoholic liver disease, while others can exert beneficial effects and have protective effects.
In addition, in cirrhosis patients, Bacteroidetes were shown to be decreased significantly,
while Proteobacteria and Fusobacteria were increased significantly when compared to healthy
people [6]. These findings suggest the important role of gut microbiome in patients with
cirrhosis.

The major role of the gut microbiota in liver disease is also supported by various
studies showing that several complications of serious liver disease, such as hepatic en-
cephalopathy are efficiently treated by the modulation of gut microbiome via use of
probiotics, prebiotics and antibiotics [107]. The pathogenesis of cirrhosis and the precise
function of gut microbiome are not yet clear, but these findings that improvement in liver
cirrhosis-induced animals and patients highlight the importance of modulation of the
gut microbiome, suggesting novel approaches for therapeutic strategies for liver fibrosis.
The modulation of gut microbiota with a healthy diet that helps gut microbial activity
such as fiber-based, multi-biotics based supplements, and transplantation of a fecal micro-
biome from healthy subjects to promote the growth of “good” microbiota may ameliorate
dysbiosis in patients and improve their prognosis [108].
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Most of the studies used 16S rRNA sequencing, and detailed analysis up to the genus
level was possible. Future studies should focus on metagenomics where we can reach
up to species-level of microbes by using total DNA sequencing (shotgun metagenomics).
And then, we can identify and characterize biological mechanisms that drive the human
response to an intervention of pharmabiotics.

8. Conclusions

The gut-liver axis plays an important role in the pathogenesis of liver diseases, in-
cluding liver fibrosis and cirrhosis. Chronic liver disease, especially fibrosis and cirrhosis,
are serious disease with many side effects. The fact that liver cirrhosis is related to the
microbiome and the possibility that it can be treated by controlling the microbiome is
expected to affect the development and health improvement in the medical field in the
future. Therefore, it is necessary to evaluate the manipulation of the intestinal microbiota
in the context of liver cirrhosis

Consequently, a comprehensive understanding of the pathology of liver cirrhosis
is important for improving clinical outcomes, as integrated signaling pathways appear
to play an important role in pathogenesis of liver cirrhosis. Further studies are needed
to study the interaction between gut microbes and the host immune system in order to
elucidate the pathogenesis of liver fibrosis and open new opportunities in immunity or
gut microbiome-based treatments. Future trials of probiotics, prebiotics, and synbiotics
are recommended to include metagenomic and/or metabolomic analysis for evaluation of
their effects and their possible backgrounds.
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Bax Bcl-2-associated x protein
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CCl4 Carbon tetrachloride
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EtOH Ethyl alcohol
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HSP Heat shock proteins
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iNOS Inducible nitric oxide synthase
MAPK Mitogen-activated protein kinase
MDA Malondialdehyde
MHE Minimal hepatic encephalopathy
MELD Model for end-stage liver disease
Mmp Matrix metallopeptidases
NF-κB Nuclear factor kappa-light-chain-enhancer of activated b cells
SIRT Selective internal radiation therapy
SCFAs Short chain fatty acids
SOD Superoxide dismutase
TAA Thioacetamide
TEER Transepithelial electrical resistance
TG Triglycerides
TBIL Total bilirubin
Timp Tissue inhibitor of metallopeptidase
TLR Toll-like receptor
TNF-α Tumor necrosis factor alpha
Zo-1 Zonula occludenes-1
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