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Abstract

Dyslexia is a neurodevelopmental reading disability estimated to affect 5–10% of the popu-

lation. While there is yet no full understanding of the cause of dyslexia, or agreement on its

precise definition, it is certain that many individuals suffer persistent problems in learning to

read for no apparent reason. Although it is generally agreed that early intervention is the

best form of support for children with dyslexia, there is still a lack of efficient and objective

means to help identify those at risk during the early years of school. Here we show that it is

possible to identify 9–10 year old individuals at risk of persistent reading difficulties by using

eye tracking during reading to probe the processes that underlie reading ability. In contrast

to current screening methods, which rely on oral or written tests, eye tracking does not

depend on the subject to produce some overt verbal response and thus provides a natural

means to objectively assess the reading process as it unfolds in real-time. Our study is

based on a sample of 97 high-risk subjects with early identified word decoding difficulties

and a control group of 88 low-risk subjects. These subjects were selected from a larger pop-

ulation of 2165 school children attending second grade. Using predictive modeling and sta-

tistical resampling techniques, we develop classification models from eye tracking records

less than one minute in duration and show that the models are able to differentiate high-risk

subjects from low-risk subjects with high accuracy. Although dyslexia is fundamentally a lan-

guage-based learning disability, our results suggest that eye movements in reading can be

highly predictive of individual reading ability and that eye tracking can be an efficient means

to identify children at risk of long-term reading difficulties.

Introduction

Dyslexia is a neurodevelopmental reading disability that adversely affects the speed and accu-

racy of word recognition, and as a consequence, impedes reading fluency and text comprehen-

sion. It is commonly estimated to affect between 5 and 10 percent of the population. Such

estimates, however, depend on the definition and criteria used for diagnosis. Since reading

ability is a skill that falls along a continuum, dyslexia is best considered a difficulty along this

continuum with no clear-cut or absolute limit. Thus, it is not possible to specify exactly how
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common dyslexia is, other than in relation to an approximate limit of what can be considered

normal reading ability. This relative uncertainty, however, does not disprove the reality of dys-

lexia; there is good evidence for its neurological basis [1–3]. Rather, it reflects the fact that dys-

lexia occurs in varying degrees of severity, and that, ultimately, a subjective cutoff must be set

on a continuous variable in order to diagnose the disability [4–7].

Although the causes of dyslexia are still not fully understood, and definitions and terminol-

ogy vary, it is generally agreed that children who fail to acquire reading skill at a normal rate

need careful monitoring and support during the early years of school. Early identification and

professional support is the most effective form of intervention for children with pronounced

reading difficulties, and it is hazardous to wait until children are formally diagnosed with dys-

lexia before assisting their needs [7–9]. In Sweden, where this study was conducted, the aver-

age age at which dyslexia is diagnosed is 13 years [10]. By that age, it is not only very difficult

to catch up to grade level in reading, the problems then usually interfere with overall school

performance and cause psychological and emotional distress, manifested by low self-esteem,

lack of motivation and depression [11–13].

Fast, systematic and automated screening methods based on objective measurements of

reading may help identify individuals at risk of dyslexia during the early school years. Current

methods, however, are limited in that they only measure individual cognitive skills that natural

reading depends upon, but say little about their interplay and function in actual reading.

Invariably, these tests require the subject to produce some explicit response, typically under

time pressure, such as marking the word boundaries in sequences of words without interword

spaces, matching target words to corresponding pictures, or reading aloud pronounceable

nonsense words of increasing difficulty. The outcome measure–the proportion of correct

responses–gives an estimate of performance on a particular task related to reading, but does

not reflect the actual process of reading as it naturally occurs.

To overcome this limitation, we investigate the use of eye tracking during reading as a

means for identifying children at risk of dyslexia and long-term reading difficulties. By track-

ing eye movements during reading, we are able to follow the reading process as it occurs in

real-time and obtain objective measurements of this process as a whole. The data being sam-

pled provide a next to continuous record of reading that reflects both the speed and accuracy

of the processes involved [14–18]. Importantly, this mode of measurement requires no overt

response extraneous to the reading process itself and thus makes it possible to assess reading

performance without placing additional task demands on the subject. As such, this approach

differs in important ways from the screening methods currently in use. Tests that involve per-

forming a task by hand, for example, require subjects to engage motor skills beyond those

involved in natural reading, which in turn may influence individual performance and con-

found results. On the other hand, tests based on pronouncing words out loud require manual

assessments that are sensitive to subjective judgements and interrater variability, which easily

introduce inconsistencies in the results.

Although it has long been known that the eye movements of dyslexic readers are different

from those of typical readers, previous research has focused almost exclusively on identifying

group-level differences [19–24]. Here we show, using machine learning and predictive model-

ing, that it is possible to move from group-level descriptions to individual-level predictions

with high sensitivity and specificity, which is a first step towards making eye tracking a viable

screening method. Using statistical cross-validation techniques on a sample of 97 high-risk

and 88 low-risk control subjects, we achieve a classification accuracy of 96% with balanced lev-

els of sensitivity and specificity. We also compare the relative importance of different eye

movement features and identify some critical features that differentiate high-risk and low-risk

subjects. Overall, our findings suggest that eye tracking combined with machine learning can
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be used to develop fast, objective and accurate screening models useful for identifying school

children at risk of dyslexia.

Materials and Methods

Participants

The experiments we report are based on eye tracking data from 185 subjects participating in

the Kronoberg reading development project, a longitudinal research project on reading devel-

opment and reading disability in Swedish school children running between 1989 and 2010

[25,26]. From an original cohort of 2165 individuals attending second grade (age 8–9), 103

subjects who had failed to develop word reading skills at a normal rate were first identified in

1989. This group of high-risk (HR) subjects consisted of 82 male subjects (7.7% of all males)

and 21 female subjects (1% of all females). The inclusion criteria required that subjects (1) had

Swedish as first language; (2) performed in the lower 5th percentile of the full cohort on two

standardized tests of word decoding; and, (3) experienced persistent problems in learning to

read according to an independent assessment completed by the classroom teacher. Individuals

with intellectual disability, at the time known as mental retardation, were excluded in the

selection.

The selection of HR subjects did not involve any discrepancy-based definition of dyslexia.

That is, inclusion did not require an apparent discrepancy between reading level and general

cognitive ability or intelligence quotient (IQ). This is consistent with the predominant view of

dyslexia today since such a requirement has been discredited by empirical evidence suggesting

that dyslexia occurs across the range of intellectual abilities and represents the low end of a

normal distribution of word reading ability [5,27,28].

A control group of low-risk (LR) subjects with average or above average word reading skills

were pairwise matched to the HR subjects on sex, first language, school class, and non-verbal

ability (Raven’s progressive matrices). Given the matching criteria, 90 pairwise matched con-

trols could be identified, 70 male and 20 female subjects. Thus, 12 male subjects and 1 female

subject in the HR group were not matched to any control subject.

The cognitive, educational and social development of LR and HR subjects was assessed at

various intervals over the following 20 years, until 29 years of age. During this time, the nega-

tive long-term effects of the early manifested reading difficulties in the HR group have been

extensively documented [25,26]. Follow-up studies show that word decoding and reading

problems persisted for the large majority of subjects and significantly interfered with school

performance, academic achievement and other domains of life (see S1 Text for a summary of

follow-up studies). It is worth noting, however, that we do not know how many of the original

HR subjects received an actual diagnosis of dyslexia later on. The main reason for this is that

during the initial years of data collection the notion of dyslexia was still not well established in

pedagogic practices in Sweden and very few individuals were diagnosed in general. As dyslexia

diagnoses became more common over the years, most of the HR subjects in the study had

already finished school which further reduced their likelihood of receiving a diagnosis.

While the subjects were attending 3rd grade (age 9–10), eye movements were recorded as

part of an ophthalmological examination that aimed to investigate whether there were any dif-

ferences between the two groups in terms of basic visual and oculomotor functions [29,30].

While some minor differences were reported, it was concluded that these differences most

likely reflected secondary effects of the cognitive difficulties that the HR subjects experienced

with language processing, rather than inherent visual or oculomotor deficits. For our present

experiments, we use eye movement recordings made while the subjects were reading a short

natural passage of text adapted to their age. Recordings were available for 185 subjects, 97 HR
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subjects (76 males and 21 females) and 88 LR subjects (69 males and 19 females). Thus, from

the original sample of 193 selected subjects, 6 HR subjects (6 males) and 2 LR subjects (1 male

and 1 female) were not included in the experiments reported here.

The Kronoberg reading development project adhered to the principles of the Declaration of

Helsinki. Written informed consent was obtained from the next of kin, caretakers, or guard-

ians on behalf of the children enrolled in the study. At the time the project was initiated, there

was no ethics committee to approve the study protocol, but such an approval was later

obtained for the second part of the project in 2008 by the Regional Ethical Review Board at

Linköping University (142–08).

Apparatus and Stimuli

A goggle-based infrared corneal reflection system, Ober-2TM (Formerly Permobil Meditech,

Inc., Woburn, MA), was used to track eye position over time, sampling the horizontal and ver-

tical position of both eyes at 100 Hz. Under well-controlled experimental conditions, the sys-

tem afforded a spatial resolution of 5 minutes of arc along the horizontal axes, as per the

manufacturer’s specification. During recording, subjects were equipped with a pair of light-

weight (80g), individually adjustable, head-mounted goggles in which four arrays of infrared

transmitters and detectors were mounted, arranged in a square around each eye. A chin and

forehead rest was deployed to minimize head movements and stabilize the viewing distance at

45 cm. Calibration was performed manually prior to each recording by setting the signal gain

of each axis separately for each eye. Thus the gain for horizontal movements of the left eye was

first set, then the gain for horizontal movements of the right eye and so on for vertical move-

ments (Information on whether or not monocular occlusion was used during the calibrations

is not available. We have reasons to assume it was but cannot confirm this.).

All subjects read one and the same text presented on a single page of white paper with high

contrast. The text was distributed over 8 lines and consisted of 10 sentences with an average length

of 4.6 words. By comparing the number of types to the number of tokens in the text we observed

a type-token ratio (TTR ¼ nðtypeÞ
nðtokenÞ) of 71.7%; a word variation index (OVIX ¼ logðnðtokenÞÞ

log 2�
logðnðtypeÞÞ
logðnðtokenÞÞ

� �) of

46; and a word variation ratio (OVR ¼ logðnðtypeÞÞ
logðnðtokenÞÞ) of 91.3%. The subjects were instructed to read

the text silently and to answer three questions about its content afterwards. The questions mainly

served to encourage the subjects to read for comprehension; the actual outcomes were not used in

any step of our analysis.

Eye Movement Analysis

In order to identify fixation periods, saccadic movements and other types of events in the eye

movement recordings, we first analyzed the raw recording signal of eye position over time

using a dynamic dispersion threshold algorithm (Fig 1). On the basis of this analysis, we

extracted eye movement features to use as input for training a classification model to discrimi-

nate between HR and LR subjects. Since we did not want to gear the feature extraction process

towards specific assumptions regarding potential differences in eye movement behavior

between the two groups, we strived to make a broad, systematic and unbiased selection of fea-

tures that preserved as much as possible of the original eye movement signal. Hence, we

defined a simple set of low-level features that ranged over both fixation and saccadic events.

To avoid excessive data reduction, fixations and saccades were not further aggregated to com-

posite word-based measures.

Screening for Dyslexia Using Eye Tracking
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Fig 1. Example of eye movement analysis where the horizontal (CH) and vertical (CV) eye movement

signal is plotted over time. Light green stripes represent saccades, light gray areas represent fixations.

Light blue stripes represent sweeping movements (most commonly return sweeps) and red stripes represent

transients. Plot A represents a subject from the HR group and plot B a subject from the LR group. The

analysis was performed using a dynamic dispersion threshold algorithm based on the physiological properties

of the foveal and parafoveal fields of vision. The algorithm analyzes the tracking signal sample by sample and

switches between four mutually exclusive states: distortions, transients, fixations, and saccades. A distortion

state is detected if the horizontal or vertical signal is missing for both eyes. A transient state is detected if the

horizontal and vertical position is within a threshold distance of 0.5 degrees + signal noise (2.5 ×RMS error of

Screening for Dyslexia Using Eye Tracking
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Saccades were divided into progressive (left-to-right) and regressive (right-to-left) move-

ments and fixations were defined accordingly, depending on the direction of the preceding

saccade. For each type of fixation and saccade, we defined parameters measuring (1) the dura-

tion of the event; (2) the distance spanning the event; (3) the average eye position during the

event; (4) the standard deviation of the average position; (5) the maximum range between any

two positions; and, (6) the accumulated distance over all subsequent positions. The parameters

2–6 were measured horizontally and vertically, and for both version and vergence, computed

as the average position of the two eyes ((left + right)/2), and as the difference in the positions

of the two eyes (left–right), respectively. Finally, the mean and standard deviation over each

parameter distribution were computed, producing in total 168 features. The information con-

tained in these features captures different quantitative properties of eye movements in reading,

including their duration, amplitude, direction, stability and symmetry.

Classification and Feature Selection

We trained maximum-margin classifiers using linear Support Vector Machines [31,32]

(SVMs) with sequential minimal optimization [33,34]. This learning algorithm has previously

been successfully applied to a wide range of classification problems, not least in bioinformatics

where its use for drug discovery, biomarker identification, and development of new diagnostic

tests has grown rapidly in recent years. All classifiers that we trained were evaluated with

respect to their predictive performance. In other words, we assessed the classifiers’ ability to

identify subjects, whose recordings were not used in fitting the model parameters to the data,

as HR or LR subjects. All else equal, this provides an estimate of the extent to which the classifi-

ers are able to predict HR/LR-status of future, previously unseen, test subjects on the basis of

the subjects’ eye movements during reading. The predictive performance was assessed using a

10-fold stratified cross-validation procedure, repeated 100 times in order to stabilize the esti-

mates across different random partitions of the dataset.

In order to remove irrelevant and redundant eye movement features, which may degrade

the performance of the learning algorithm, we applied an automatic feature selection method

known as recursive feature elimination (SVM-RFE) [35] during training. Removing features

with little or no predictive information not only reduces the level of noise in the parametrized

classifiers, but also facilitates a better understanding of which eye movement features aggregate

to give the best predictive performance. Importantly, however, if the feature selection process

is invoked on the whole dataset in one single step prior to training, it would result in a biased

and overly optimistic estimate of the predictive performance [36,37]. To avoid such a situation,

the feature selection algorithm was executed within each training fold, thus repeated in its

entirety 10 × 100 times. To train classifiers using recursive feature elimination (SVM-RFE) we

initiated the process with the full set of features, built the classifier on the training data and

ranked the features by the square of the weight assigned by the SVM. The lowest-ranked fea-

ture was then removed and the training process repeated, eliminating one feature at a time

until all features were exhausted and a complete ranking of the original feature set was

obtained. In order to find the best classification model we then evaluated the classification

accuracy of all possible classifiers as a function of the number of top-ranked features selected

during training.

the last 25 samples) from the average of the samples in the current state. A fixation state is detected when the

eyes have remained stable for at least 50 ms, and a saccade state when the eyes have moved beyond the

threshold distance. Once a change of state is detected, the samples of the previous state are identified as a

new event.

doi:10.1371/journal.pone.0165508.g001
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To demonstrate better than chance performance, all classifiers were tested against identical

versions trained with randomly shuffled class labels, so called Y-randomization. To train these

classifiers, we let half of the subjects in the HR and LR group in the current training fold swap

places, that is, the class labels HR and LR were randomly permuted while the feature values for

the same subjects remained unchanged. The classifier built on the randomized training data

was then used to predict the non-randomized test set with the true labels preserved. Having

purposely introduced noise in the training data which obscures the actual relationship between

the target class and features, we expect the resulting classifiers to perform no better than

chance on average.

To assess the ability of the recursive feature elimination algorithm to select predictive features

for classification, the performance of all classifiers was compared to that obtained by simply

selecting features at random. Thus, to train classifiers with n randomly selected features, we sam-

pled n features from the full feature set uniformly at random in each training fold. The classifier

was then trained on this feature subset and subsequently applied to predict the examples in the

test set. All experiments were implemented using the same training and test protocol (Fig 2).

Fig 2. Experimental test protocol based on repeated cross-validation with internal feature selection. The

entire dataset is randomly divided into 10 subsets, setting aside one subset (10% of all subjects) as a test sample

and the remaining nine subsets (90% of all subjects) as a training sample. A feature selection algorithm is applied

on the training sample to select a subset of n features. Using this feature subset, a classification algorithm is applied

on the training sample, producing a parametrized classifier as output. This classifier is then used to classify the

subjects in the test sample and the predicted results are compared to the actual identity (HR or LR) of the test

subjects. This step is iterated 10 times, with a different training and test set for each iteration. After one completed

run of 10-fold cross validation, each subject in the entire dataset has been tested exactly once, while we still have

maintained a strict separation between training and test subjects. To reduce the variance of the cross-validated

performance estimate, the whole process is repeated 100 times with different initial random splits of the original

dataset. The final estimate of the expected predictive performance is calculated by averaging the cross-validation

performance over all 100 repetitions. This estimate represents the expected prediction accuracy of the final model.

The final model–the one we would deploy in practice–is the classifier we would build from the entire dataset using

feature selection method m to select n features.

doi:10.1371/journal.pone.0165508.g002
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Results

Classification Accuracy

Among all classifiers, the best classification accuracy observed was 95.6% ± 4.5%, obtained by

using SVM-RFE to select 48 features from the original feature space (Chance: 49.1% ± 13%,

corrected resample t-test, p< 0.01; Random feature selection: 91.1% ± 6.1%, corrected resam-

ple t-test, p< 0.05) (Fig 3). This model also produced the smallest sample standard deviation

and an optimal balance between sensitivity (95.5% ± 4.6%) and specificity (95.7% ± 4.5%),

which means that the classifier performed as well in identifying HR subjects as it did in exclud-

ing LR subjects. By using recursive feature elimination we were thus able to decrease the over-

all complexity of the classifier, effectively reducing the original feature space by 71%. This

shows that an automatic feature analysis can be applied to select a few highly informative eye

movement features useful for prediction and discard other ones.

Using random feature selection, the best classification accuracy achieved was 95.3% ± 4.6%

(Sensitivity 95.2% ± 4.7%; Specificity 95.5% ± 4.5%), obtained by selecting 126 features ran-

domly in each training fold (chance: 48.6% ± 13.2, corrected resample t-test, p< 0.01). This

means that the best classifier trained with randomly selected features performed on a par with

the best classifier based on recursive feature selection, but only reduced the original feature

space by 25%, thus yielding an accurate but unnecessarily complex model. The accuracy of the

Fig 3. Prediction accuracy as a function of the numbers of features selected during training. Accuracy is

shown for classifiers based on recursive feature elimination (solid blue line), random feature selection (dashed red

line), and chance (dotted green line). Chance-level accuracy is based on Y-randomization of training data. Accuracy

is the percentage of correctly identified HR and LR subjects averaged over 100 × 10-fold cross-validation. Maximum

accuracy, 95.6%, (± 4.5%), is obtained using recursive feature elimination to select 48 features from the original

feature set of 168 features. Shaded regions indicate mean ± 1 standard deviation over the 100 repetitions.

Performance at chance level, averaged over the feature subset sizes, is 49.3%.

doi:10.1371/journal.pone.0165508.g003
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classifiers based on recursive feature elimination and those based on random feature selection

converged for feature subsets about half the size of the original feature set. This indicates that

the effectiveness of SVM-RFE, over random feature selection, ceases at about that point, that

is, when 50% or more of the original feature set is used to train the classifiers.

In line with our expectations, the Y-randomized versions of the classifiers performed signif-

icantly worse than all other models regardless of the size of the feature subset, yielding accura-

cies in line with those expected on the basis of purely random prediction. Thus, we found no

evidence of chance correlation in the data that would drive the competitive performance of the

other classifiers.

How do these results compare to the level of accuracy we can expect from traditional

screening tests based on oral or written tests? First, it is important to note that such a compari-

son is difficult for a number of reasons, perhaps foremost because few of the documented tests

provide estimates of the accuracy of individually predicted outcomes. Hence the expected

accuracy, or sensitivity and specificity, of most screening tests in current use are not well

known. But even among studies that do report such estimates, comparisons are highly prob-

lematic because of differences in the age range considered, the definition of dyslexia adopted

and the rigor of the validation methodology used.

The accuracy of screening instruments that are administered to children before they have

received formal reading instruction in school, up until about 6 years of age, is typically

reported to range between 70–80%. Notably, however, the level of sensitivity and specificity

tends to be highly imbalanced for any given test, which severely limits the practical use of most

tests. For example, in Pennington et al [38] we find that tests of phonological awareness (PA)

and rapid automatized naming (RAN) individually produced a high specificity of 93.5%, but

low sensitivity of 41.5% and 42.7% respectively. Thus, even though both PA and RAN did very

well in excluding children that did not develop dyslexia, the majority of children that actually

did also went by undetected by these tests.

The accuracy of screening tests increases as children begin school and receive formal read-

ing instruction. In second and third grade, the accuracy typically ranges between 80–90%.

However, it appears that in order to obtain balanced levels of sensitivity and specificity, multi-

ple tests must be administered that collectively measure a combination of different cognitive

skills related to reading. But if several different tests must be administered, and each test manu-

ally assessed, the possibility to implement an efficient screening process with large numbers of

school children is seriously compromised. This is potentially one of the barriers that prevent

many schools from implementing routine screening for dyslexia today.

Feature Analysis

Up to this point, we have only examined the output of the classification process, without spe-

cific consideration to the internal feature structure of the models that generated the output. In

particular, we have yet no understanding of which eye movement features were more impor-

tant than others for making accurate predictions. To better understand the relative importance

of different features, we focused on the best performing classification model from the first

experiment and analyzed the frequency with which different features were selected across the

1000 internal training folds (Fig 4). The more often a feature was selected, the more likely it

contributes useful information that adds to the overall predictive accuracy of the classifier.

We found a large spread in the selection frequency of different features. Most of the original

features were selected on few occasions and a few on most occasions, resulting in a large skew

overall (min = 0, q1 = 2, median = 35, q3 = 660, max = 1000). Broken down by eye movement

type, 24% of the selected features related to progressive fixations (min = 1, q1 = 8, median = 104,
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q3 = 907, max = 1000), 26% to progressive saccades (min = 1, q1 = 29, median, = 228, q3 = 963,

max = 1000), 21% to regressive fixations (min = 1, q1 = 7, median = 34, q3 = 210, max = 1000),

and 29% to regressive saccades (min = 1, q1 = 8, median = 56, q3 = 765, max = 1000). Forty-six

features (27.4%) were selected in the majority of training folds, that is, in more than 500 train-

ing folds. Most of these features turned out to be rather stable across the folds (min = 588, q1 =

858, median = 971, q3 = 996, max = 1000), which indicates that they were robust to small ran-

dom perturbations of the training data. For these most salient features, we would like to iden-

tify not only how they were distributed across progressive and regressive eye movements, but

also across the horizontal and vertical axis, by version and vergence, and by individual fixa-

tion-saccade parameters. To achieve this, we constructed nested bar plots that show the hierar-

chic breakdown of the features into these variables (Fig 5).

Along the spatial dimension, we found that the majority of features relating to progressive

fixations and saccades were calculated along the horizontal axis, whereas the majority of fea-

tures relating to regressive fixations and saccades were calculated along the vertical axis. Thus

it seems that for normal left-to-right reading, horizontally-based features tend to be more

informative for the classifier than features along the vertical axis. When normal reading is

interrupted, however, and the eyes regress to earlier parts of the text, features along the vertical

axis appear to be more discriminative. Another difference observed concerns the distribution

of features relating to progressive and regressive saccades. The majority of features relating to

progressive saccades were calculated from the average of both eyes whereas the majority of fea-

tures relating to regressive saccades were calculated from the difference between the left and

Fig 4. Frequency of features selected during training of the best performing classification model grouped

by progressive/regressive fixation- and saccade features. The Y-axis shows the number of times a feature in

the original feature set was selected by the recursive feature elimination algorithm (SVM-RFE) during the 10 x 100

cross-validation with internal feature selection. The X-axis shows the features (represented by their index in the

dataset) grouped by progressive/regressive fixation- and saccade features.

doi:10.1371/journal.pone.0165508.g004
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right eye. Thus, version-based features appear to be more discriminative than vergence-based

features for saccades that move the eyes forward, whereas the opposite is true for saccades that

move the eyes back to previous parts of the text. We did not observe any particular differences

in the distributional pattern of fixation and saccade parameters, which were roughly equally

distributed among other variables. Along the temporal dimension we found that features relat-

ing to the duration of eye movements were more frequent for fixations than for saccades,

which is expected given that the variability in fixation duration is known to be strongly associ-

ated with cognitive processing demands during reading.

Lastly, we examined the features with the highest frequency, that is, those that were con-

stantly selected in all 1000 training folds. We found three features relating to the duration of

fixations, three features relating to the distance, maximum range, and mean position of pro-

gressive saccades, respectively, and three features relating to the mean position and standard

Fig 5. Hierarchical breakdown of spatial (A) and temporal (B) features selected in more than 50% of

training folds by the best performing classification model. Forty-six features were selected in more than 500

(50%) training folds with a total accumulated selection frequency of 41721. Plot A and B show the breakdown of the

features on this distribution. Spatial and temporal features are presented separately as they cannot be meaningfully

nested within each other. In plot A, progressive/regressive fixation- and saccade features are broken down by

horizontal (Hor) and vertical (Vert) axis, by version (Vers) and vergence (Verg) position, and by event parameter (A:

accumulated distance, D: spanning distance, M: mean position, R: maximum range, and S: standard deviation of

mean position). In plot B, progressive/regressive fixation- and saccade features are broken down by duration (Dur).

doi:10.1371/journal.pone.0165508.g005
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deviation of regressive saccades. We summarized each of these features by box plots, compar-

ing the actual distribution of values between the HR and LR group (Fig 6).

We found that some of these features reflect previous experimental findings of differences

in eye movements between dyslexic and non-dyslexic readers. For example, the mean duration

of fixations, both progressive and regressive, was longer (higher median) in the HR group

compared to the LR group (Plot A-B), and the distance spanning progressive saccades, as well

as their maximum within-range, was shorter (lower median) in the HR group than in the LR

group (Plot D-E). These differences likely reflect the underlying cognitive difficulties that the

HR subjects experience in processing the words they read. In particular, the greater effort

involved in decoding individual words results in longer fixation durations on average and an

overall increase in fixation rate that decreases the length of saccades.

We also found features which reflected differences between the groups with respect to the

spread around the mean vertical position of progressive and regressive saccades (Plot F-G), as

well as in vertical vergence movements during regressive saccades (Plot H-I). These patterns

are less intuitive to explain; understanding their significance for the predictive performance of

the classifier requires further investigation. It may be noted, however, that a number of recent

studies have reported differences between dyslexic and non-dyslexic readers in vergence and

binocular coordination during saccades and fixations [24,39–41]. At present, though, the mag-

nitude of these differences and their neurological basis are unclear.

Fig 6. Box plots of features selected in 1000 (100%) training folds by the best performing classification

model. The box plots show the distribution of values, normalized to range between 0 and 1, by feature and group

HR (n = 97) and LR (n = 88).

doi:10.1371/journal.pone.0165508.g006
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Discussion

Children with dyslexia often spend many years struggling in school before receiving appropri-

ate professional support. Efficient screening methods that can be easily deployed in school set-

tings are important instruments to counter this situation and facilitate earlier support to those

at risk of long-term reading difficulties. It is unclear, however, whether the tests that have been

developed to date serve the purpose they intend. The Swedish Council on Technology Assess-

ment in Health Care (SBU) recently presented a systematic review of the scientific evidence

for screening and diagnostic tests for children and adolescents with dyslexia [42]. According

to this report, most of the tests in use today lack scientific support. A key concern, raised in the

report, is that the existing tests are insufficiently evaluated with respect to their predictive

validity, which makes it difficult to ascertain how useful the tests are in practice when applied

to any given individual.

Here, we have investigated the use of eye tracking during reading as a screening method

and demonstrated that it can produce individual-level predictions with high sensitivity and

specificity in less than a minute of tracking time. In contrast to existing screening tests which

rely on paper-and-pencil protocols, this method requires no written or verbal response and no

manual assessment or grading in the traditional sense. The only response we measure is the

eye movement signal and that itself is objective; it is neither right nor wrong according to

some predefined criteria. Moreover, it seems probable that a screening test based on eye track-

ing may reduce the amount of stress that more traditional test methods impose, since subjects

may be more likely to experience that they are engaged in a task by themselves rather than

explicitly performing a task for someone else.

While we believe that our results show that eye tracking can be useful for screening of dys-

lexia, it is important to note that our approach is not driven by the assumption that dyslexia is

caused by an intrinsic deficit in visual perception or oculomotor control. This is an important

point because, historically, such deficits have been implicated as a cause of dyslexia [43–45].

Over the years, however, much research has made clear that dyslexia is a language-based disor-

der associated with a phonological deficit which compromises the ability to process written

words and impedes reading comprehension [46,47]. In line with this view, the assumption we

make is only that the ease or difficulty with which words are processed by the language system

has an essentially immediate influence on eye movements during reading. A long line of

research in cognitive psychology and psycholinguistics has shown this to be the case [48–50].

Thus, even though atypical eye movements in reading are only a secondary consequence of

dyslexia, eye tracking may be an effective way to assess the processing demands that subjects

experience during reading, and, by extension, a sound basis for developing predictive and

automated models useful for screening. Similar approaches, based on tracking eye movements

during free viewing of natural images and videos, have recently been developed and success-

fully applied to differentiate subjects with Parkinson’s disease, schizophrenia and autism spec-

trum disorders from control subjects [51–53].

Finally, it is important to stress that not all children who experience persistent difficulties in

learning to read fit the same neuropsychological profile. It is well-established, for example, that

there is considerable symptom overlap and a high rate of comorbidity between dyslexia, atten-

tion-deficit hyperactivity disorder (ADHD) and language impairment [54–55]. Moreover, it is

also common to distinguish between different subtypes of dyslexia (e.g., surface vs phonologi-

cal dyslexia). Therefore, diagnostic follow-up of a positive screening result is always necessary

to gather a more comprehensive understanding of an individual’s cognitive profile, so that

intervention strategies can be tuned to individual needs. Nevertheless, early identification of
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individuals in need of support is the first important step in this process. For this purpose,

using eye tracking during reading may prove very useful.
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