M entropy MBPY

Article
Stochastic Entropy Solutions for Stochastic Nonlinear
Transport Equations

Rongrong Tian and Yanbin Tang *

School of Mathematics and Statistics, Hubei Key Laboratory of Engineering Modeling and Scientific Computing,
Huazhong University of Science and Technology, Wuhan 430074, China; tianrr2015@hust.edu.cn
* Correspondence: tangyb@hust.edu.cn

check for
Received: 26 April 2018; Accepted: 21 May 2018; Published: 23 May 2018 updates

Abstract: This paper considers the existence and uniqueness of stochastic entropy solution for a
nonlinear transport equation with a stochastic perturbation. The uniqueness is based on the doubling
variable method. For the existence, we develop a new scheme of parabolic approximation motivated
by the method of vanishing viscosity given by Feng and Nualart (J. Funct. Anal. 2008, 255, 313-373).
Furthermore, we prove the continuous dependence of stochastic strong entropy solutions on the
coefficient b and the nonlinear function f.
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1. Introduction

In this paper, we consider the existence and uniqueness of the solutions to the nonlinear transport
equation with a stochastic forcing:
do(t,x) +b(x) - Vyf(p(t,x))dt = A(p(t,x))dW;, t>0, x € RY, )
p(t, x)|t=0 = po(x), x € RY,

where W; is a one-dimensional Wiener process on a stochastic basis (Q, 7, P, { F¢ }+>0) and A : R — R
is a real valued function. f : R — R and b : R? — R are Borel functions, and the initial data pg
is non-random.

When divyeb = 0, then b(x) - Vi f(p(t,x)) = divy(b(x) f(p(t, x))), the equation in (1) models the
phenomenon of complex fluid mixing in porous media flows and other problems in mathematics and
physics [1-5]. A particular application of this model involves two-phase fluid flow, which has been
used to study the flow of water through oil in a porous medium [6,7]. For the porous media flows,
the spatial variations of porous formations occur on all length scales, but only the variations at the
largest length scales are reliably reconstructed from data available. The heterogeneities occurring on
the smaller length scales have to be incorporated stochastically. Consequently, the flows through such
formations are stochastic [8].

There has been an interest in studying the effect of stochastic force on the corresponding
deterministic equations, especially on the existence and uniqueness. Most of papers focus on the
following Cauchy problem:

@)

do(t,x) + div,F(p(t,x))dt = A(t,x,p(t,x))dW;, t >0, x € RY,
p(t,x)|t=0 = po(x), x € RY,

Entropy 2018, 20, 395; d0i:10.3390/e20060395 www.mdpi.com/journal/entropy


http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-7445-2817
http://dx.doi.org/10.3390/e20060395
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/6/395?type=check_update&version=2

Entropy 2018, 20, 395 20f17

where W; is a one-dimensional standard Brownian motion or a cylindrical Brownian motion, or a
space-time Gaussian white noise.

The various well-posedness results have been established for the Cauchy problem (2).
When d =1, the L® solution has been established in [9,10] for A = A(p) and A = A(t,x),
respectively, under hypotheses that pp € L* and A has compact support. For general A, even for
initial data pp € L%, the solution is not in L® since the maximum principle is not available.
Therefore, LP (1 < p < 0) is a natural space on which the solutions are posed.

When A = A(x,p), the framework of LP-solutions (2 < p < oo) was first established
by Feng and Nualart [11], but the existence was true only for d = 1. These solutions were
generalized to weak-in-time by Bauzet, Vallet and Wittbold [12], Biswas and Majee [13], and
Karlsen and Storresten [14]. For any dimension d > 1, the well-posedness of kinetic solutions
was obtained by Debussche and Vovelle [15], and then the result was extended by Hofmanova [16].
Recently, due to the fact that uniform spatial BV-bound is preserved for problem (2) if A satisfies
a Lipschitz condition, Chen, Ding and Karlsen [17] supplied a result on well-posedness of M>1L?
solutions in R? for d > 1. Furthermore, there are many papers devoted to the study of the Cauchy
problem (2), such as the study on bounded domains [18-20], invariant measures [21,22], Lévy
noises [23-26] and long time behaviors [27]. For more details in this direction for random fluxes,
we refer the readers to [28-31].

When F depends explicitly on x, so far as we know, there are few research works on the Cauchy
problem (2). Even though for the problem (1), there are still few works since that the presence of b will
bring us some new difficulties on the proof of existence and uniqueness of solutions. Moreover, from the
viewpoint of conservations laws and numerical simulations, L* is a natural space on which solutions
are posed, how to get the boundedness of solutions is another difficulty. We would like to point out that
there are two big difficulties arisen here. One is how to get the compactness of solutions for the viscosity
equation, another is how to prove the boundedness of solutions. To overcome the first difficulty, we
develop a new scheme of parabolic approximation, which sheds some new light on the method of
vanishing viscosity. For the second difficulty, we use the Ito’s formula and the cut-off technique.
We know that there are probably three classical methods to deal with the compactness of solutions
for the viscosity equation so far when F is independent of x. The first is based upon Young’s relaxed
measure [11,14], which is suitable to space-time Gaussian white noise. The second is to estimate the
spatial BV-bound and temporal L!-continuity [17], which is suitable to get the convergence of solutions
for almost everywhere (t, x) and almost surely w. The third is to use the kinetic formulation [15,16],
which is suitable to cylindrical Brownian motion.

In this paper, we adapt the method given by [11,14], but there is a significant difference. The more
important thing is that we obtain the continuity of solutions in the temporal variable. The arguments
for problem (1) can be generalized to an equation in which the stochastic term is represented by

/EZ A(x, p(t,x),2)W(t, dz),

where Z is a metric space, and W is a space-time Gaussian white noise martingale random measure
with respect to the filtration {F; };>o, if one assumes in addition that A is Lipschitz continuous in x.
Up to longer and more tedious calculations, the arguments for space-time Gaussian white noise is
similar to problem (1). There is no new component except some minor changes, which is also similar
to the proof given in [11]. To make the present proof more refined, we discuss the simple case and
prove the existence and uniqueness of solutions to (1) in this paper. Encouraged and inspired by the
definition given in [11], we first give a notion of stochastic entropy solution.

Definition 1. Let |b|,divb € L} (R%), f € C2(R), A € C(R), po € L' N L®(RY). An {F;}s=o-adapted

loc
and L*(R%)-valued stochastic process p = p(t, x,w) is said to be a stochastic entropy solution of (1), if



Entropy 2018, 20, 395 30f17

(i)  forevery T > 0and every p € [1,00),

p € C0 T LM (O L], (B))) ®
and
sup |[|o(t )||L1(Qde) + sup |[|p(t )||L°°(Q><]Rd) < oo, 4)
0<t<T 0<t<T
(ii)  for every entropy pair (n,q), (1 € C®(R),y" > = [ (s)f'(s)ds, f'(s) = df(s)/ds),

every nonnegative function ¢ € C3(R?) and every 0 s < t < o,

oGm0 — [ o(n(e(s,x)dx

t
/s /Rd divy (b(x)@(x))q(p(r, x dxdr+2/ / o(r,x))A%(o(r, x)) (x)dxdr
[l [ e Ap())e()ix, B -as, 6)

where the stochastic integral in the last term in (5) is interpreted in Itd’s sense.

Furthermore, stochastic entropy solution p is called a stochastic strong entropy solution if the below
conditions hold:

(iii)  for each { Fi}i=o-adapted L2(R?)-valued stochastic process p(t, x,w), satisfying (3) and (4), we define ij
through each entropy function y by

1r0.y) = [0/ (6(r,%) = 0) A(B(r, )y, ), ©
wherer > 0,0 € R,y € R and p € C3(R?), there is a deterministic function D(s, t), such that

IE/ / 1,0,y dWrL , ty E/ / 9.7 (r,v = p(r,y),y)A(p(r,y))dydr + D(s,t); (7)

(iv)  foreach T > 0, there exist partitions 0 = tg < t; < --- < t, = T such that

lim ZD i—1,t) =0. (8)

max(tj—t;_1)—0 ;=
We now state our main results. The first one is focused on the uniqueness.

Theorem 1. Let f € C%(R), po € L' N L*®(R?) and

b € BV (R%GRY), divh, 1b+('|).|| € L®(RY), A € C2(R). )

Suppose that p1 and p, are stochastic entropy solutions of (1), and one of them is a stochastic strong entropy
solution. Then, for every t > 0,

Ellp1(t) — p2(t)[| 11 (gay = 0. (10)

Remark 1. Compared with the uniqueness results given in [11,17], Theorem 1 is new since the 1/2-Holder
continuity of A is enough to ensure the uniqueness. Moreover, compared with the uniqueness result for stochastic
differential equations in [32], the hypotheses of 1/2-Holder continuity on A is optimal.

If b, f and A are more regular, we also have the following existence results.
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Theorem 2. Let f € C%(R) such that f' is bounded and f(0) = 0. Assume that b € WV (R4, R?) and
po € L'NL®(RY), A € Lip(R), A(0) =0, and IN >0, A(u) =0, ¥ |u| > N. (11)
Then,

(i) (1) has a stochastic strong entropy solution.
(ii)  Moreover, in addition py € BV(R?), for every T > 0, we have p € L*([0, T]; L*(Q; BV(RY))) and
there is a constant C depending only on |[b|| e (ga) and [ £l oo (m) Stich that

sup Ello(t) 1y as) < CUDIwrqasy, 1 11y 100 5y ge- (12)

0<t<T

Remark 2. (i)  Ifdivb =0, then f(0) = 0 is not needed.

(ii) ~ For a general function A, even for initial data pg € L, the solution is not in L. To maintain the
boundedness of solutions, additional assumptions on A should be added. Inspired by [9,10], we can
suppose that A has compact support.

We now discuss the continuous dependence of the solutions on b, f and A. Some results for the
continuity on A have established for the case of constant vector field b [17]. Here, we only give the
continuous dependence of the solutions on b and f.

Theorem 3. Let 5y € L' N L®°(R), pg € L'NL*® N BV(R?), b,b € WL*(R%RY). £, f € C*(R) such
that f', f' are bounded and f(0) = f(0) = 0. A meets the assumption (11). Let p be the unique stochastic
strong entropy solution of (1) and p be the unique stochastic strong entropy solution of

dp(t,x) + (
pt,3)] 10 =

) - Vaf(p(t,x))dt = A(p(t,x))dW;, t >0, x € R,
Po(x), x € RY.

For every T > O, there exists a constant C > 0, which depends only on [|b]|yregay , |f'l|o(r)
17y 1livBl oy 18y and T, such that

sup E [ lo(t,x) = plt0)ldx < [ lpo(x) — o) dx
o<i<T /R R
CllIb = bl o ey + If" = Flleow)lllooll gy ey (13)

Remark 3. Without the noise, (1) has been discussed by Chen and Karlsen. Some results on the existence and
uniqueness of solutions as well as continuous dependence on b and f have been obtained in [33]. Here, we get an
analogue of [33] (Theorem 3.2) but simplify some assumptions on the velocity fields b and b.

The present paper is organized as follows. In Section 2, we give the proof of Theorem 1. Section 3
is devoted to the proof for Theorem 2. In Section 4, we prove the continuous dependence of solutions
onband f.

We end up this section by introducing some notations. N is natural numbers set. m € N and
C'(R7) stands for the vector space consisting of all functions ¢, which, together with all their partial
derivatives B“gb of order || < m, are continuous and have compact supports in R?. Given a measurable
function ¢, ¢ = max{¢,0} = ¢V 0and ¢~ = —min{g,0} = —[¢ A 0]. The symbols V, div, A, if not
differently specified, are referred to derivatives in x. For every R > 0, Bg := {x € R? : |x| < R}. It
almost surely can be abbreviated to a.s.. The letter C will mean a positive constant, whose values may
change in different places.
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2. Proof of Theorem 1

Let p; be a stochastic entropy solution of (1) with the initial data p} and p, be a stochastic strong
entropy solution of (1) with the initial data p3, respectively. We set p15(t, x) := p1(t, x) — pa(t, x) for
every t > 0and x € R,

Let ¢ be a 1-dimensional standard mollifier,

1) = Coexpl ) 1ca(r), [ o(ridr =1 (19

For 6 > 0, we set gy(r) = 0(r/80) /6 and define

/ / T)dds. (15)

Forany § > 0and any 0 < ¢ € C3(R?), we set

d _
ps(xy) = (0 TT oS 2))p(* 1Y) € BRH). (16)
k=1

If one chooses the entropy function by 7, the test function by ¢5(x,y), and § = 6%/3, in view of
the assumption b € BV}, (Rd; R4 ), then all calculations from [11] (Lemma 3.1) to [11] (Lemma 3.3) are
adapted to the present case. Furthermore, noting the fact that if ¢ € L!(R?), for every e > 0, we define
8e(x) = 1jg)<e(x)|g(x)| /¢, then for almost everywhere x € R4,

ge(x) >0 as elO. (17)

Hence, Ref. [11] (Lemma 3.4) holds true as well if A € Cz (R).
Therefore, for every t > 0, we conclude that

E/ )e12)+ tx)dx—/Rd(p(x)[plz]+(0,x)dx
< B[ [ vbg0e) + b(x) - Vp(x)]1pm) (01207, 0) o1 (7, ) = Flpalr, )l
< o ® ) [ 1690000 +b(x) - () pra] (7,3}, (18)

where a = [supoq; <7 l01(t) [l Lo ()] V [SUPo<i<r 102(8) | Lo (o -
Let the test function ¢ in (16) satisfy that supp(¢) C By, ¢ = 1 on |x| < 1. Let R > 0 be a real

number, and set pr = @(-/R). With the help of (9): divb, |b(-)|/(1+|-|) € L®(R?), if one takes
¢(-/R) instead of ¢ in (18) and lets R tend to infinity, then

E/Rd[Plz]Jr(f,x)dx—/Rd[p1z]+(0,x)dx
! . t
< f ||L°°([—a,u])HlebHLOO(Rd)E/O /W[plz]Jr(r,x)dxdr. (19)

Thus, by the Gronwall inequality, one easily finds that

sup E/d[p12]+(t,x)dx < eXp{HfIHL‘”([—u,u])”diVbHL""(Rd)T}/d[p12]+(01x)dx' (20)
o<t<T /R R

Similar arguments imply that

sup E [ (o) (6 0)dx < exp{ILf liw-aap I divbll oo T [ o) (0,x)dx. @)

0<t<T
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Combining (20) and (21), we complete the proof. [J

3. Proof of Theorem 2

(i) We prove the existence of stochastic strong entropy solutions for (1) by the method of vanishing
viscosity, that is, we regard (1) as the € | 0 limit of the viscosity equation

{ dpt(t,x) +b(x) - V(% (t, x))dt = eAp®(t, x)dt + A(p%(t,x))dW;, t > 0, x € RY, 22)

p‘c'(t,x)‘t:() = p(s)(x)l x e Rd!

where pf) is an approximation to pg.
We now divide the proof into three steps.

Step 1. Existence and uniqueness of mild solutions to the Cauchy problem (22).

Here, of is said to be a mild solution of (22), if p(t) is an Fi-adapted L?(R?)-valued stochastic
process and satisfies

ef(t,x) = / Ge(t,x —z)p dz+/ / div,(Ge(t —r,x — 2)b(z)) f(0°(r, z) )dzdr
+/0 AW, /Rd Ge(t —r,x —2)A(p%(r,2))dz, P—as., (23)

for every t > 0, almost everywhere x € RY, where the heat kernel G(t,x) = e~ ‘4st / (4ret)/2.

We choose p§ € L' N L® N H'(R?) such that p§ — po in L' N L2(R¥) as ¢ | 0. For every fixed ¢,
every p € [1,00], [|0§ || p(re) < [P0l Lp(rey- With the help of Banach contraction mapping principle,
there is a unique mild solution p® to (22). Moreover, for every T > 0,

ot € C([0, T]; L2(Q; HY(R?))) N L2([0, T] x €; H2(RY)) N L®([0, T]; LP(Q x RY)), Vp € [1,0).

Furthermore, for every 1 < p < oo, every T > 0, we have

sup B[00l | + %Aﬁwwmﬁ%wﬂ
< C(l1bll o gty VBl ooty L sy T [ 10517, gy + o512 |
< CUIBl oy VBl o ey 1L sy, T) [0l gy + 0012 g 4)
and
E[[V20% | 20,77 xret) < CUIBNwiee ey |F | (), )1 V5| 2R - (25)
We show that (4) holds for p¢. Let 1y be given by (15). VM > 0, define 1} (r) = 1o(r — M), then
M) — (r—M); as 010 (26)

Let ¢ be a d-dimensional standard mollifier, i.e.,
N 1 ~ _
3x) = Croxp(pr—p i), [, a0dr =1 @)

For § > 0, we define gs5(x) = 6(x/0)/% Let ¢(x) = Cre~ 1, with C; = [ [a e~ 1*ldx]~1 and for
every given natural number 1 € N, we set ¢} (x) = (@15, (+)) * 05(x).
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By using It0’s formula and the integration by parts, then
E [ gm0 (t0)dx — [ @it (of(x))dx
pa 0\ X6 (0L Jga P03 o
t t
< B[ [ divo()es ()it (r,x)dxdr B [ [ gt () A (x)
0 0
1t
3 [ (0" (r,x) A% () g () e, (28)
where in (28) we have used the fact
Ang (0% (1)) = (") (%1 (£, %)) p™ (1, x). (29)
For 6,9, M and ¢ be fixed, if one lets n approach to infinity, (28) turns to
E |, 9s(x)ng (0" (£ x))dx — /Rd @5 ()" (05 (x))dx
ot p t
< B[ [ divo()gs(x)ad (o) dxdr -+ €8 [ [ g (o(r, %) Ay (x)dixdr
1t
3 [ [0 0 (r00) A2 (%) s ()t
t
< E/ / div(b x))gM (ps(r,x))dxdr+eIE/0 /Rdﬂéw(pg(r,x))gog(x)dxdr
2( ¢
+C]E/0 /Rd §1|pe(r,x),M‘<9A (p%(r, x)) @s(x)dxdr,

where ¢s5(x) = (¢ * 05)(x) and in the last inequality we use the fact Ags(x) < @s(x). Then, taking
0 — 0, we arrive at

]E/ >)dx—/R 9(x)g" (05 (x) )dx
< IE/O ./Rddiv(b(x)fp(x))q (p°(r, x) dxdr+sE// nM( )op(x)dxdr
+CE /0 f /Rdéypg(r,x),mgefx (0° (1, x)) o (x)dxdr. 0)

Observing that f is bounded, (7}1)(M) = (3}1)'(M) = 0and (7}1)"” > 0, then

6 = | [ £ @Y @] < If limge| [ 0 @de] = 1 im0 @D
By virtue of (11), taking M > N, from (30) and (31), we have
E [ ol0m (et x)dx = [ | p(xm (o5 (x))dx
< 1C g I ey T) 4 €IB [ [ gl (0, )+ C,
forall 0 <t < T (T > 0is a given real number). Therefore,

E [ olxm! (ot ))dx < c/ x))dx + C8,

uniformly for e < 1.
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Due to (26), letting 6 | 0, for M > [|0f| 1 (ra), We get

R4

E [ o(x)(p(t,x) —M)4dx < C /]R"’ ¢(x)(pp(x) = M)4dx = 0. (32)

Since pf is in C([0, T|;L2(Q x R%)),

using the
for M > ||pg | e (), from (32), one has

dominated convergence theorem,

E/Rd o(x) (05 (t,x) — M)2dx =0, VteloT). (33)
By the convexity of 7}, with the help of (28), (32) and (33), if M > max{N, ||0§ || «(ga)}, we have

B sup [ () (et x) — M) dx
o<t<T I R?

< C /Rdwx)(p() M)+ CE [ [ (0%(6,3) - M) gl

efe ] fol e - ot dff

< o)) - +dx+c1a//

+C| // M)2 g(x )dxdtr:

For the above calculations for )! adapted to ¢} = &p(r + M), if M > max{N, ||0§|| . RY)}

)+ (x)dxdt

we have

E sup @(x)(pf(t,x) + M)_dx < C

x)(o5(x) + M)_dx =0,
0<t<T /R i @(x)(05(x) )

where &o(r) = ¢(r/0)/6, : R — Ris a C® convex function satisfying
=0, whenr > 0,
Z0)y=0, &(r){ €]-1,0], when —2<r <0,
= -1, whenr < —2.

Therefore, (4) is true for pf, and

sup |0°(8)[| Lo () < maX{N, [[oo| o (a) }- (34)
0<t<T

Step 2. Existence of the stochastic entropy solution to the Cauchy problem (1).

We choose pf) as in Step 1, and when ¢ = ¢; (i = 1,2) in (22), we use the notation p% (i = 1,2)
denote the unique stochastic entropy solution now. Suppose that 7¢ is given by (15), then

Ay (1 (£, x) — p2(t,y)) = —11(p° (£, x) — p2(L,y)) Ayp® (L, y).-
Let0 < ], ¢ € C3(R%), such that

(35)

J(x) =0, when |x| > 1,

< d p(x) =1, when |x| <1,
|fvx§g;|x\_c (x), whenx € R, { Vap(x)| < Co(x), whenx € RY. (36)
R =
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For any 6 > 0, we set

Ps(oy) = Jslx— o3 L) =S p(* 1Y) e @),

In view of (29) and (35), by using It6’s formula and the integration by parts,

/@ s (x,y)10 (0% (£, x) — p2 (£, y) )dxdy — /de Ys(x,y)10 (05" (x) — og2 (y))dxdy

< /Ot /de [divx(b(x)¢5)qgl (pel(r,x)/pq (,,,y)) + diVy(b(]/)llJa)ﬁzz(psl (T’,X),Pez(r,y))]dxdydr
*% /0 [ o (071 () = %2 () | A0 (%)) = A% (1)) Pl xdydr
+/0 R 1o (p° (1, x) — p%2(r,y)) [e18x + €20y 5 (x, y)dxdydr

[ [ g (00,3 — 2 AR ,3) — A r,) ey
= (1) + Ha(t) + Ha() + Hy(t), 37

where
&1 ( e 3 P (r) / 13 /
6 rx)ny) = [ e = pRny)f @),
X)
qg (p71(r, x),p%(r,y)) = (01 (1, x) — ) f'(v)do.
Clearly, EHy(t) = 0. For €1, €, and J are fixed, then
bmEH (1) = [ [ [diva(b0)9s) + divy (00)90) o) (0% (3) ~ 920,9)

010
mpww>ﬂwvwwmm
C [ [ v be)) + divy (b)) 1% (%) — 27, ) vy

Clleivblmquay [ [, 0o y) 67, ) = 0207, )] s dxdyr
+C||Vb||Loo Rd / /de
Bl [ 1950 s = )6 7, ) — 20, ) vy

s C/O R24 ws(x,y) [ (r, x) — 2 (7, y) |+ dxdydr, (38)

N

N

(x =yl (r, x) = 2 (r, y)] 4 dxdydr

where in the last inequality we have used (36).
Moreover, limg o EH,(t) = 0 and

leli(f)lEH3 / /de U, x) — 2 (r,y)]+ [e18x + e28) |95 (x, y)dxdydr. (39)

For every T > 0, by (37)—(39), we obtain
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sup [E [ 9s(x )% (tx) = =ty xdy] = [ paew)lof (v) = 2 ()]s ddy

0<t<T

t
< sup CE [ [ e y)lpft(r,x) = p2(r,y)]. dxdydr

0<t<T

+ sup / /de € (r, x) (r,]/)]+[£1Ax+£2Ay}lp5(x,y)dxdydr] (40)

0<t<T
Observing that

€1+ ¢er -
[e1Ax + e28y]95(x, y)| < C 152 255(x,y),

where

Po(ry) = TCSDPTY) € Co®), . € Co®).

With the help of dominated convergence theorem, then

lim sup limEH;(t) = 0. (41)
elw,ezw,(sw,gl(%% o<t<T 640

Combining (40), (41), and with the aid of Gronwall’s inequality, then

lim sup E | s(x,y)[0% (t,x) — p2(t,y)] 1 dxdy = 0.
e110,£210,610, 52 50 0<t<T  /R¥

Similar arguments also hint that

lim  sup E | 9s(x,y)[0" (t,x) — p=(t,y)]-dxdy = 0.
€140,6210,510, 51 5 —>00<t<T R

Therefore,

lim o sup B [ gsoy)lpt () o () ldxdy = 0. W)
110,620,610, 51“2 S00<i<T  /RM

On the other hand, we have

[ o) |0 6,%) = 21, ) iy
J )
= [ Te@Ief 60+ ) - g2 (1,0 — o dudo
= /de J(1) ()]0 (t,0) — p2(t, v — du)|dudo

t Joag @0 = 1) — p(0)]]p% (t,0) — p=(t, v — ou)|dudv. (43)

In view of (34),

limsupsup sup E J(u)| (v — éu) — ¢(v)||p (t,v) — p®2(t,v — du)|dudv = 0. (44)
510 eeo<i<T /R

By (42)—(44), then

lim sup E J(u)p(v)|p1(t,v) — p*2(t,v — éu)|dudov = 0. (45)
£110,210,610, SIHZ Soo<i<T  JR¥
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Let ] and ¢ be given in (36), then, for § = (e; A 82)1/3, we have

| o@let(t,0) = p2(t0)ldo = [ J(u)g(@)|e (t,0) = p (t,0) |dodu
o J@0(0)l67 (t,0) = p%2(t,0 = dw)ldodu + [ J(u)g(0)|0%(t,0) — p=(t,0 — ou) dod.
We conclude that

lim sup E 0)|0%1(t,v) — p%2(t,v)|dv = 0. 46
Jimsup B [ g(@)lp7 (1) - p(1,0) e

Let R > 0 be a real number. If one takes ¢g(x) = ¢(x/R) instead of ¢ in the above calculations,
then we get an analogue of (46),

lim = sup E 0)|p%1 (t,0) — p(t,0)|do = 0. 47
gliorle«oogtgj“ R4 QDR( )|p ( ) P ( )| ( )

Thus, there is an JFj-adapted L} valued random process p(t), such that: p €
C([0, T]; LY(Q; L}, (R4))) and p* — pin C([0, T]; L' (Q); L} (R?))). Moreover, by applying the estimates

loc loc

(24) and (34), (4) holds true.
On the other hand, for every entropy flux pair (7,9) (y € C®[R), " > 0 and
= ["f'(s)n'(s)ds) for every 0 < s < t < co and every 0 < ¢ € C3(R?),

/Rd e(x)n(p°(t, x))dx — /Rd @(x)n (0 (s, x))dx
[ [ avoo@natetrondsdr + 1 [ e, 0) (e )ox)dndr
+./:dWr /ﬂ%d 7' (p(r,x))A dx+s/ / (r,x))Aq(x)dxdr, P—as.  (48)

Furthermore, if one approaches ¢ | 0 in (48), then (5) holds for p(t,x). Thus, p is a stochastic
entropy solution to (1).

Step 3. Existence of the stochastic strong entropy solution to the Cauchy problem (1).

For every {F;};>o-adapted L*(R%)-valued stochastic process f(t,x,w) (meeting (3) and (4)),
every given ¢ € C3(R??) and every given smooth convex function 77, we set 7j by (6) and

S0, 9510, = [ [ 0(a(rx) = 0)Alp 0, 09, y)saw,

then

t
7 Wi = L) (st 0% (ty), y)dy,
/Rd [/S 1(r,o.y)d L:pw)dy o ST W) (s, 0%(8 ), y)dy

where pf is the unique solution of (22).
Let ¢ be given in (14), and set 05(-) = 0(-/) /9, then for almost all w € Q), we have

LSt o)y =tim [ [ S0, 095,80, )50 — (&) dvdy. (49)

In view of the Itd formula for semi-martingales (d(XY) = XdY + YdX + d[X, Y]), (49) and the
integration by parts, one derives that
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E]WSWCW@Jm%LWJMy

= E/Rd '/st5(17’,41)(5,r,ps(w),y)drdy
+EA%1jﬂﬂ%¢X&ﬂPWhyLW(—MyVV@f@%ﬁWDdMy
-M;édAtﬂﬂﬂwﬂﬁnp%ny%ykAwp%nyﬂﬂdy
3B [ [ S0 60 ), ) A2 1)y

B [ [ [ @)~ ) AG G, 0) A 1) )y
= L5, t) + I2(s,t) + I3(s,t) + I2(s,t) + I2(s, t). (50)

The calculations for Ii(s,t) (i = 1,2,3,4) are similar, and we take I2(s, t) for a typical example.
Firstly, through integration by parts, it follows that

|12(S )]

B L ot oot x))diVy<¢<x,y>b<y>>dxdwf]

ol
R? Js |v\<N

where N1 = N V ||pg|| -
For p > d V2, using the Sobolev embedding theorem W'P(—Nj,N;) C L*®(—Nyi, Np) and
Holder inequality, from (51), we have

o Fy)drdy| (5D)
o=p*(r,y)

JA(P(T, x))divy (p(x, y)b(y))dxdWr |drdy,

Rd

lim inf 2(s, t)
< /]Rd/ / i VA(P(T, x))divy (¢ (x, y)b(y))dxdWr pdv)ﬁdrdy
+C /]Rd / / Jra 7" (p( —0)A((T, x))divy (P(x,y)b(y) )dxd W pdv) ﬁdrdy (52)

N

C/Rd /S /7N1 ]E /S /Rd 7" (p(t,x) — v)A(p(T,x))divy(tj)(x,y)b(y))dx)zd”c> gdv] %drdy

e L ULE

t 1 3
< C(N., T, HwaLwr’?r‘l’)/s (r—s)2dr = C(N1, T, ||bllwr, 17, )|t = 5|2 =: D(s, t),

[ (@, 3) =) A(p(, 0)dlivy (9, y)by)x| ) o)y

where D is a deterministic function which meets the property (8).
By using dominated convergence theorem, we also have

tim 50 == [ [ [ 000,90 — pr ) AU Al arixty (69
and
EQERﬁWHM@hﬁ@wﬂMy=E4ﬁw%M@hMMAWW- (54)

Combining (50) and (52)-(54), we know that (7) is true for p.
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(ii) In this case, we choose p§ € BV N L® N H'(RY) such that p§ — pp in L2 N BV (RY) as ¢ | 0.
Let 7 : R — R be a C* even function satisfying

-1, whenr < —1,
7(0)=0, 4" >0, y/(r)=< €[-1,1], when]r| <1,
1, when r > 1.

For any ¢ > 0, we define 75 by #5(r) = d5(r/5). Then,
ns(r) — |r| as 5 ] 0. (55)

Let ¢(x) = Cre ¥, with C; = [[gae¥ldx]~". Since p° € C([0, T]; L2(Q); H?(R?))) for every
T > 0, we can take the derivative of (22) with respect to x; first, then by using the It6 formula to
75 (05% (£, %)),

ds (05, (8, X)) + 15(0%, (%)), (b(x) - Vaf (0°(£, x)) )dt
= dys(p5, (£, %)) +15(0%, (£, %))0x,b(x) - Vi f(0°(t, x))dt
+b(x) - V(7505 (8, %)) f'(0°(t, %)) 9, 0% (£, x) ) dt
—115 (0%, (£, %)) f (0% (£, %) )0, 0% (£, %) b (x) - Vxpk, (£, x)dt
= ens(ps, (%)) D5, (1, x)dt+ms(Px (t,x)) A (0(t, x)) 5, (t, x)dW;
1

S 1)) | A0 (), 1, ) Pt
= e (oS, (6 )t + 505, (6 0) A0 (1 )5, (1, )W,
0% (DL (1, )5, (1 ) Pt — e (5, 8, 3)) 7, (1 )Pt
€D (05, ()t + (05, (1 00) A (0 (), (1, )W,
S 05, (6 20) A (0 (6 )5, (6 ) Pt 56)

N

Assume R > 0, we set ¢r(-) = ¢(-/R), then

E / 1505, (1 X) o (3)dx = [ (05,1, (1)) g ()
E[ L O A0 19 Pon()inr
eC
+S58 [ 1s(es, () g (x)axr
OBl oy 1 im)B [ [ 8 65 ()65, ()19, ) g ()
bl oy 1 B [ [ 19360, ) g ()
f = EC f s
CE [ [ 105, g, oo (00 + 25 [ [ ps(, () g ()t
t 1
+C[E [ [, 5105 (1) L 1016  Top, () o (0) v

t
+CE/O /Rd |Vt (7, x)|@r(x)dxdr, -

N

N

where, in the last inequality, we apply the fact 17 (5, (v, x)) < C1jse (1 4)<5/ 6.
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Observing that, for almost everywhere, (t,x) € [0, T] x RY, | p%|1|pe |<s/0 — 0 almost surely,
as 6 | 0, from (57) by using dominated convergence theorem, if one lets ¢ | O first and sums over i
from 1 to d next,

E [ 190t ) lor(x)dx = [ | 1Vpb()lpr(x)dx
eC_ [t r . Eor .
< EE/O ./Rd Vo (r,x)\q)R(x)dxdr+CE/O ./Rd |V (7, x)|@r(x)dxdr.
Therefore,

sup E [V (t)ldx < Clbllwrm oy I sy ) [, IVoh(0)ldx. (59)

0<t<T

Let 175 be defined as before (meeting property (55)), and ¢(x) = 1 when |x| < 1. We multiply ¢r
on both sides of (56), in view of integration by parts, we derive that

E / 1s(08, ()= [ ns(ih s, ()

< 5 / [ 1865, 0 | 1, ), 1, ) P ()
+—E// AQ(Z)5(05, (7, x) dxcr
=/ Rdwx,rx )asb(x) - Vif o () (3 dxdr
VB [ 005, 007 (0 0)0 1, )i (b)) 59)
B [ 05,0 (07,202 X)B(3) - Vg (1, ) b
< C [ [ 10500 1y copm (i + oy [ [ AgUR oo )

v X
FCbllwm oy 17 i) E [ [ 190650 0] [0) + Ewwﬁn}dxdr
t 1 x
0oty I N 2E [ 5105 (1) L, 100l T ()| ()t

With the help of (25) and (58), from (59), by taking ¢ | O first, R 1 co next, then

E/Vet,d<Cboo,’w/V£ dx. 60
Sup o [ VOOt 2)ldx < C([1bllwres ey, L Nl m)) [, VPG (0)|dx (60)

From (24) and (60), and noting that pf; — po in L?> N BV(RY), by letting ¢ | 0, (12) is true and we
finish the proof. [

4. Proof of Theorem 3

For ¢ > 0, we denote pf the unique solution of (22) with p§ € L* N BV N H'(R?) and
p5 — po € L2NBV(R?),ase | 0. Let o € L' N LN HY(RY) and §§ — po in L! N L2(RY), as e | 0.
We assume p° is the unique stochastic strong entropy solution of the following Cauchy problem:

(61)

dpe(t,x) + E(x) . fo(ﬁe(t,x))dt — SAﬁE(t,x)dt + A(ﬁg(t,x))dwt, £>0, x € Rd,
PE(t, x)|1—0 = P(x), x € R™.

Let 175 be given by (56). We set the difference p¢(t, x) — p¢(t, x) by &%(t, x). Since p§, p5 € H! (R?),
& € L2([0, T] x Q; H2(R?)). From (22) and (61) and by applying Itd’s formula, then
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dis(3(tx)) = —n5(E(E X)) [b(x) - Vaf(p*(t x)) — b(x) - VF(p°(t, x))dt
+en(8°(t,x))ACE (¢, x)dt + 177 (E°(t, %)) A(p*(t,x)) — A(p°(t, x)) |t
+715(8° (8, %)) [A(p* (£, x)) — A(p"(t, x))|dW;
< (@ (4 %)) [b(x) = D(x)] - Vaf (p°(t, x) )t
—115(E5(t,x))b(x) - VIf(p°(t,x)) — f(p*(t, x))]dt
—115(E°(t,x))b(x) - VIf(p*(t,x)) — f(p°(t, x))]dt
(£ x)) = A(p°(£, x))|dW;

+elns (8 (¢, x))dt +115(8°(£, x))[A(p*
+%17<'s'(é‘ (£, x))A(p"(t,x)) — A(p*(t,x)) dt. (62)

Let ¢ be given in (57) and we integrate (62) against ¢r. By analogue calculations from (56) to (59),
and then letting ¢ | O first, R 1 oo next, it yields that

E/ “(t,x)|dx < /Rd |§€(O,x)|dx+C||diVE||Lm(Rd)Hf’||Loo / / (r,x)|dxdr
10 = Bl oy | iy + 1Bl I = P iy E [ [, 198°(r, )

With the help of (60), then

~ - t
E [ 165t x)lx < [ 160, 0)ldx + Cldiv | o |/ i B [ [ 1270 )

+C (10w sy 1 Ny By ) [0 = By + 1 = P llsmy] [, Vbl (69)

From (63), there is a constant C > 0, which is dependent on ||b| 1.0 (e, || o) |l Il L™(R)
Hchvb||Loo RY), Hb||Loo gra) and T, such that

E [ e nldx < [ 16(0,0) dx+C[Ilo = Bll e + I = Flliwe)] [, Vb @)ldx. (64
From (64), by taking ¢ | 0, one ends up with the inequality (13). [J

5. Conclusions

In this paper, we have established three results on the existence and uniqueness of stochastic
entropy solutions for a nonlinear transport equation by a stochastic perturbation, and the continuous
dependence of stochastic strong entropy solutions on the coefficient b and the nonlinear function f.
Compared with the results on uniqueness given in [11,17], Theorem 1 is new since the 1/2-Holder
continuity of A is enough to ensure the uniqueness, and compared with the results on uniqueness
for stochastic differential equations in [32], the hypotheses of 1/2-Holder continuity on A is optimal.
Moreover, we develop a new method of parabolic approximation to obtain the existence of solutions,
which sheds some new light on the method of vanishing viscosity put forth by Feng and Nualart [11].
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