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ABSTRACT: Synthesizing high-density fuels from non-food
biomass is of great interest in the field of biomass conversion
because they can increase the loading capability and travel distance
of vehicles and aircraft as compared to conventional low-density
biofuels (<0.78 g/cm®). In this work, we reported a new and facile
strategy for the synthesis of high-density biofuels with polycyclic
structures from lignocellulose-derived 5,5-dimethyl-1,3-cyclohex-
anedione and different aldehyde derivatives in two steps under
mild reaction conditions, including a developed tandem reaction
and a hydrodeoxygenation reaction. Theoretical approaches were
used to estimate the fuel properties, which indicate that the
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obtained biofuels have a high density of 0.78—0.88 g/cm?® and high net heat of combustion (NHOC) values of 44.0—46.0 MJ/kg. A
representative biofuel 3¢ was measured to have a high NHOC of 43.4 MJ/kg, which matched well with the calculated NHOC value
of 44.4 MJ/kg, indicating the high accuracy of the theoretical approaches. This work is expected to provide a green strategy for the
synthesis of polycyclic high-density biofuels with platform chemicals.

B INTRODUCTION

Biofuel is sustainable green energy, which is considered as an
alternative liquid fuel for fossil fuels."> However, it is very
challenging to obtain high-density jet and diesel range biofuels
because the direct degradation and subsequent hydrodeoxyge-
nation (HDO) of biomass typically offer small molecules with
CS and C6, wherein the carbon number is far behind the
prerequisite of gasoline and diesel fuels.”* In order to produce
long-chain alkanes, a range of catalytic approaches have been
developed, such as Fischer—Tropsch synthesis.5 In these
processes, light molecules are converted to biofuels, which
match the gasoline/diesel range through formation of C—C
chains. However, the Fischer—Tropsch transformation process
is unable to give good selectivity toward specific products.’
Multifunctional heterogeneous catalysts, such as zeolites, are
able to catalyze the formation of C—C bonds in a controlled
process, but the inherent instability in hot water and the site
blocking in the vapor phase reduce the efficiency of
catalysts.”

Constructing ring-structure biofuels with increased carbon
numbers is one of the most popular strategies for jet and diesel
range biofuels because ring-structure biofuels typically have
higher densities than chain-structure biofuels with the same
carbon numbers.'”'! Moreover, ring-structure biofuels gen-
erally have a higher energy content than linear or branched
chain-structure biofuels'>"” because the release of ring strain of
ring-structure biofuels often generates extra energy. Therefore,
it is of great interest for researchers in academia and industry
to synthesize high-energy ring-structure biofuels, which can
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offer a higher loading capacity or longer travel distance of
trucks and aircraft with limited oil tank volume.

However, it is a challenge to achieve ring-structure
molecules from biomass-derived chemicals with simple and
low-cost processes. Lignocellulose is the most abundant carbon
source on the earth, which is typically segregated into glucose
monomers with C5 and C6.” These small molecules can be
directly converted into biofuels by the HDO reaction.'”'> The
obtained biofuels are often gas-range biofuels with a low
density (<0.77 g/cm?®) and a low volumetric net heat of
combustion (NHOC) (<34 MJ/L), which might not be
suitable for heavily loaded transport vehicles and aircrafts.
Connecting the biomass-derived platform chemicals is a
popular strategy to increase the density and energy content,
especially connecting ring-structure biomass-derived mole-
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Harvey ~ and Zou™ wused pinene as the raw

cules.'®
material to synthesize a pinene dimer-based biofuel with a high
density of 0.94 g/cm®. Zhang et al. reported that isophorone
can be dimerized to a biofuel with a high density of 0.86 g/

cm®*' However, these starting materials are generally obtained
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from some specific woods and plants, the resource of which is
limited in nature.

Efforts have been made on exploring new synthesis strategies
to produce ring-structure high-density biofuels with biomass-
derived chemicals from common bioresources such as
agricultural wastes and forest residues. Lignocellulose is a
typical biomass, which comprises lignin, hemicellulose, and
cellulose. Lignin can be degraded into benzene derivatives,
which can be converted into cycloalkanes and bicycloal-
kanes.”””’ They can also be converted into fused-ring structure
biofuels with a high density up to 0.99 g/cm®'> Hemicellulose
and cellulose can be degraded into various chemicals with
carbonyl and hydroxyl groups. Among them, furfural and its
derivatives have been the most investigated molecules for ring-
structure high-density biofuels because they can be sub-
sequently converted to cyclopentanone. A series of bi-
(cyclopentane)- and tri(cyclopentane)-based biofuels have
been synthesized from cyclopentanone by Zhang”**® and
Zou."' However, coupling methods (such as aldol condensa-
tion and hydroxyalkylation/alkylation) of the C—C bond of
cyclopentanone, cyclohexanone, and furfural/benzaldehyde
derivatives are catalyzed by solid base or solid acid
catalysts.”*>” Generally, reactions catalyzed by a solid base
need more amounts of catalyst (>0.1 equiv) and a high
reaction temperature (>100 °C), and more byproducts would
be produced, resulting in a low yield of products. Highly
efficient methods under green reaction conditions are desired
for the synthesis of high-density ring- structured biofuels.

Green reactions have become critical objectives in modern
organic chemistry to improve the reaction efficiency, avoid
toxic reagents, and reduce wastes.”®* "' Reactions occurring in
water’>~>* or under solvent-free conditions”**> accord with
the green chemistry concept in modern organic synthesis. A
tandem reaction is a powerful method to meet the demands of
modern synthesis with high efficiency in terms of minimization
of synthetic steps.”*™** A cascade sequence often can lead to
the target molecules by combining a series of reactions in one
synthetic operation. For example, S,5-dimethyl-1,3-cyclohex-
anedione, with a highly active methylene and a six-membered
ring skeleton, has been used in synthesis of heterocyclic
compounds through a multistep tandem reaction.”~** Herein,
new synthesis strategies have been reported to produce high-
density biofuels with furfural/benzaldehyde derivatives and
S,5-dimethyl-1,3-cyclohexanedione in two steps including a
catalyst-free tandem reaction in water or a solvent-free tandem
cyclization reaction and the following HDO reaction. The
catalyst-free tandem reaction comprises a Knoevenagel
condensation, followed by a Michael addition reaction. The
solvent-free tandem cyclization reaction contains a Knoevena-
gel condensation, a Michael addition reaction, and an
intramolecular cyclization reaction. These reactions are
performed under green conditions, which represent clean,
economical, efficient, and safe procedures. More importantly,
the reactants furfural/benzaldehyde derivatives and S,5-
dimethyl-1,3-cyclohexanedione can all be obtained at the
industrial scale from biomass. For example, furfural was
obtained at the industrial scale from agricultural wastes and
forest residues.” Benzaldehyde was prepared by oxidation of
cinnamaldehyde or cinnamon oil, and cinnamaldehyde or
cinnamon oil can be obtained directly from biomass.**~*¢ 5,5-
Dimethyl-1,3-cyclohexanedione was obtained with a common
reaction from acetone and malonic acid (shown in Figure S1)
that was produced from the glucose fermentation process.””**

Therefore, a series of polycyclic high-density biofuels with two
or three cyclohexane structures and alkyl chains were
synthesized from the above raw materials as shown in Scheme
1.

Scheme 1. Synthesis Routes of Polycyclic High-Density
Aviation Biofuels from Furfural/Benzaldehyde Derivatives
and $,5-Dimethyl-1,3-cyclohexanedione
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B RESULTS AND DISCUSSION

Butyraldehyde and S,5-dimethyl-1,3-cyclohexanedione were
used as starting materials for the synthesis of high-density
biofuels (Figure la). Butyraldehyde can be obtained from
butanol produced from the fermentation of lignocellulose at
the industrial scale.”” ™" It is interesting to notice that when
butyraldehyde was mixed with $,5-dimethyl-1,3-cyclohexane-
dione, the reaction spontaneously occurred at room temper-
ature, and no catalyst was necessary. Briefly, butyraldehyde (1
equiv) and S,5-dimethyl-1,3-cyclohexanedione (2 equiv) were
stirred in a round-bottom flask with water as the solvent for 4
h. The products precipitated in the solution without adding
any precipitants, which were purified by simple filtration,
washing, and drying to afford 2a at a modest isolated yield of
76%. Then, 2a was hydrodeoxygenated by Pd/C (purchased
by Beijing InnoChem Science & Technology Co. Ltd.) at 220
°C to afford 3a with a yield of 86%. The obtained final product
3a was a mixture composed of C20 and C12 with carbon yields
of 80 and 6%, respectively. In the process, the yields of
intermediates and the yields of HDO products were calculated
according to the following equations. For intermediates,
isolated yield was used, which is the ratio of the mass of the
target compound obtained after post-treatment to the
theoretical mass: isolated yield (%) = (actual quality of target
product/theoretical quality of target product) X 100%.
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Figure 1. Synthesis process of dicyclohexane biofuels from (a) butyraldehyde or (b) furfural/S-methyl furfural and S5,5-dimethyl-1,3-
cyclohexanedione. Catalyst-free tandem reaction in water, reaction conditions: $,5-dimethyl-1,3-cyclohexanedione (2 mmol, 2.0 equiv),
butyraldehyde or furfural derivatives (1 mmol, 1.0 equiv), H,O (5 mL), rt, 2 h, isolated yield; (b) HDO, reaction conditions: precursors (0.5
mmol), Pd/C,qy (50 mg), Hf(OTY), (0.025 mmol), AcOH (1 drop), cyclohexane (S mL), H, (4 MPa), 220 °C, 24 h, carbon yield.
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Figure 2. Synthesis process of dicyclohexane biofuels from benzenaldehyde derivatives and $,5-dimethyl-1,3-cyclohexanedione. (a) Catalyst-free
tandem reaction in water, reaction conditions: 5,5-dimethyl-1,3-cyclohexanedione (2 mmol, 2.0 equiv), benzaldehyde derivatives (1 mmol, 1.0
equiv), H,O/EtOH (4:1, S mL), rt, 2 h, isolated yield; (b) HDO, reaction conditions: precursors (0.5 mmol), Pd/C,q (50 mg), AcOH (1 drop),
cyclohexane (S mL), H, (4 MPa), 220 °C, 24 h, carbon yield.
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Table 1. Synthesis Conditions of 2d’
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76 0
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90 0
77 0
81 0
87 trace
77 trace
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“Conditions: 5,5-dimethyl-1,3-cyclohexanedione (2 mmol), benzaldehyde (1 mmol), PTSA (0.1 mmol), solvent-free, 80 °C, 2 h. bIsolated yield.
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PTSA (0.1 eq)
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5 h, yield 93% 5 h, yield 87%
2d' 2e’
(b)

0
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5 h, yield 85% 5 h, yield 86%
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Figure 3. Synthesis process of tricyclohexane biofuels from benzenaldehyde derivatives and S,5-dimethyl-1,3-cyclohexanedione. (a) PTSA-
catalyzed tandem reaction under solvent-free conditions, reaction conditions: S5,5-dimethyl-1,3-cyclohexanedione (2 mmol, 2.0 equiv),
benzaldehyde derivatives (1 mmol, 1.0 equiv), PTSA (0.1 mmol, 0.1 equiv), solvent-free, 80 °C, 2 h, isolated yield; (b) HDO, reaction conditions:
precursors (0.5 mmol), Pd/C,y, (50 mg), AcOH (1 drop), cyclohexane (S mL), H, (4 MPa), 220 °C, 24 h, carbon yield.

For the HDO product, the carbon yield was used: carbon
yield of specific product in the HDO reaction (%) = (carbon in
the specific product obtained in the HDO reaction/carbon in
the intermediates consumed during the HDO reaction) X
100%.

These reactions are powerful reactions that can be
performed with furfural derivatives as the starting materials,
which have been very popular as biomass-derived platform
chemicals in the synthesis of biofuels.”” >* When the furfural

derivatives and 5,5-dimethyl-1,3-cyclohexanedione were mixed,

the reaction occurred spontaneously and provided the
products 2b and 2c¢ with high isolated yields of 96 and 90%,
respectively. After that, 2b and 2¢ were hydrodeoxygenated by
Pd/C and Hf(OTf), at 220 °C to afford 3b and 3¢ with high
carbon yields of 82 and 92%, respectively. The 5% of
homogeneous Hf(OTf), was loaded to promote the ring-
opening process of cyclic ethers, which hydrogenated from the
furan structure. Hf(OTf), could mediate the rapid endother-
mic ether = alcohol and alcohol = alkene equilibria process,
while the subsequent hydrogenation of alkene by Pd.>>~ 3b
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Figure 4. Calculated densities and NHOC values for the hydrocarbon products. The measured NHOC value of 3¢ is 43.4 MJ/kg.

is a mixture of 61% C20 and 21% C21 hydrocarbons. It is
common to see some fragments in the HDO process at high
temperature. However, 3c is a single product of a C22
hydrocarbon. The HDO reaction conditions (220 °C, 4.0 MPa
H,) are milder than some of the similar HDO reaction
conditions reported in previous works (300 °C, 5.5 MPa
H2)~14

This new procedure was then extended to other
lignocellulose-derived aldehydes for the synthesis of biofuels
with higher density. Benzaldehyde derivatives were chosen
because they may increase the ring numbers and density of the
biofuels. A mixed solvent of water and ethanol at a ratio of 4:1
was used because benzaldehyde derivatives have poor
solubilities in water. As shown in Figure 2, the reaction was
also performed at room temperature without a catalyst to
afford the products 2d—2g at high isolated yields of 89—96%
(Figure 2a). The yields are strongly related to the size and the
position of the substituted groups on the benzene ring of
benzaldehydes, which should be due to the steric hindrance
effects. 2d was obtained at a high isolated yield of 96% in 1 h
from 1d with no substituting group. While 2g was obtained at
a lower isolated yield of 89% in 2 h from 1g, which had an
isopropyl group.

It is unfortunate to see that the final products were not
biofuels with three rings after the HDO reaction. The
hydrocarbons have only two rings as shown in Figure 2b.
One hexane ring from $,5-dimethyl-1,3-cyclohexanedione was
missing. No difference was observed when reducing the HDO
reaction temperature to 200 or 150 °C. The reason for the
missing of one hexane ring should be mainly attributed to the
fact that the Michael addition reaction is a reversible reaction
that may go backward at high temperature. The proposed

mechanism has been illustrated according to the experimental
results and literature reports (Figure S2).°*°” The carbon
yields of 3d—3g are in the range of 59—61% (Figure 2b).

Reverse Michael addition was prone to occur in the HDO
reaction of compound 2, resulting in bicyclohexane hydro-
carbons 3. It is a huge waste to lose one molecule of §,5-
dimethyl-1,3-cyclohexanedione for synthesis of biofuels. The
result goes against the concept of atomic economics. In order
to inhibit the inverse Michael addition process of 2,
thermodynamically more stable octahydroxanthene-1,8-diones
were synthesized by a one-step process. The react condition
was optimized with a model reaction of benzaldehyde and §,5-
dimethyl-1,3-cyclohexanedione. There was no 2d when the
base was used as a catalyst (Table 1) such as NaOH, DBACO
(1,4-diazabicyclo[2.2.2]octane), DBU (1,8-
diazabicyclo[5.4.0]undec-7-ene), CaO, and MgO. When
weak protonic acid AcOH and citric acid were used at 80
°C for 2 h under solvent-free conditions, the product was still
2d with a trace amount of 2d’. No obvious difference was
observed when increasing the temperature to 100 °C and
elongating the reaction time to 5 h with weak protonic acid as
a catalyst. A high isolated yield of 93% was obtained for 2d” at
80 °C for 2 h under solvent-free conditions when 4-
methylbenzenesulfonic acid (also known as PTSA) was used
as a catalyst (entry 8). The high yields of 2d’ should be
attributed to the higher catalytic ability of strong acid PTSA
(pK, = 1.7) than weak acid AcOH (pK, = 4.75) and citric acid
(pK, = 4.80). According to the experimental results and
previous literature,’”°" the proposed mechanism is illustrated
in Figure S3 inthe Supporting Information. This reaction is a
green tandem reaction including a Knoevenagel condensation,
a Michael addition reaction, and a dehydration reaction.
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With the optimized reaction conditions (Table 1, entry 8),
the alkyl substituted benzaldehydes were used as starting
materials. High isolated yields of 87, 85, and 86% were
obtained for 2e’, 2f', and 2g’. When hydrogenated with Pd/C
as the catalyst, tricyclohexane hydrocarbons were obtained at
high carbon yields of 89, 85, 85, and 83% for 3d’, 3¢/, 3f, and
3g’ (Figure 3), respectively. It is speculated that the activation
energy of the reverse dehydration process of 2d’ formation was
much higher than the activation energy of the reverse Michael
addition reaction of 2d. Because of the high activation energy,
the reverse process was difficult to happen, so that it was hard
to convert 2d’ into 2d.

The density and NHOC of all the products were estimated
with theoretical methods, which have high accuracy as
demonstrated in our previous works.”>”** As shown in Figure
4, the densities are in the range of 0.78—0.88 g/ cm?, which are
close to those of state-of-the-art high-density artificial fuels
such as JP-10 (0.94 g/cm®) and RJ-5 (0.94 g/cm’). The
estimated NHOC values are in the range of 44.0—46.0 MJ/kg,
which are also among the values for top-level petroleum based
fuels (JP-4, JP-5, and RJ-4).°> The NHOC of a representative
product 3¢ was practically measured to evaluate the accuracy
of the calculation methods. The measured NHOC is 43.4 MJ/
kg, which matches well with the calculated NHOC of 44.4 MJ/
kg for 3c (relative error <2%). In addition, the measured
freezing point of 3¢ is —55 °C, which is lower than those of
many commercial petroleum-based fuels such as JP-7 (—44
°C), JP-8 (=51 °C), and so forth.”> Meanwhile, compared
with synthetic bio-based paraffinic kerosenes, such as HEFA-
Jet (a mixture of hydrotreated fatty acids and esters, 0.76 g/
cm?®), 5-MU (S-methylundecane, 0.75 g/cm?, —50 °C), and
DMO (2, 6-dimethyloctane, 0.73 g/cm3, —53 °C), 3c has a
higher density (calculated density: 0.84 g/cm’®) and a lower
freezing point (—55 °C).%

B CONCLUSIONS

This work is expected to provide a green strategy for synthesis
of polycyclic high-density biofuels from biomass-derived §,5-
dimethyl-1,3-cyclohexanedione and different aldehydes includ-
ing linear-chain aldehyde, furfural aldehyde, and benzaldehyde.
A catalyst-free tandem reaction in water and a solvent-free
tandem cyclization reaction are developed to produce high-
density aviation biofuels with dicyclohexane and tricyclohexane
structures. The theoretical calculations show that the obtained
hydrocarbons have a high density of 0.78—0.88 g/cm’ and a
high NHOC of 44.0—46.0 MJ/kg, which are higher than those
of the commonly used commercial jet fuels such as JP-7, JP-8
and bio-based paraffinic kerosenes such as HEFA-Jet, 5-MU,
and DMO. The freezing point of 3¢ is =55 °C, which is much
lower than those of biofuels (e.g., bicyclohexane, 1.2 °C and
bicyclopentane, —38 °C)***” and satisfying the requirement
for jet fuels (generally <—S0 °C). This work provides an
efficient, promising way for production of polycyclic high-
density aviation biofuels under mild conditions, which might
be used for the synthesis of advanced aviation fuels or fuel
additives.
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