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Abstract

Background: With the advent of the age of big data in bioinformatics, large volumes of data and high-performance
computing power enable researchers to perform re-analyses of publicly available datasets at an unprecedented scale. Ever
more studies imply the microbiome in both normal human physiology and a wide range of diseases. RNA sequencing
technology (RNA-seq) is commonly used to infer global eukaryotic gene expression patterns under defined conditions,
including human disease-related contexts; however, its generic nature also enables the detection of microbial and viral
transcripts. Findings: We developed a bioinformatic pipeline to screen existing human RNA-seq datasets for the presence of
microbial and viral reads by re-inspecting the non-human-mapping read fraction. We validated this approach by
recapitulating outcomes from six independent, controlled infection experiments of cell line models and compared them
with an alternative metatranscriptomic mapping strategy. We then applied the pipeline to close to 150 terabytes of publicly
available raw RNA-seq data from more than 17,000 samples from more than 400 studies relevant to human disease using
state-of-the-art high-performance computing systems. The resulting data from this large-scale re-analysis are made
available in the presented MetaMap resource. Conclusions: Our results demonstrate that common human RNA-seq data,
including those archived in public repositories, might contain valuable information to correlate microbial and viral
detection patterns with diverse diseases. The presented MetaMap database thus provides a rich resource for hypothesis
generation toward the role of the microbiome in human disease. Additionally, codes to process new datasets and perform
statistical analyses are made available.
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Data Description
Context

Recent studies have demonstrated the paramount importance
of the microbiome for human health and disease [1]. For exam-
ple, imbalance of the human gut microbiome was linked to non-
communicable diseases such as obesity [2, 3], diabetes [4], car-
diovascular disease [5], chronic obstructive pulmonary disease
[6], and colorectal carcinoma [7, 8], to name just a few.

The advent of high-throughput sequencing technologies has
revolutionized the life sciences. RNA sequencing (RNA-seq)
technology produces one of the most frequent next-generation
sequencing data types and has been applied to the study of a
large number of biological samples relevant to human disease.
The majority of the underlying raw data are freely accessible
from data repositories such as the Gene Expression Omnibus
(>1,700 human RNA-seq datasets as of January 2018) and the Se-
quence Read Archive (SRA) [9].

However, these data are typically exclusively used for single
species (i.e., human) transcriptomics such as differential gene
expression and alternative splicing analysis [9, 10]. Reads that
do not map onto the human genome are considered noise or
contamination and therefore are generally ignored [11, 12] (col-
lectively about 9% of total reads, Fig. 1). Five years ago, it was pos-
tulated that interspecies interactions might be studied by simul-
taneous detection and quantification of RNA transcripts from a
given host and a microbe via “dual” RNA-seq [13]. Meanwhile,
this approach has been successfully applied to the interaction of
mammalian cells with diverse bacterial [14] and viral pathogens
[15-19].

Inspired by dual RNA-seq, in this study we hypothesize that
reads in archived RNA-seq datasets derived from human pri-
mary cells or tissue samples that fail to map against the hu-
man reference genome may contain valuable information about
the presence of certain microbes in the respective body niches
and/or under defined disease conditions. To enable metatran-
scriptomic study of these data, we combined existing read align-
ment and metagenomic classification software into a two-step
“omni” RNA-seq pipeline to comprehensively quantify archaeal,
bacterial, and viral reads in human RNA-seq data (Fig.1).

In the first step of this so-called MetaMap pipeline, all reads
are aligned against the human genome using the ultra-fast RNA-
seq aligner Spliced Transcripts Alignment to a Reference soft-
ware (STAR) [20]. Subsequently, only the fraction of unmapped
reads is subjected to metatranscriptomic classification using
CLARK-S [21] (see Methods for details). The combination be-
tween scalability and accuracy was the main motivation behind
choosing these two software packages over competing meth-
ods [22, 23]. It is important to note that CLARK-S uses a set
of uniquely discriminative short sequences at the species level
to classify reads. Therefore, reads containing nondiscriminative
sequences that fail to be uniquely assigned to a single species,
e.g., reads originating from the bacterial ribosomal 16S rRNA
gene will be considered “unclassified” (altogether 8.6% in Fig.1).

The output of CLARK-S is an operational taxonomic units
(OTUs) count matrix, where rows correspond to viral, bacterial,
and archeal species and columns correspond to (human) sam-
ples. Each entry corresponds to the number of non-human reads
classified to the respective species. For convenience, in the fol-
lowing, we refer to the set of microbial and viral species profiled
using our approach as “metafeatures.”

By screening the study abstracts of the SRA for search
terms prioritizing human clinical datasets derived from polyA-
independent sequencing protocols (see Methods), we identi-

fied more than 400 studies relevant to human disease compris-
ing more than 17,000 cDNA libraries (close to 150 terabytes of
raw sequencing data). Raw sequencing reads from these stud-
ies were downloaded and analyzed using the high-performance
computing system of the Leibniz Supercomputing Centre (LRZ)
of the Bavarian Academy of Sciences and Humanities, which fa-
cilitated ultra-fast processing with median speeds of 25 and 21
million reads per hour per core per run for the STAR and CLARK-
S steps, respectively. Of the more than 500 billion RNA-seq reads
processed, around 91% could be mapped to the human genome.
A fraction of 8.6% of all reads remained nondiscriminative at the
species level and defined as “unclassified.” In addition, 0.03%,
0.20%, and 0.39% of all reads were assigned to archaeal, bacte-
rial, or viral metafeatures, respectively. Despite these relatively
low percentages, the absolute numbers of reads classified were
in the hundred millions to billions, enabling statistical analyses.

Methods

High-performance computing environment
Project computations including download, alignment of reads
onto the human genome, and metafeature quantification were
made on the high-performance Linux Cluster at the LRZ [24].

RNA-seq data retrieval
Raw next-generation sequencing data were downloaded from
the SRA. The R package SRAdb was downloaded on 23 May 2017
and used to query the SRA database. To identify SRA projects
that contain transcriptomic analyses of human RNA-seq data,
the SRA attributes “taxon id,” “library source,” “library strategy,”
and “platform” were searched for the terms “9606,” “TRAN-
SCRIPT,” “RNA-seq,” and “ILLUMINA,” respectively. To remove
potential bias derived from different sequencing technologies,
we also restricted the query to SRA runs annotated with “ILLU-
MINA” in SRA attribute “platform.” To exclude studies with in-
sufficient sample size for statistical analysis, the query was re-
stricted to SRA projects containing more than five runs. To avoid
concentrating the analysis on a small number of large projects,
the query was restricted to SRA projects with fewer than 500
runs. To identify studies focusing on phenotypes relevant to hu-
man disease, we restricted the query to runs containing at least
one or more of the terms “disease,” “patient,” “primary,” and
“clinical” in the SRA attribute “study abstract.” To exclude in vitro
(cell-culture) experiments but focus on primary (clinical) sam-
ples, SRA runs containing the terms “mutant” or “cell-line” were
removed from our selection. Furthermore, SRA runs containing
the terms “single cell” and “GTEx” were removed. Finally, sam-
ples with fewer than 1 million total reads or read lengths <50 bp
were excluded. The described query resulted in 484 short read
projects (SRPs) containing 21,659 RNA-seq runs. Due to technical
problems (i.e., missing URLs, restricted access), we were unable
to download a fraction of 4,078 samples.

Human alignment
Alignment of reads against the human reference genome (hg38)
and simultaneous human gene expression quantification was
conducted with STAR (version 2.5.2). To increase mapping speed
of a large number of samples, we used the –genomeLoad LoadAnd-
Keep function to load the STAR index once and keep it in
memory for subsequent alignments. The parameter –quantmode
GeneCounts was used to generate the human gene expres-
sion count tables. Unmapped reads were saved with the –
outReadsUnmapped Fastx parameter. To further increase mapping
speed, multiple threads were used as implemented with the pa-
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Figure 1: Schematic of the MetaMap pipeline. More than 400 projects from studies relevant to human disease were identified in the SRA database. More than 500 billion
RNA-seq reads were downloaded and first filtered by mapping them onto the human genome. The remaining reads underwent metafeature classification. It is noted

that 90.7% of all reads mapped to the human genome; 0.03%, 0.20%, and 0.39% of all reads were assigned to archaeal, bacterial, or viral metafeatures, respectively; and
8.6% of all reads remain nondiscriminative at the species level (“unclassified”).

rameter –runThreadN 28. Runs with fewer than 30% reads map-
ping to the human genome were excluded from downstream
analysis. All human alignments were conducted on the LRZ
“CoolMUC2” Linux-Cluster. This cluster contains 384 nodes with
64 GB random access memory (RAM) memory and 28 cores each.

Metafeature quantification
Metafeature quantification was conducted with CLARK-S (ver-
sion 1.2.3). CLARK-S is a software method for fast and accu-
rate sequence classification of metagenomic next-generation
sequencing data, including RNA-seq data. One major issue dur-
ing the classification of metagenomic data is the rising number
of targets to align against. CLARK-S solves this issue by build-
ing a large index file consisting of discriminative k-mers. The
metagenomic reference database was generated following the
description of the CLARK website using the following two com-
mands: set targets.sh bacteria virus –species and buildSpacedDB.sh.
This database contained 16,551 genome sequences correspond-
ing to 6,979 unique species (Additional File 2). To allow uni-
form processing, paired-end sequencing experiments were an-
alyzed independently. Each single unmapped read file was
used as input for CLARK-S with the following parameters: clas-
sify metagenome.sh –spaced –O list of FASTQ files. To increase
classification speed, the CLARK-S express mode was selected
and multiple threads were used with parameters –m 2 and –n
32, respectively. The output files of this step contain all input
read identifiers with the corresponding metafeature classifica-
tion. In the subsequent step, total counts are summarized for
each feature with the estimate abundance.sh command. To en-
able comparison across single-end and paired-end experiments,
metafeature counts from paired-end experiments were aver-
aged and subsequently rounded to conserve count distribution.
To account for varying sequencing depths, metafeature abun-
dance was estimated as the number of reads per million to-
tal reads sequenced. Metafeature quantification was conducted
on the LRZ “Teramem” Linux-Cluster. This cluster contains one
node with 6,144 GB RAM memory and 96 cores.

BLAST-based metafeature classification
To validate results generated by the MetaMap pipeline, the Basic
Local Alignment Search Tool (BLAST) [25] was used as follows. A
BLAST database was created from the same genome sequences
used in the CLARK-S approach. Then, reads were aligned to
this database using BLASTN with a threshold E-value of 1e-10.
Produced counts from paired-end experiments were averaged.
For each file, BLAST was done by running approximately 10 kb

chunks (record separator “>”) in parallel using parallel [41] (28
jobs), each with eight threads using one node on the LRZ “Cool-
MUC3” Linux Cluster. This cluster contains 148 nodes with 96
GB RAM memory and 64 cores each. Output was parsed to ex-
clusively keep reads that could be assigned at the species level.

Differential metafeature abundance
Differential metafeature abundance analysis was performed us-
ing the R package DESeq2 [26]. DESeq2 models differential gene
expression by fitting a negative binomial distribution to the raw
counts underlying RNA-seq data. This framework can account
for confounding variables such as sequencing depth. Therefore,
the data need not be normalized prior to statistical inter-sample
comparisons. For each of the four published bona fide dual RNA-
seq studies, we classified samples into the following two groups
based on the provided annotations: samples expected to contain
the known pathogen, such as human papillomavirus-positive
tumors in the Zhang et al. study [28], and pathogen-free con-
trols, such as mock-treated cells in the Westermann et al. [27]
study. Using this binary outcome, we performed differential ex-
pression analysis across all detected metafeatures. To account
for sequencing depth, library size factors were estimated from
the total number of sequenced reads. The dispersion for the neg-
ative binomial distribution was estimated using a local linear re-
gression as implemented in the DESeq() function via the fitType
parameter “local.”

Data validation and quality control

We validated our approach by recovering the ground truth in
bona fide dual RNA-seq experiments performed with human
cell lines and samples from patients with well-known infec-
tion status. Of the four selected studies, one analyzed an infec-
tion model based on a bacterial (Salmonella enterica serovar Ty-
phimurium) and three based on distinct viral pathogens (human
papillomavirus, herpes simplex virus, rhinovirus). As expected,
MetaMap detected the known pathogen at higher levels in the
respective study compared to the other studies and pathogens
(Table1). However, comparisons across studies and metafeatures
may be biased by technical confounders (discussed in detail in
the Re-use potential section). Therefore, we focused our analy-
sis on the comparison of a single metafeature across subjects
within a study. Using the annotation provided in the respective
study, we performed differential metafeature abundance analy-
sis to identify those metafeatures that show the largest relative
difference in abundance levels between the infected and control



4 MetaMap

Table 1: Overview of four dual RNA-seq studies used to validate the MetaMap pipeline.

Study
Infection
agent

Total
reads

Salmonella
enterica

Alphapapillomavirus

9

Human
alphaherpesvirus
1

Rhinovirus
A

Westermann
et al. [27]

Salmonella enterica serovar
Typhimurium

1.0e+07 6.3e+03 1.2e-01 1.5e-01 1.2e-01

Zhang et al.
[28]

Human papillomavirus 4.6e+07 3.0e-02 5.1e+01 2.2e-02 2.2e-02

Rutkowski et
al. [29]

Herpes simplex virus 3.5e+07 1.1e+00 3.1e-02 3.1e+04 3.0e-02

Bai et al. [30] Rhinovirus 6.6e+06 2.0e-01 1.5e-01 1.5e-01 4.4e+01

Total reads column depicts the average read depth per sample for each study. Average metafeature abundance for alphapapillomavirus 9, Salmonella enterica, human
alphaherpesvirus 1, and rhinovirus A are shown in reads per million. The correct infection agent for the respective study is highlighted in bold font

0

25

50

75

0 5 10

−l
og

10
 p

−v
al

ue

Westermann et al

0

5000

10000

15000

in
fe

ct
ed

(n
=3

6)

m
oc

k
(n

=6
)

S
al

m
on

el
la

 e
nt

er
ic

a

A

0

10

20

0 4 8 12

Zhang et al

A
lp

ha
pa

pi
llo

m
av

iru
s 

9

B

0.0

5.0

10.0

−5.0 −2.5 0.0 2.5 5.0 7.5

Rutkowski et al

0
25000
50000
75000

in
fe

ct
ed

(n
=8

)

m
oc

k
(n

=2
)

H
. A

lp
ha

he
rp

es
vi

ru
s 

1

C

0

20

40

0 4 8

Fold change (log2)

Bai et al

0
50

100
150
200

in
fe

ct
ed

(n
=1

2)

ve
hi

cl
e

(n
=1

2)R
hi

no
vi

ru
s 

A

D

0
100
200
300
400
500

ne
ga

tiv
e

(n
=1

8)

po
si

tiv
e

(n
=1

8)

Figure 2: Differential metafeature abundance analysis of controlled infection experiments recovers ground truth. “Volcano” plots show fold change and inverted P value

on the x and y axes, respectively. Each dot represents a metafeature. The most significant metafeature is colored in red. Insets display box plots of the abundance
levels in reads per million of the top hit metafeature across conditions for each study. For all box plots, the box represents the interquartile range, the horizontal line
in the box is the median, and the whiskers represent 1.5 times the interquartile range.
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Figure 3: Analysis of lymphoblast cell line experiments further supports the MetaMap pipeline. (A and B) Mean abundance levels across all samples of the top five
metafeatures for projects SRP041338 and SRP091453, respectively. (C) Relative proportion of reads mapping to EBV, phiX, and all other metafeatures across RNA-seq

samples. (D) Cumulative distribution plot of the average proportion of bacterial metafeature reads across all projects. Purple and pink vertical lines highlight projects
SRP041338 and SRP091453, respectively.

samples (see Methods for details). The correct infection agent
showed the most significant difference across all metafeatures
between infected and control samples for each study (Fig.2). For
example, Westermann et al. [27] generated dual RNA-seq data
from HeLa cells infected with the enteric bacterial pathogen
S. enterica serovar Typhimurium and compared them to mock-
treated control samples. Accordingly, we observed S. enterica as
the most differentially abundant metafeature between the in-
fected and the control samples (P <1e-75, Fig. 2A). Likewise, we
recovered alphapapillomavirus 9, human alphaherpesvirus 1 (also
known as herpes simplex virus 1), and rhinovirus A as the most
differentially abundant metafeatures in the data from Zhang et
al. [28], Rutkowski et al. [29], and Bai et al. [30], respectively. In the
Westermann et al. [27] and Rutkowski et al. [29] studies, several
additional metafeatures showed a strong differential abundance
effect (Fig. 2A and 2C). These metafeatures were closely related
to the true infection agent, i.e., Salmonella bongori (P <1e-67) and
Panine alphaherpesvirus 3 (P <1e-9) for the Westermann et al. [27]
or Rutkowski et al. [29] study, respectively. These findings con-
firm that our MetaMap pipeline recapitulates results from dedi-
cated dual RNA-seq studies, i.e., studies based on known infec-
tious agents. Therefore, MetaMap may be equally suited to de-

tect previously unknown microbial and viral species in human
primary samples.

As an additional control, we re-analyzed two projects con-
tained in our data collection that are derived from the B lym-
phoblast cell line under noninfectious conditions. However,
since Epstein-Barr virus (EBV) is used for transfection and trans-
formation of lymphocytes to lymphoblasts, we expected to de-
tect reads from this virus in these projects [31], but no fur-
ther viral or microbial reads [32]. Indeed, the most abundant
metafeatures in each project were dominated by reads classi-
fied to gammaherpesvirus 4 (also known as EBV) and Enterobacte-
ria phage phiX174 sensu lato (phiX), commonly used as spike-in
in Illumina sequencing runs [33] (Fig. 3A and 3B). On average,
95% and 97% of all metafeature reads were classified as phiX or
EBV for projects SRP041338 and SRP091453, respectively (Fig. 3C).
Conversely, the abundance of reads mapping to bacterial species
for these two projects corresponds to the bottom percentile as
compared to all other projects in the MetaMap database, sup-
porting sterility of this cell line (Fig. 3D). This demonstrates that
MetaMap not only is capable of rediscovering known pathogenic
species (true positives) in controlled infection experiments (Fig.
2) but it also minimizes the detection of false positives or, at
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Figure 4: Alternative BLAST-based classification method validates metafeature abundance estimates by MetaMap. (A) Average metafeature reads per million levels

derived using the CLARK-S software, as implemented in the MetaMap pipeline, and a BLAST-based alternative approach on the x and y axes, respectively. (B) Correlation
in S. enterica abundance levels between the two classification approaches. (C) Difference in classification speed between the BLAST and CLARK-S metatranscriptomic
classification. The y axis shows the number of reads processed per hour per thread in log10 space.

least, provides measures such as abundance and significance,
allowing the user to identify and counterselect those species.

As a technical validation, we compared our approach to an
alternative metatranscriptomic classification strategy for the
Westermann et al. [34] study. All non-human reads were aligned
using BLASTN to a BLAST database consisting of the same ge-
nomic sequences used by CLARK-S (see Methods for details). The
average metafeature abundances across all 42 samples derived
from the BLAST-based approach and CLARK-S correlated sig-
nificantly (Spearman correlation, Rho: 0.16, P: 3.1e-10) (Fig. 4A).
BLAST showed higher sensitivity and detected more metafea-
tures compared to CLARK-S (indicated by the accumulation of
dots at value 0 on the x axis in Fig. 4A). This is mostly observed
for low abundance metafeatures that could represent low counts
derived from sequencing and/or mapping errors. However, most
importantly, the true pathogen metafeature “Salmonella enter-
ica” showed very high correlation across samples between the
BLAST- and CLARK-based abundance estimates (Fig. 4B). Note-
worthy, the MetaMap pipeline processed reads more than three
orders of magnitude faster than BLAST, demonstrating a sig-

nificant speed advantage while generating comparable results
(Fig. 4C).

Re-use potential

Microbial and viral contamination in next-generation sequenc-
ing data has been observed. It can be caused by mapping errors
due to genome sequence similarity between different species
[35, 36]. In addition, technical confounders can obstruct the
analysis and potentially generate artificial differences if not con-
sidered properly. For example, different types of human sam-
ples may contain different amounts of non-human material
due to varying sterility of the tissues. Furthermore, sequencing
depth may introduce a detection floor for metafeatures that are
not abundant. Therefore, comparisons across different tissues
and sequencing depths may generate artificial differences. Addi-
tionally, given that only uniquely discriminative sequences are
counted, the absolute abundance levels may not be compara-
ble across metafeatures. Finally, the MetaMap pipeline captures
metafeature abundance at the RNA level, which may not nec-
essarily correspond to genomic abundance levels. Metafeatures
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may not be abundant at the DNA level but highly transcription-
ally active and thus abundantly detected at the RNA level, or the
inverse. These potential challenges need to be taken into con-
sideration when comparing across metafeatures.

To minimize these effects, we encourage focusing on studies
that include intraproject comparisons that test one metafeature
at a time, as exemplified in the differential metafeature abun-
dance analysis. Our rationale is that technical confounders, in
contrast to biologically meaningful changes, should affect all
runs within a project to the same extent and therefore not show
condition-specific effects. For example, in the Westermann et al.
study [34], we detected substantial levels of phiX in both condi-
tions (infected samples and mock-treated controls), but only the
“Salmonella” metafeature showed a condition-specific effect. We
aim to address the challenges inherent to interproject and inter-
metafeature comparisons in future work.

All the raw data described in the present study were pub-
licly available, yet have been very cumbersome to extract in-
dividually. The presented MetaMap database makes these data
easily accessible for a very broad community, thereby allow-
ing for global comparisons over hundreds of individual studies
and thousands of sampled conditions. While we attempted to
minimize the risk of detecting false positives (Fig. 3), it should
be noted that not all metafeatures classified by MetaMap will
necessarily refer to true biological factors. Noteworthy, our ap-
proach reveals a correlation between metafeatures and disease,
not causality, and cannot discriminate disease-associated ef-
fects from potential treatment effects. However, our pipeline
provides the user with a scientific starting ground to validate the
presence/absence of defined microbial and viral species under
defined conditions and explore the underlying biology and sig-
nificance in greater detail. As a potential use case of these data,
users can test for associations of microbial or viral metafea-
tures with a plethora of human diseases or between themselves.
In addition, users with interest in a specific bacterial or viral
species can easily identify studies and, consequently, disease
contexts in which reads from this organism were detected. This
could give an important first hint to assess whether the respec-
tive species might be implicated in a given human disease eti-
ology. Furthermore, this resource provides the opportunity to
support findings derived from standard microbiome profiling
technologies, such as 16S rRNA gene based or shotgun metage-
nomics [37]. Finally, metafeature detection in human clinical
RNA-seq samples may provide a diagnostic advantage when
studying microbes or viruses that are challenging to isolate.

The composite metafeature OTU count table, derived from
17 278 cDNA libraries from 436 SRA projects, including annota-
tions is provided for download [38].

Availability of source code and requirements

Project name: MetaMap
Project home: https://github.com/theislab/MetaMap
Operating system(s): Platform-independent
Programming language: Unix command line, R
Other requirements: STAR and CLARK-S may require large
amounts of memory (>100 GB)
License: GNU GPL

Availability of supporting data

The datasets supporting the results presented here are available
in the GigaScience Database repository [38]. The protocols are also
available at [40].

Additional file

Additional File1.csv
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BLAST: basic local alignment search tool; EBV: Epstein-Barr virus;
LRZ: Leibniz Supercomputing Centre; OTU: operational taxo-
nomic unit; phiX: Enterobacteria phage phiX174 sensu lato; RNA-
seq: RNA sequencing; SRA: Sequencing Read Archive; SRP: short
read project; STAR: Spliced Transcripts Alignment to a Reference
software.

Competing interests

The authors declare that they have no competing interests.

Funding

L.S. acknowledges funding from the European Union’s Hori-
zon 2020 Research and Innovation Programme under the Marie
Sklodowska-Curie grant agreement (753039). The operation of
the LRZ Linux Cluster is funded via the Bavarian State Ministry
of Education, Science, and the Arts.

Author contributions

Conceptualization: L.S., M.E., L.D., and B.H.; formal analysis: L.S.,
M.H., S.K., and A.E.; investigation: L.S., A.J.W., and M.E.; method-
ology: L.S., S.K, M.H.; writing the original draft: L.S. and A.J.W;
writing, reviewing, and editing: L.S., A.J.W., M.E., A.E., L.D., M.H.,
and F.T.; supervision: L.D., M.H., and F.T.

Acknowledgments

The authors thank Yu Wang and Ferdinand Jamitzky from the
LRZ for their support.

References

1. Young VB. The role of the microbiome in human health and
disease: an introduction for clinicians. BMJ 2017;356:j831.

2. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-
associated gut microbiome with increased capacity for en-
ergy harvest. Nature 2006;444:1027–31.

3. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated
dysbiosis regulates progression of NAFLD and obesity. Nature
2012;482:179–85.

4. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut micro-
biota control metabolic endotoxemia-induced inflammation
in high-fat diet-induced obesity and diabetes in mice. Dia-
betes 2008;57:1470–81.

5. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism
of phosphatidylcholine promotes cardiovascular disease. Na-
ture 2011;472:57–63.

6. Engel M, Endesfelder D, Schloter-Hai B, et al. Influence of lung
CT changes in chronic obstructive pulmonary disease (COPD)
on the human lung microbiome. PLoS One 2017;12:e0180859.

https://github.com/theislab/MetaMap


8 MetaMap

7. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis
identifies association of Fusobacterium with colorectal carci-
noma. Genome Res 2012;22:292–8.

8. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nu-
cleatum infection is prevalent in human colorectal carcinoma.
Genome Res 2012;22:299–306.

9. Kodama Y, Shumway M, Leinonen R, International Nu-
cleotide Sequence Database Collaboration. The Sequence
Read Archive: explosive growth of sequencing data. Nucleic
Acids Res 2012;40:D54–6.

10.Conesa A, Madrigal P, Tarazona S, et al. A survey of best prac-
tices for RNA-seq data analysis. Genome Biol 2016;17:13.

11.Gouin A, Legeai F, Nouhaud P, et al. Whole-genome re-
sequencing of non-model organisms: lessons from un-
mapped reads. Heredity 2015;114:494–501.

12.Peng X, Wang J, Zhang Z, et al. Re-alignment of the un-
mapped reads with base quality score. BMC Bioinformatics
2015;16(Suppl 5):S8.

13.Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen
and host. Nat Rev Microbiol 2012;10:618–30.

14.Westermann AJ, Barquist L, Vogel J. Resolving host-pathogen
interactions by dual RNA-seq. PLoS Pathog 2017;13:e1006033.

15. Juranic Lisnic V, Babic Cac M, Lisnic B, et al. Dual analysis of
the murine cytomegalovirus and host cell transcriptomes re-
veal new aspects of the virus-host cell interface. PLoS Pathog
2013;9:e1003611.

16.Xu G, Strong MJ, Lacey MR, et al. RNA CoMPASS: a dual ap-
proach for pathogen and host transcriptome analysis of RNA-
seq datasets. PLoS One 2014;9:e89445.

17.Park S-J, Kumar M, Kwon H-I, et al. Dynamic changes in host
gene expression associated with H5N8 avian influenza virus
infection in mice. Sci Rep 2015;5:16512.

18.Saxena K, Simon LM, Zeng X-L, et al. A paradox of transcrip-
tional and functional innate interferon responses of human
intestinal enteroids to enteric virus infection. Proc Natl Acad
Sci 2017;114:E570–9.

19.Wesolowska-Andersen A, Everman JL, Davidson R, et al. Dual
RNA-seq reveals viral infections in asthmatic children with-
out respiratory illness which are associated with changes in
the airway transcriptome. Genome Biol 2017;18:12.

20.Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast univer-
sal RNA-seq aligner. Bioinformatics 2012;29:15–21.

21.Ounit R, Lonardi S. Higher classification sensitivity of
short metagenomic reads with CLARK-S. Bioinformatics
2016;32:3823–5.

22.Lindgreen S, Adair KL, Gardner PP. An evaluation of the ac-
curacy and speed of metagenome analysis tools. Sci Rep
2016;6:19233.

23.Engström PG, Steijger T, Sipos B, et al. Systematic evaluation
of spliced alignment programs for RNA-seq data. Nat Meth-

ods 2013;10:1185–91.
24. www.lrz.de/services/compute/linux-cluster, Leibniz Super-

computing Centre
25.Altschul S. Basic local alignment search tool. J Mol Biol

1990;215:403–10.
26.Love MI, Huber W, Anders S. Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2 [Inter-
net]. Genome Biol 2014;15:550.

27.Westermann AJ, Förstner KU, Amman F, et al. Dual RNA-seq
unveils noncoding RNA functions in host–pathogen interac-
tions. Nature 2016;529:496–501.

28.Zhang Y, Koneva LA, Virani S, et al. Subtypes of HPV-positive
head and neck cancers are associated with HPV characteris-
tics, copy number alterations, PIK3CA mutation, and pathway
signatures. Clin Cancer Res 2016;22:4735–45.

29.Rutkowski AJ, Erhard F, L’Hernault A, et al. Widespread dis-
ruption of host transcription termination in HSV-1 infection.
Nat Commun 2015;6:7126.

30.Bai J, Smock SL, Jackson GR, Jr, et al. Phenotypic responses of
differentiated asthmatic human airway epithelial cultures to
rhinovirus. PLoS One 2015;10:e0118286.

31.Santpere G, Darre F, Blanco S, et al. Genome-wide analysis of
wild-type Epstein–Barr virus genomes derived from healthy
individuals of the 1000 Genomes Project. Genome Biol Evol
2014;6:846–60.

32.Mangul S, Olde Loohuis LM, Ori A, et al. Total RNA sequencing
reveals microbial communities in human blood and disease
specific effects , bioRxiv. 2016. doi:10.1101/057570.

33.Mukherjee S, Huntemann M, Ivanova N, et al. Large-scale
contamination of microbial isolate genomes by Illumina PhiX
control. Stand Genomic Sci 2015;10:18.

34.Westermann AJ, Förstner KU, Amman F, et al. Dual RNA-seq
unveils noncoding RNA functions in host-pathogen interac-
tions. Nature 2016;529:496–501.

35.Strong MJ, Xu G, Morici L, et al. Microbial contami-
nation in next generation sequencing: implications for
sequence-based analysis of clinical samples. PLoS Pathog
2014;10:e1004437.

36.Bonfert T, Csaba G, Zimmer R, et al. Mining RNA–seq data for
infections and contaminations. PLoS One 2013;8:e73071.

37.Cox MJ, WO C, Moffatt MF. Sequencing the human micro-
biome in health and disease. Hum Mol Genet 2013;22:R88–94.

38.Simon LM, Karg S, Westermann A, et al. Supporting data for
“MetaMap: an atlas of metatranscriptomic reads in human
disease-related RNA-seq data.” GigaScience Database 2018.
http://dx.doi.org/10.5524/100456.

40.Simon LM, Karg S. MetaMap pipeline. protocols.io 2018;
doi:dx.doi.org/10.17504/protocols.io.msec6be.

41 Tange O, GNU Parallel - The Command-Line Power tool. The
USENIX Magazine 2011;36:42–47.

http://www.lrz.de/services/compute/linux-cluster
http://dx.doi.org/10.5524/100456

