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Abstract: Genetic screening of Pseudomonas aeruginosa (PSDA) and Acinetobacter baumannii 

(ACB) reveals genes that confer increased susceptibility to β-lactams when disrupted, sug-

gesting novel drug targets. One such target is lytic transglycosylase. Bulgecin A (BlgA) is 

a natural product of Pseudomonas mesoacidophila and a lytic transglycosolase inhibitor 

that works synergistically with β-lactams targeting PBP3 for Enterobacteriaceae. BlgA also 

weakly inhibits di-Zn2+ metallo-β-lactamases like L1 of Stenotrophomonas maltophilia. We 

hypothesized that because of its unique mechanism of action, BlgA could restore susceptibility 

to carbapenems in carbapenem-resistant PSDA (CR-PSDA) and carbapenem-resistant ACB, 

as well as ACB resistant to sulbactam. A BlgA-containing extract was prepared using a previ-

ously published protocol. CR-PSDA clinical isolates demonstrating a variety of carbapenem 

resistance mechanisms (VIM-2 carbapenemases, efflux mechanisms, and AmpC producer 

expression) were characterized with agar dilution minimum inhibitory concentration (MIC) 

testing and polymerase chain reaction. Growth curves using these strains were prepared using 

meropenem, BlgA extract, and meropenem plus BlgA extract. A concentrated Blg A extract 

combined with low concentrations of meropenem, was able to inhibit the growth of clinical 

strains of CR-PSDA for strains that had meropenem MICs $8 mg/L by agar dilution, and 

a clinical strain of an OXA-24 producing ACB that had a meropenem MIC .32 mg/L and 

intermediate ampicillin/sulbactam susceptibility. Similar experiments were conducted on a 

TEM-1 producing ACB strain resistant to sulbactam. BlgA with ampicillin/sulbactam inhibited 

the growth of this organism. As in Enterobacteriaceae, BlgA appears to restore the efficacy of 

meropenem in suppressing the growth of CR-PSDA and carbapenem-resistant ACB strains with 

a variety of common carbapenem resistance mechanisms. BlgA extract also inhibits VIM-2 

β-lactamase in vitro. BlgA may prove to be an exciting adjunctive compound to extend the life 

of carbapenems against these vexing pathogens.
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Introduction
The Infectious Diseases Society of America has instituted a campaign for antimicrobial 

development called “10x’20” with the hope that ten new antibiotics will be developed 

by 2020.1 The number of multidrug-resistant pathogens has increased both in hospital 

and outpatient settings including long-term care facilities, as well as in the commu-

nity. Many experts in the area of infectious diseases are pessimistic about the ability 

to meet emerging resistance challenges with new agents.1–5 Patients who are elderly, 

Correspondence: Marion J Skalweit
Louis Stokes Cleveland Department 
of Veterans Affairs, 10701 East Blvd, 
Cleveland, OH  44106, USA
Tel +1 216 791 3800 ext 4682
Email marion.skalweit@case.edu 

Journal name: Drug Design, Development and Therapy
Article Designation: Original Research
Year: 2016
Volume: 10
Running head verso: Skalweit and Li
Running head recto: BlgA as a β-lactam enhancer for CRAB and CR-PSDA 
DOI: http://dx.doi.org/10.2147/DDDT.S110193

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/DDDT.S110193
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress
mailto:marion.skalweit@case.edu


Drug Design, Development and Therapy 2016:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3014

Skalweit and Li

immunocompromised, who have diabetes, pulmonary, and 

vascular disease are especially vulnerable to infections with 

drug-resistant gram-negative bacteria.6–9 Resistant pathogens 

are even being found in the community.10–12 New approaches, 

such as developing antibiotic enhancers that can restore the 

activity of antibiotics to which resistance exists, may allow 

for continued use of antimicrobials already available in the 

clinical arena. Bulgecin A (BlgA), a noncovalent inhibitor 

of bacterial lytic transglycosolase (Ltg) cell wall enzymes, 

may be a candidate antibiotic enhancer.

BlgA is a “β-lactam enhancer”
The gram-negative cell wall is a complex structure which 

makes development of new antimicrobials challenging. Peni-

cillin binding proteins (PBPs) and Ltgs are located in the inner 

membrane, the periplasmic space, and on the inner leaflet of 

the outer membrane,13 respectively. In addition to these cell 

wall proteins, β-lactamases such as AmpC cephalosporinases, 

metallo- β-lactamases (MBLs), and other carbapenemases 

are found in the periplasmic space. Chromosomal AmpC 

β-lactamases are typically produced at low levels in gram-

negative bacteria unless there is production of 1,6-anhydro-

muropeptides from altered peptidoglycan production by 

PBPs in the presence of β-lactam antibiotics and constitu-

tive expression of AmpC β-lactamase or “de-repression”.13 

BlgA is a novel compound that can enhance the function 

of β-lactams potentially by several unique mechanisms: 1) 

inhibition of Ltgs; 2) preventing de-repression of AmpC 

enzymes; and 3) inhibition of MBLs. Genetic screening of 

Acinetobacter baumannii (ACB) and Pseudomonas aerugi-

nosa (PSDA) reveals a variety of genes that confer increased 

susceptibility to β-lactams when these genes are disrupted.14,15 

One such gene product identified is the Ltg family of enzymes 

found in many gram-negative organisms.14–18 Ltgs catalyze 

the lytic cell wall reaction MurNAc–GlucNAc  MurNAc 

+ GlucNAc. Synthesis and lysis of peptidoglycan are strictly 

coordinated during cell division, and any imbalance can lead 

to cell lysis. In a clinical ACB complex strain (later identified 

as Acinetobacter nosocomialis), the Ltg was also associated 

with cellular motility and biofilm formation.19,20

BlgA (Figure 1) is an inhibitor of the soluble Escherichia 

coli Ltg, Slt70,21 and has been found to dramatically lower the 

minimum inhibitory concentrations (MICs) of ampicillin and 

cefmenoxime when combined with these agents and tested 

against E. coli and Helicobacter pylori strains.16,22 BlgA is a 

natural product derived from Pseudomonas mesoacidophila, 

a nonpathogenic strain that also produces monobactam 

antibiotics.22–24 The name derives from the bulge-like 

morphologic changes observed in Enterobacteriaceae when 

such organisms are grown in the presence of β-lactams and 

BlgA.22,25 Structurally, it contains a GlcNAC moiety like the 

substrate of Ltgs, and thus acts as a transition state inhibitor 

of Ltgs.26 BlgA appears to exert its effect when combined 

with β-lactams that target PBP3 in Enterobacteriaceae as a 

noncompetitive inhibitor of Ltgs.17,21 X-ray structures of Slt70 

of E. coli demonstrate that the hydroxymethyl side chain of 

the pyrrolidine ring hydrogen bonds to the catalytic Glu478 

in the manner of a transition state analog of the GlcNAC–

MurNAC substrate.13,21

In addition to its inhibitory effects on Ltgs, BlgA has also 

been found to act as an inhibitor of di-Zn2+ MBLs.27 Zn2+ 

MBLs are Class B β-lactamases that have carbapenemase 

activity, as well as activity against penicillins and cepha-

losporins, found in Pseudomonads. In the US, rare instances 

of VIM-2–producing PSDA have been noted; worldwide, 

imipenemase (IMP), Verona imipenemase (VIM), and even 

New Delhi metallo-beta-lactamase (NDM) types are com-

mon in PSDA isolates.28,29 Among the Class B MBLs, most 

require two Zn2+ ions for activity. BlgA had micromolar 

inhibitory activity against the di-Zn2+ forms of MBLs, Bce II 

of Bacillus cereus and L1 of Stenotrophomonas maltophilia. 

A model of BlgA docked into the active site of the L1 MBL 

shows an interaction between the second (ZNII) Zn2+ site 

and the sulfonate group of the sugar moiety of BlgA. This 

occurs when BlgA is 50%–100% deprotonated, as it should 

be at physiologic pH. This docking mechanism is similar to 

what is seen with MBL and angiotensin converting enzyme 

inhibitors such as d- and l-captopril. In addition, there is 

an interaction between the Asp14 and the proline moiety of 

BlgA, regardless of the protonation state of the inhibitor.27 

Further studies of MBL inhibition by BlgA were halted due 

to a lack of availability of this drug.

Our pilot studies described in this paper suggest that 

BlgA can be a broad-spectrum adjunctive agent that is able 

to augment the activity of β-lactams to inhibit the growth 

of resistant gram-negative bacteria including ACB and 

PSDA. By enhancing the activity for a given β-lactam or 

β-lactam–β-lactamase inhibitor combination, BlgA may be 

able to overcome resistance mediated by several mechanisms 

Figure 1 Bulgecin A.
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including efflux, lower-affinity PBPs, and production of 

β-lactamases. It may also impact biofilm formation in ACB 

infections. Through this early report, we hope to inspire and 

stimulate further development of BlgA and analogs that can 

be used as “antibiotic assistants” to treat infections with 

ACB and PSDA isolates with different resistance genotypes/

phenotypes. By doing so, we can define the antimicrobial 

spectrum of BlgA and determine the most effective partner 

β-lactam. In addition, we can determine whether BlgA pre-

vents the de-repression of AmpC β-lactamases, or if BlgA 

provides inhibitory activity against MBLs in organisms that 

express these resistance determinants.

Materials and methods
Strains used in this study
Clinical strains of PSDA (a VIM-2 producing strain R9630 

and Cleveland Clinic CL231 PDC-5 hyperproducing strain31) 

were a kind gift of R Bonomo; an efflux strain 860 was 

collected at the Cleveland VA hospital. ACB strains UH83 

(OXA-24/40+) and UH1026,32 were obtained as a kind gift 

from R Bonomo. E. coli MC1061 (Thermo Fisher Scientific, 

Waltham, MA, USA) was used as a positive control to assess 

BlgA activity with aztreonam.33

MIC determination
Agar dilution MIC determination for the clinical strains used 

in these studies was performed in triplicate according to the 

Clinical and Laboratory Standards Institute guidelines34 using 

a 0.5 McFarland inoculum plated onto Mueller–Hinton agar 

supplemented with antibiotics (meropenem [AstraZeneca plc, 

London, UK], imipenem [Merck & Co., Inc., Whitehouse 

Station, NJ, USA], aztreonam [Bristol-Myers Squibb, New 

York, NY, USA]). To assess for efflux, agar dilution MIC 

determination of carbapenem-resistant PSDA (CR-PSDA) 

clinical isolates (identified by the VA clinical microbiology 

laboratory Vitek II™ system [bioMérieux, Inc., Durham, NC, 

USA] as meropenem R and imipenem S) was also performed 

in triplicate using a 0.5 McFarland inoculum onto Mueller–

Hinton agar supplemented with meropenem (1–32 mg/L) ± 

Phe-Argβ-naphthylamide (PAβN; Sigma-Aldrich Co., St 

Louis, MO, USA) 50 mg/L efflux inhibitor.35 Susceptibil-

ity results using Microscan™ (Beckman-Coulter Inc, Brea, 

CA, USA) reported by the University Hospitals of Cleveland 

clinical microbiology laboratory as sensitive, intermediate, or 

resistant (S, I, R) were utilized for ampicillin–sulbactam.

BlgA extract
BlgA extract was prepared by adapting the methods of 

Shinagawa et al.24 Briefly, P. mesoacidophila (ATCC® 

31433) is grown in ATCC® Medium 3 (Manassas, VA, 

USA) in an overnight culture at 28°C. After pelleting, the 

supernatant broth pH is adjusted to ten using 1 M NaOH to 

hydrolyze sulfazecin and IVY proteins,36 and kept at 25°C 

for 2 hours. For our initial studies, we prepared a bulgecin 

extract by neutralizing the hydrolyzed supernatant to pH 

7.0 with addition of 1 M HCl. The treated supernatant was 

concentrated 10× at room temperature and used in growth 

inhibition experiments.

Growth curves
Growth curves were constructed for control strain E. coli 

MC1016 according to the method of Heidrich et al33 as fol-

lows: 1 µL of a 1:10 dilution of an overnight culture was added 

to 95 µL of super optimal broth (SOB) medium (~105 colony 

forming units [cfu]/mL). An initial OD
600 nm

 was obtained 

using an enzyme-linked immunosorbent assay plate reader, 

and then the sample was allowed to grow for 100 minutes at 

37°C. After 100 minutes incubation, another OD
600 nm

 reading 

was obtained and then either saline (null), BlgA extract alone 

(final v:v [BlgA] =10%), aztreonam (final concentration 

0.01 mg/L), or 10% (v/v) bulgecin extract with 0.01 mg/L 

aztreonam was added to the well (in 100 µL total volume) 

and growth was further monitored at OD
600  nm

 at various  

time points. Growth curves for the clinical bacterial strains 

were obtained in a similar manner using appropriate part-

ner antibiotics for the particular resistance phenotype and 

adjusting the inoculum or antibiotic concentration to allow 

growth of the organism. For the multidrug resistant (MDR) 

ACB clinical strain, UH83,26 1 µL of a 1:10 dilution of an 

overnight culture was used with meropenem (0.02 mg/L) 

± 10% (v/v) bulgecin extract in 100 µL total volume. For 

the sulbactam-resistant ACB clinical strain UH10,32 1 µL 

of a 1:10 dilution of an overnight culture was used with 

ampicillin–sulbactam (0.03/0.015 mg/L) ± 10% (v/v) 

bulgecin extract in 100 µL total volume. UH83 produces 

OXA-24 carbapenemase and is resistant to carbapenems 

(MIC $32 mg/L), cephalosporins, and intermediate to 

sulbactam.26 UH10 has been completely sequenced32 and 

produces TEM-1 β-lactamase as the basis of its sulbactam 

resistance. The PSDA strains included CL231, a PDC-5 

AmpC hyperproducing strain isolated from the sputum of a 

patient at the Cleveland Clinic in the mid-2000s;31 a VIM-2 

producing strain;30 and a PSDA urinary tract isolate, resis-

tant to meropenem/susceptible to imipenem that effluxes 

meropenem but has no other identifiable carbapenem resis-

tance mechanism (this study). For PSDA strains, growth 

assays were performed (mentioned earlier in this section), 

by adding 1 µL of an overnight culture (cx) of a 1:1, 1:2, 
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or 1:10 dilution thereof to 95 µL volumes of SOB medium. 

After 100 minutes incubation, either saline (null), BlgA 

extract alone (final v:v [BlgA] =10%), meropenem (final 

0.03 mg/L), or BlgA 10% + meropenem 0.03 mg/L was 

added to the well and growth was monitored at OD
600  nm

  

using an enzyme-linked immunosorbent assay plate reader 

at various time points.

Characterization of resistance 
determinants
For additional verification of the PSDA isolates, we performed 

polymerase chain reaction analysis to look for the presence of 

β-lactamases, for example, SHV, TEM, CTX-M, PER, VEB, 

GES, IMP, VIM, and OXA β-lactamases, as well as MEX 

efflux pumps using the methods and primers of Hujer et al.37 

To screen for efflux phenotypes, we did agar dilution MICs of 

CR-PSDA clinical isolates using a 0.5 McFarland inoculum 

onto Mueller–Hinton agar supplemented with meropenem 

(1–32 mg/L) ± PAβN 50 mg/L efflux inhibitor.35

VIM-2 IC50 measurements
Purified VIM-2 β-lactamase was a kind gift from Dr J-D 

Docquier.38 Substrate hydrolysis rates with nitrocefin were 

measured using an Agilent Technologies (Santa Clara, CA, 

USA) 8453 ultraviolet–visible spectrophotometer at 482 

nm and recorded using ultraviolet–visible ChemStation 

Online (Agilent Technologies). Reactions are performed 

in 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES)–50 μM ZnCl
2
 at pH 7.4 with 8 nM concen-

trations of β-lactamase protein per total reaction volume of 

500 μL. Using 200 μM nitrocefin as the reporter substrate, 

initial hydrolysis rates are measured in the presence of 

0%–1.5% BlgA extract. Enzyme is preincubated with BlgA 

for 5 minutes before 50% inhibitory concentration (IC
50

) 

determination. To determine a crude IC
50

, expressed as a 

percent concentration of BlgA extract, fractional activity 

(v/v
o
) was calculated from the initial rate measurements for 

substrate hydrolysis and plotted as a function of inhibitor 

percent concentration: v/v
o
 = 1/[1+([I]/IC

50
)], where v is the 

reaction velocity, v
o
 the reaction velocity without inhibitor, 

[I] the inhibitor concentration, and IC
50

 is the concentration 

of inhibitor where v = v
o
/2.

Results and discussion
Minimum inhibitory concentrations
Agar dilution MICs for the strains included in the BlgA 

assays are shown in Table 1 for each organism used in this 

study, for comparison of the resistance phenotypes. Porin 

downregulation and AmpC hyperproduction were not 

assessed in this study, and may contribute additional resis-

tance in these strains. The PSDA CL231 strain is known to 

hyperproduce the AmpC enzyme PDC-5.31

Polymerase chain reaction
Polymerase chain reaction assays confirmed the presence of 

resistance determinants as shown in Table 1. All the PSDA 

isolates tested positive for MEX A and MEX C, except 

for the VIM-2–producing strain R96, which also was not 

inhibited by PAβN.

Preparation of BlgA extracts and growth 
assays
We prepared crude extracts of P. mesoacidophila isolate 

ATCC® 31433 and the growth curves for the ACB and 

PSDA clinical strains and the E. coli control strain as shown 

in Figures 2 and 3.

BlgA extract showed good activity against the control 

strain E. coli MC1061 when combined with aztreonam 

(Figure 2A).33 In clinical ACB strain UH83,26 growth was 

suppressed by a bulgecin–meropenem combination as shown 

in Figure 2B. In clinical ACB strain UH10,32 growth was 

inhibited by the bulgecin/ampicillin/sulbactam combina-

tion (Figure 2C), however, not as well. We hypothesize 

Table 1 MIC (mg/L) results for clinical strains

Strain Aztreonam Meropenem Imipenem Amp/sulb PCR

ACB UH83 (OXA-24) .128 .32 .32 S (Microscan) +OXA-24

ACB UH10 (TEM-1) n/a 1 1 R (Microscan) -OXA-24, +TEM

PSDA CL231 (PDC-5) n.d. 16 16 n/a -OXA-24, -VIM
-KPC, -PAβN

PSDA R96 (VIM-2) 32 128
128 with PAβN

256 n/a +VIM, -OXA, -KPC, 
-PAβN, inhibition

PSDA VA efflux + strain 860 (this study) 64 16
1 with PAβN

4 n/a -VIM, OXA, KPC, 
+PAβN inhibition

Abbreviations: Amp/sulb, ampicillin/sulbactam; ACB, Acinetobacter baumannii; MIC, minimum inhibitory concentration; PAβN, Phe-Argβ-naphthylamide; PCR, polymerase 
chain reaction; PSDA, Pseudomonas aeruginosa; n/a, not applicable; n.d., not determined.
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Figure 2 Growth curves of ACB clinical strains with antibiotics and BlgA extract.
Notes: (A) Escherichia coli MC1061 positive control with inoculum 1 μL of a 1:10 dilution of overnight culture with 0.01 mg/L aztreonam and 10% BlgA extract. (B) Growth 
curves of MDR Acinetobacter baumannii strain UH83 with inoculum 1 μL of a 1:10 dilution of overnight culture (OD600 nm vs time in minutes). Diamonds (top curve), no 
antibiotics; squares, 0.02 mg/L meropenem alone; triangles, 10% bulgecin extract alone; circles (bottom curve), 10% bulgecin extract with 0.02 mg/L meropenem (three 
determinations ±5% error). (C) Growth curves of A. baumannii strain UH10 with inoculum 1 μL of a 1:10 dilution of overnight culture (OD600 nm vs time in minutes). Diamonds 
(top curve), no antibiotics; squares, 0.03 mg/L ampicillin/0.15 mg/L sulbactam alone; triangles, 10% bulgecin extract alone; circles (bottom curve), 10% bulgecin extract with 
0.03 mg/L ampicillin/0.15 mg/L sulbactam (three determinations ±5% error).

Figure 3 Growth curves of PSDA clinical strains with antibiotics and BlgA extract.
Notes: (A) Growth curves of CR-PSDA strain CL-231 PDC-5 hyperproducing strain 1 μL of 1:1 overnight culture inoculum (OD600 nm vs time in minutes). Diamonds (top 
curve), no antibiotics; squares, 0.03 mg/L meropenem alone; triangles, 10% bulgecin extract alone; circles (bottom curve), 10% bulgecin extract with 0.03 mg/L meropenem 
(three determinations ±5% error). (B) Growth curves of CR-PSDA strain 860 efflux strain 1 μL of 1:2 overnight culture inoculum (OD600 nm vs time in minutes). Diamonds 
(top curve), no antibiotics; squares, 0.03 mg/L meropenem alone; triangles, 10% bulgecin extract alone; circles (bottom curve), 10% bulgecin extract with 0.03 mg/L 
meropenem (three determinations ±5% error). (C) Growth curves of CR-PSDA strain 860 efflux strain 1 μL of 1:10 overnight culture inoculum (OD600 nm vs time in 
minutes). Diamonds (top curve), no antibiotics; squares, 0.03 mg/L meropenem alone; triangles, 10% bulgecin extract alone; circles (bottom curve), 10% bulgecin extract with 
0.03 mg/L meropenem (three determinations ±5% error). (D) CR-PSDA strain R96 VIM-2 producer 1 μL of 1:10 overnight culture inoculum (OD600 nm vs time in minutes). 
Diamonds (top curve), no antibiotics; squares, 0.03 mg/L meropenem alone; triangles, 10% bulgecin extract alone; circles (bottom curve), 10% bulgecin extract with 0.03 mg/L 
meropenem (three determinations ±5% error).
Abbreviation: CR-PSDA, carbapenem-resistant Pseudomonas aeruginosa.
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that the TEM-1 production is still sufficient to hydrolyze 

the sulbactam, and that the Ltgs inhibited by BlgA may not 

interact as well with the PBPs that bind sulbactam in ACB, 

compared to those inhibited by meropenem.

BlgA extract inhibited the growth of clinical PSDA strains – 

AmpC hyperproducer PDC-5 CL231 (Figure 3A), meropenem 

effluxing strain 860 (Figure 3B and C), and VIM-2-producing 

strain R96 (Figure 3D)-when combined with meropenem. Of 

interest, when examining the growth curves of PSDA strains 

R96 (Figure 3D), which is meropenem resistant on the basis of 

VIM-2 production, and the VA clinical strain 860 (Figure 3B 

and C), which has an efflux mechanism of resistance for mero-

penem, the growth curves differ. For strain 860, we studied two 

different inocula of bacteria, with ~5×105 cfu/mL (Figure 3B) 

and with ~105 cfu/mL (Figure 3C). Differences in the curves 

show that there is an inoculum effect to the growth suppres-

sion, but there are also differences in the growth suppression 

depending on the mechanism of resistance. This suggests one 

of two possibilities within the limitations of the assay: either 

BlgA is acting by a second mechanism, that is, inhibition of 

the VIM-2 β-lactamase (in strain R96), or BlgA is effluxed to 

some extent (strain 860), or both mechanisms may be operat-

ing. Strain 860 may also have other mechanisms of resistance 

such as OprD loss which have not been characterized. This 

prompted us to examine whether BlgA extract could inhibit 

VIM-2 in vitro.

Inhibition of VIM-2 MBL
In order to demonstrate whether BlgA extract could inhibit 

VIM-2 MBL, we measured the IC
50

 of the extract expressed as 

a percent concentration for VIM-2 MBL of PSDA39 (Figure 4) 

using a kinetic assay (see the “Materials and methods” section). 

BlgA is hypothesized to bind in a reversible manner to di-Zn2+ 

MBLs27 by coordinating its GlcNAC sulfate group to the 

Zn2+ ions. The measured IC
50

 for our extract is 0.5%±0.1%. 

BlgA has an IC
50

 of 150 µM for the structurally similar L1 

di-Zn2+ enzyme of S. maltophilia.27 A concentration of 10% 

BlgA extract was used in the growth inhibition experiments, 

or a 50-fold higher concentration in the medium, compared 

to the estimated IC
50

 % in the in vitro enzyme assay. So, it is 

reasonable to assume that some inhibition of the PSDA R96 

strains is due to the activity of BlgA extract against VIM-2. 

Further studies with pure BlgA are needed to demonstrate 

this effect, as well as further characterization of strain 860, 

to determine whether efflux of BlgA may occur or if OprD 

loss plays a role in resistance to BlgA.

One of the limitations of the study is that thus far, we 

only have crude extract available for testing. We attempted to 

Figure 4 IC50 expressed as percent concentration of bulgecin A extract to inhibit  
VIM-2 β-lactamase hydrolysis activity.

χ

perform disk diffusion and broth MIC determinations using 

the extract, but the results showed only one dilution change in 

most instances in the MIC (data not shown). Because a single 

MIC determination can vary by one dilution either way, this 

was not deemed a significant change. Our current studies 

are limited by our ability to produce sufficiently pure BlgA 

to confirm the activity of this agent against highly resistant 

clinical pathogens. However, these data are highly sugges-

tive that a bulgecin compound has β-lactam–enhancing 

capabilities in these bacteria, either through inhibition of 

Ltgs or MBLs or both.

Conclusion
BlgA extract is active against carbapenem-resistant ACB 

and CR-PSDA isolates including those that produce OXA-

24/40 and VIM-2 β-lactamases, efflux meropenem, and have 

AmpC hyperproduction. Furthermore, our BlgA extract has 

an IC
50

 of 0.5% concentration versus VIM-2 β-lactamase. 

BlgA extract is also effective at suppressing the growth of 

ACB strains resistant to sulbactam. It is unknown whether 

it is a bactericidal or bacteriostatic agent due to the limita-

tions of our current BlgA purity and the assay conditions. 

Further studies are needed with pure material before this can 

be determined. Because BlgA-containing extract appears 

to have a wide range of activity versus numerous MDR 

and extensively drug resistant (XDR) isolates, it may be an 

adjunctive therapy to extend the life of β-lactam antibiotics 

versus MDR ACB and PSDA.

Further work is needed to completely purify the com-

pound and determine the best partner β-lactam with which 

to treat these resistant pathogens.
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