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Editorial on the Research Topic

Cytoskeleton Dynamics as Master Regulator of Organelle Reorganization and Intracellular

Signaling for Cell-Cell Competition

The term cell-cell competition, meaning that cell growth and survival is affected by neighboring
cells, was used to describe the consequences of this heterogeneous cell environment unveiled
through the study of genetic mosaics of Drosophila melanogaster (Morata and Ripoll, 1975). In
this regard, the organization of multicellular organisms relies on cell–cell interactions involving
possible competition between individual somatic cells (Belardi et al., 2020). For example, many
neurons compete for the same target to survive during the development of the nervous system
(Buss et al., 2006) and the viability of thymocyte clones depends on the establishment of specific
cell interactions for the engagement of the correct antigen (Kurd and Robey, 2016). Cell-cell
competition may rely on regulators of cell signaling, gene expression or the cytoskeleton, such
as vav1 (Tybulewicz et al., 2003), WASp and N-WASp (Cotta-de-Almeida et al., 2007). During
the organization of the immunological synapse (IS), a proper regulation of actin and tubulin
cytoskeletons is required to achieve full activation, thereby orchestrating the organization of the
receptors and organelles essential for effector functions (Martín-Cófreces et al., 2011).

In this collection of articles (Figure 1), Lachowski et al. show that G-Protein-coupled Estrogen
Receptor (GPER) activation down-regulates actin dynamics through RhoA phosphorylation at
Ser188 and binding to Rho-GDI. The RhoA/mDia pathway is preferentially used by GPER, rather
than ROCK/myosin-II, facilitating stress fiber and lamellipodia disorganization in fibroblasts.
These data indicate that estrogens can regulate the actin cytoskeleton stiffness, modifying the
cell shape and fitness, and point to differential regulation of cell adhesion and migration on
different substrates depending on relative cell expression of GPER. Different receptors control
actin organization andmechanotransduction in cells, which is now known to affect gene expression
through factors such asMRTF/SRF (myocardin-related transcription factor/serum response factor)
(Esnault et al., 2014) and YAP/TAZ [Yes-associated protein (YAP) and its homolog transcriptional
co-activator with PDZ-binding motif (TAZ, also called WWTR1)] (Dupont et al., 2011). In this
regard, Antón and Wandosell review the role of WIP and YAP/TAZ in the connection of the actin
cytoskeleton and the development of the nervous system. The role of nuclear vs. cytoplasmic actin
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FIGURE 1 | It summarizes the concepts and findings described in the collection of articles pertaining to the Research Topic published in Frontiers in Cell and

Developmental Biology, 2021. Created with BioRender.com. Ac, acetylation; CLL, chronic lymphocytic leukemia; Fignl2, fidgetin-like 2; GPER, G-Protein-coupled

Estrogen Receptor; HS1, hematopoietic cell-specific lyn substrate-1; mDia, mammalian Diaphanous; NO, S-nitrosylation; P, phosphorylation; RhoA, Ras homolog

family member A; TBC, tubulin-binding cofactor; Ub, ubiquitylation.

is discussed in the context of the YAP transcriptional pathway
regulation during neurite development and transformation
of astrocytes into glioblastoma. Authors conclude that WIP
regulates nuclear shuttling of MRTF/SRF and YAP/TAP through
actin polymerization, and highlight some unclear aspects of the
regulation of the YAP/TAZ pathway in neurons, astrocytes and
leukocytes. The connection between the actin cytoskeleton and

the nuclear envelope determines cell shape (Gruenbaum et al.,
2015) and regulates cell ability to migrate through constrained
spaces (Lomakin et al., 2020; Venturini et al., 2020).

Li et al. address the study of the protein nesprin-2 (Syne2b),
which is an outer nuclear membrane protein that interacts with
actin during Zebrafish development (Davidson and Cadot, 2021).
Maternal Syne2b/nesprin-2 is required to preserve the epithelial

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 October 2021 | Volume 9 | Article 782559

https://Biorender.com/
https://doi.org/10.3389/fcell.2021.671887
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Martin-Cofreces et al. Editorial: Cytoskeleton, Organelles, Signaling and Cell-Communication

integrity during blastoderm formation. Embryos with defective
Syne2b/nesprin-2 show delayed progression of the epiboly due
to F-actin defective organization. F-actin appears concentrated at
multiple cell contacts in defective embryos instead of organizing
into the usual polygonal shape. Dong et al. describe a regulatory
role for the microtubule severing protein fidgetin-like 2 (Fignl2)
in endothelial and neuronal cell branching during Zebrafish
development. Sampietro et al. identify by STED microscopy a
differential distribution of hematopoietic cortactin homolog HS1
in B cells from chronic lymphocytic leukemia (CLL) patients
with poor prognosis. CLL cells show accumulation of HS1 at
central regions of the cell in addition to the adhesive basal
region observed in cells from healthy or CCL patients with good-
prognosis. At adhesion sites, an interaction with vimentin is
detected through FLIM-FRET assays. Therefore, the use of super-
resolution techniques and sensors of proximity allows finding
subtle, though relevant, changes in the molecular organization of
the cell that might be the basis of new tumor-specific diagnosis
and therapies.

Calvo and Izquierdo discuss the qualitative and quantitative
differences in the organization of actin-based structures, such
as actomyosin arcs, lamellipodia, or filopodia, at different areas
on the T cell side of the IS in the context of secretion. During
IS assembly, immune cells reorganize their membranes and
organelles. The role of actin cytoskeleton in organizing the
IS is still matter of study in different immune cells—T, B, or
NK cells arrange their receptors and organelles for directed
secretion (Soares et al., 2013; Martín-Cófreces et al., 2014). In
this context, Capitani et al. recapitulate the current knowledge
on the regulation of endosome function and their regulation
by actin dynamics at the IS, as well as their ability to induce
actin polymerization. This review article highlights the role of
endosomes in the recycling of receptors, as well as in promoting
long-term T cell activation.

On the other side of the IS, the actin dynamics also plays
relevant roles, which are discussed by Rodríguez-Fernández
and Criado-García. This review shows that the organization
of the actin cytoskeleton in dendritic cells is relevant to allow
correct T cell activation. Immune responses rely on the secretion
of mediators, which can be pro-inflammatory. In the case of
mast cell degranulation, they trigger allergic responses. In this
regard, Ménasché et al. review the coordination of cytoskeletal
dynamics and the secretory machinery during stress granule
secretion induced by FcεR activation upon allergen engagement.
FcεR signals through pathways leading to actin and microtubule
reorganization, which resembles the process observed after T and
B cell activation.

The regulation of actin dynamics by post-translational
modifications (PTMs) is approached by Bago et al.. These authors
review the role of nitric oxide and electrophilic cyclopentenone
prostaglandins in PTMs of actin and actin binding proteins
that facilitate actin depolymerization, ultimately reducing cell
adhesion and motility. The effect of these PTMs is discussed
in the context of cell-cell communication during endothelial
modification to facilitate lymphocyte transmigration and IS
formation. The IS and the cilia share a number of features
and components (Finetti et al., 2015; Stephen et al., 2018).

Primary cilia are indispensable for embryonic development
and cell differentiation, which endows ciliopathies with great
relevance (Reitter and Leroux, 2017). May et al. address
phosphorylation and ubiquitylation of different components
during cilia assembly and disassembly. K-63 linked α-tubulin
poly-ubiquitylation—which takes place during microtubule
de-polymerization (Wang et al., 2019), is used by IFT-A
(intraflagellar transport complex A) for retrograde transport
during cilia disassembly. Nolasco et al. study the effect of
colchicine, a drug used to treat inflammatory diseases such
as gouty arthritis and pericarditis. Tubulin binding cofactors
(TBCs; TBCA, TBCB, and TBCE) are chaperones involved
in the stabilization of the αβ-tubulin heterodimers. Here,
authors observe that colchicine prevents the formation of
β-tubulin/TBCA complexes by blocking the disassembly of
TBCE/TBCB/αβ-tubulin complex. This system is key to regulate
the critical concentration of αβ-tubulins needed to promote
microtubule assembly. Therefore, colchicine would prevent
microtubule dynamics by avoiding recycling of the αβ-tubulin
heterodimers, which makes cells more dependent on new
synthesis and possible metabolic constraints.

Altogether, this collection of articles summarizes part of
the knowledge on cytoskeletal dynamics influencing cell-
cell communication involved in sensing changes in the
environment supporting development and cell responses.
The underlying molecular mechanisms that account for the
regulation of cell-cell competition are still barely understood.
The diverse regulatory pathways exposed here support a
unifying hypothesis postulating that the sensing of extracellular
cues through membrane receptors stimulates changes in
the cytoskeleton that eventually allow reorganizing other
cellular components to adapt to the microenvironment,
facilitating an accurate cell response and endurance.
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