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Abstract
Accurate estimates of animal abundance are essential for guiding effective manage-
ment, and poor survey data can produce misleading inferences. Aerial surveys are an 
efficient survey platform, capable of collecting wildlife data across large spatial extents 
in short timeframes. However, these surveys can yield unreliable data if not carefully 
executed. Despite a long history of aerial survey use in ecological research, problems 
common to aerial surveys have not yet been adequately resolved. Through an exten-
sive review of the aerial survey literature over the last 50 years, we evaluated how 
common problems encountered in the data (including nondetection, counting error, 
and species misidentification) can manifest, the potential difficulties conferred, and the 
history of how these challenges have been addressed. Additionally, we used a double-
observer case study focused on waterbird data collected via aerial surveys and an on-
line group (flock) counting quiz to explore the potential extent of each challenge and 
possible resolutions. We found that nearly three quarters of the aerial survey method-
ology literature focused on accounting for nondetection errors, while issues of count-
ing error and misidentification were less commonly addressed. Through our case study, 
we demonstrated how these challenges can prove problematic by detailing the extent 
and magnitude of potential errors. Using our online quiz, we showed that aerial ob-
servers typically undercount group size and that the magnitude of counting errors in-
creases with group size. Our results illustrate how each issue can act to bias inferences, 
highlighting the importance of considering individual methods for mitigating potential 
problems separately during survey design and analysis. We synthesized the informa-
tion gained from our analyses to evaluate strategies for overcoming the challenges of 
using aerial survey data to estimate wildlife abundance, such as digital data collection 
methods, pooling species records by family, and ordinal modeling using binned data. 
Recognizing conditions that can lead to data collection errors and having reasonable 
solutions for addressing errors can allow researchers to allocate resources effectively 
to mitigate the most significant challenges for obtaining reliable aerial survey data.
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1  |  INTRODUC TION

Reliable estimates of wildlife abundance are imperative for under-
standing how environmental variables influence population and 
community dynamics, assessing trends across time and space, and 
guiding conservation and management decisions (Williams et al., 
2002). Most estimates of wildlife abundance are derived from sur-
veys that collect count data on target species (Elphick, 2008). These 
surveys are typically designed to yield counts of the species within 
predefined sampling units for a fixed amount of sampling effort (e.g., 
observation time, travel speed) to make inferences on abundance 
across a study region. Differing sampling designs, methods, and 
analysis techniques for count-based surveys can vary in their ability 
to yield accurate and precise estimates of abundance. Poorly con-
ducted surveys can produce data that obscure animal–environment 
relationships or introduce biases into inferences (Conroy et al., 
2008).

For species that occur at low densities or across large spatial 
areas, aerial surveys are often the most efficient platform to col-
lect observational count data (Caughley, 1977; Parker et al., 2010). 
Aerial surveys typically consist of flight transects in which observers 
count individuals of the target species along a transect line or strip 
or within the boundaries of a sampling plot from a fixed-wing air-
craft or helicopter (Caughley, 1977; Jolly, 1969). Aerial surveys have 
a long history in ecological research, starting with censuses of North 
American ungulate populations in rugged and remote terrain in the 
1940s (Buechner et al., 1951; Hunter & Yeager, 1949). Researchers 
have long recognized the distinct advantages of aerial surveys, in-
cluding the ability to rapidly collect data across large spatial extents 
(Keeping et al., 2018; Lee & Bond, 2016). Comparable ground-based 
surveys can take weeks to cover the same area that an aerial sur-
vey can cover in a matter of days (Keeping et al., 2018). As such, 
systematic aerial survey designs can be more cost-effective than 
ground-based surveys despite aerial surveys being considerably 
more expensive per unit time (Keeping et al., 2018; Khaemba et al., 
2001). In remote environments or rugged terrain, wildlife monitoring 
is often only feasible with aerial surveys. Ground-based terrestrial 
surveys are typically limited to areas with road systems or areas that 
can be safely traversed by foot (Jachmann, 1991), while vessel-based 
surveys of marine and aquatic environments are slower-paced and 
best suited for remote regions far from land (Briggs et al., 1985). In 
many situations, aerial surveys are the preferred—and sometimes 
only—method for data collection on wide-ranging species, includ-
ing those that occupy remote environments (Conn et al., 2013), are 
highly mobile, or are difficult to count from the ground because of 
body size, coloration, or cryptic behaviors (Greene et al., 2017). In 

addition, data from aerial surveys may be summarized into a mean-
ingful index of abundance for tracking changes in species' popula-
tions and distributions over time (Amundson et al., 2019; Chirima 
et al., 2012; Finch et al., 2021; Obbard et al., 2018). However, such 
indices are subject to biases, particularly if surveys are not standard-
ized and/or errors in data collection are not constant through time.

While aerial surveys offer many benefits, the method also pres-
ents challenges for high quality inferences on species abundance. 
Mistakes resulting from imperfect observer detection during sam-
pling can introduce errors into the data. As with other survey types, 
common manifestations of imperfect detection in aerial surveys in-
clude: nondetection (failure to detect an individual or group even 
though it is present), counting error (inaccurate enumeration of 
group size), and species misidentification (incorrectly identifying 
the species of an individual). Nondetection errors occur because an 
individual that is available to be seen is missed or because an indi-
vidual is unavailable for detection (e.g., temporarily outside of the 
survey unit, under vegetation or water and not exposed to sampling; 
Kéry & Schmidt, 2008). For example, ungulates, such as mule deer 
(Odocoileus hemionus), can be difficult to detect with aerial surveys 
in certain cover types and vegetation density (Zabransky et al., 
2016), which can result in a failure to record all individuals on a sur-
vey transect. Counting errors can result in observers either over- 
or under-recording the true number of individuals on a transect. 
Counting errors may also occur as a product of species behavior 
or the survey platform itself (e.g., fixed wing versus helicopter sur-
veys). Many species, including mid-sized marine mammals, aggregate 
in large numbers and are highly mobile, making it difficult to accu-
rately enumerate group sizes from fast moving aircraft (Gerrodette 
et al., 2019). Counting errors are often treated as a failure to de-
tect to individuals (i.e., as a nondetection) and common methods for 
estimating nondetection (e.g., through detection probabilities) can 
address minor counting error issues. However, such methods can-
not accommodate severe counting errors, such as those that might 
occur when large groups are encountered. Species misidentification 
can be a bi-directional issue if a survey focuses on multiple species, 
resulting in an over-count of one species and an undercount of an-
other. Although observers may be able to detect small-bodied ani-
mals, such as many waterbird species, they may be difficult, or nearly 
impossible, to correctly identify (Johnston et al., 2015) due to the 
speed of the aircraft and distance from the observer.

In this paper, we provide an overview of the current challenges 
to estimating species’ abundance using aerial survey data. We re-
viewed the literature on aerial wildlife survey methods over the 
last 50 years to examine how each major issue manifests across 
species and environments. Several challenges of using aerial 
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survey data have not been adequately discussed in the literature 
despite their persistence in aerial survey data, likely because in 
many cases, there is no obvious approach to adequately address 
these issues. Often, issues such as counting error and misidenti-
fication are ignored during analyses of count data, either because 
researchers do not recognize they are present, cannot estimate 
the magnitude of errors, or they are unable to account for the 
errors directly during analysis (Clement et al., 2017). Thus, in 
addition to our literature review, we highlight how aerial survey 
challenges can manifest using a case study of waterbird aerial sur-
veys in the Gulf of Mexico and an online quiz of aerial observers. 
The case study data come from an aerial survey that implemented 
a double-observer method and are therefore ideal to investigate 
both how errors can arise in aerial count data and also how they 
might be addressed through data analysis. Additionally, issues of 
misidentification and counting error are prevalent in waterbird 
data due to frequent aggregations of multispecies groups. The on-
line quiz further highlights this issue of counting error, particularly 
how the magnitude of observer counting error changes as group 
size increases. The purpose of our review is to provide clarity on 
the possible errors that can be introduced in aerial survey data but 
are often ignored, guide researchers to reasonable approaches to 
ameliorate ongoing issues, and identify areas for future research.

2  |  METHODS

2.1  |  Literature review

We searched Web of Science and Google Scholar using the key 
words: “aerial survey*,” “aerial wildlife survey*,” “aerial survey issue*,” 
“aerial survey error*,” and “aerial survey method*.” We limited our 
search to peer-reviewed articles published between 1970 and 2020. 
This cutoff ensured a large sample size through time while also ex-
cluding the earliest papers describing methods and technologies 
that are no longer relevant. Our inclusion criteria required that the 
article: (1) contain aerial survey methodology for in-flight observer 
surveys, and (2) discuss the implications of the methodology on the 
accuracy or precision of count data on subsequent inferences. We 
did not include papers that only reported results from aerial survey 
work. In most cases, included papers were methods-focused, gener-
ally on specific aspects of aerial survey design and implementation. 
We inspected the titles and abstracts of all articles of the first fifty 
results returned by each key word (n = 5) from the two search en-
gines and discarded articles that did not fit the inclusion criteria. We 
read all papers that passed this initial inspection and further refined 
our collection based on the inclusion criteria. We also searched the 
literature cited of all articles that passed our inspection to ensure we 
did not overlook any critical literature. For each of the articles that 
met the inclusion criteria, we identified the major issues encoun-
tered and categorized the type of issue. We also identified the sys-
tem and taxa in which the study was conducted, aircraft type, and 
the sampling style or design (line transect, strip transect, systematic 

sampling, double observer, mark-recapture, distance sampling; 
Appendix S1). Because our review is a synthesis of the relevant lit-
erature instead of a systematic review, all quantitative metrics from 
our literature review reported herein should be considered indica-
tive of general trends within aerial survey literature.

Issues of imperfect detection are conflated in the literature be-
cause most models used to estimate abundance are unable to si-
multaneously parse multiple sources of observation error, such as 
unobserved individuals versus misidentified and miscounted individ-
uals (but see Clement et al., 2017 for an interesting exception). For the 
purposes of this review, we distinguish nondetection, counting error, 
and species misidentification as distinct issues. Developing effective 
mitigation strategies for aerial survey methods requires understand-
ing the different potential sources of error. Left uncorrected, these 
various detection errors may act differentially to bias count data.

2.2  |  Waterbirds case study

Our interest in aerial survey biases is motivated by planned analysis 
of data generated by the Gulf of Mexico Marine Assessment Program 
for Protected Species (GoMMAPPS). We used the GoMMAPPS data 
to examine the issues commonly encountered in aerial surveys and 
how challenges with data analysis can be addressed in practice.

The GoMMAPPS project conducted aerial surveys across the 
northern Gulf of Mexico to identify and count all detected water-
birds in the nearshore environment during approximately two-week 
long surveys in summer 2018 and winter 2018–2020. We ran-
domly selected survey units (n = 180 of 5866 units) from the U.S. 
Environmental Protection Agency's Environmental Monitoring and 
Assessment Program (U.S. EPA EMAP) 40 sq. km hexagon grid data-
set (White & U.S. EPA, 1992) using a generalized random tessellation 
stratified (GRTS) design (Stevens & Olsen, 2004) that covered the 
nearshore environment (coastline to 50 nm offshore) from the Texas-
Mexico border to the Florida Keys (Figure 1a). Surveys of each hexa-
gon occurred along three transects that were parallel to each other, 
with each ~21 km spanning the length of the selected hexagonal sur-
vey unit and two neighboring units. We also randomized orientation 
(aircraft approach direction) of each of the chosen units. Observers 
surveyed the same 180 40-km2 hexagonal units (or a subset of these 
due to weather constraints: winter 2019, n = 111 and winter 2020, 
n  =  130) in each survey event (single survey season, e.g., winter 
2018). During surveys, in-flight observers counted and identified (to 
the lowest taxonomic level) all waterbirds within a 400 m strip tran-
sect (200 m on either side of the flight transect; Figure 1b). Surveys 
were flown at 110 knots and an altitude of 61 m, which precluded use 
of a distance-sampling approach to estimate detection probabilities 
because detection does not decrease substantially across the width 
of the strip transect at this height (Certain & Bretagnolle, 2008). For 
our analyses, we focus on aerial waterbird surveys conducted in win-
ter and summer 2018, winter 2019, and winter 2020.

To examine detection errors, data were collected with a 
double-observer protocol where same-side front-  and rear-seat 
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observers independently recorded count and species identifica-
tion records of all waterbirds that they observed in the observation 
strip (flight transect out to 200 m). Two experienced observers, a 
pilot-biologist and a crew member, were always stationed in the 
front seats of the plane and counted out of their respective win-
dows. A second experienced observer (another crew member) 
sat in a rear seat either behind the pilot-biologist or behind the 
first crew member for the double-observer protocol. The two 
crew members rotated their seat positions throughout the survey 
so crew member detection could be evaluated independently of 
seat position. Observers (pilot-biologist and crew members) re-
corded the species (or taxonomic family when species identifi-
cation was not possible), number of individuals in the group (one 
or more), and the GPS location. During post hoc data processing, 
we grouped double-observer records that were recorded within 
10  s of each other. We chose this temporal cutoff to accommo-
date differences in visibility between observers and potential lags 
in recording time. For example, front observers could see further 
ahead of the aircraft than the rear observers, and this visibility dif-
ference may have produced recording lags for the rear observer. 
Thus, the 10-s window limited double-observer records to those 

most likely to contain matching records. Grouped double-observer 
records were then classified as: Species + Count Match –  count 
and species identification matched between observer records, 
Generic +  Count Match –  count and taxonomic family matched 
between observer records, Species + Bin Match – log10 count bin 
(i.e., 0, 1–10, 11–100, 101–1000, and 1000+) and species identifi-
cation matched between observer records (after count matches 
accounted for), Generic + Bin Match – log10 count bin (i.e., 0, 1–
10, 11–100, 101–1000, and 1000+) and taxonomic family matched 
between observer records (after count matches accounted for), 
Species Only Match—species identification matched but neither 
count nor count bin matched between observer records, Generic 
Only Match—species taxonomic family matched but neither count 
nor count bin matched between observer records, Mismatch—
species did not match between observer records, and No Match—
there was no observation from the other observer recorded within 
10 s. We note that the use of the term “generic” is meant in the 
generic sense to be interpreted as “general,” not in the taxonomic 
sense to be interpreted as “genera.” This double-observer protocol 
and data processing procedure allowed us to identify potential er-
rors, including nondetection, counting error, and misidentification.

F I G U R E  1 (a) Gulf of Mexico Marine Assessment Program for Protected Species survey units (n = 180) for summer and winter 2018–
2020 surveys. (b) Schematic diagram depicting the design of a single survey unit (inset). Three transect lines (black lines) were placed inside 
the survey unit, and observers counted and identified all waterbirds within 400 m of the transect line (200 m on each side of the transect; 
shown in gray)
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2.3  |  Online quiz

We conducted an online survey to evaluate observer counting errors 
with known group-size data. We designed the group (flock) count-
ing quiz using Qualtrics survey software. The design and content 
of the quiz were adapted from the U.S. Fish and Wildlife Service 
Aerial Observer Training and Testing Resources (https://www.fws.
gov/water​fowls​urvey​s/). We distributed the quiz via email to ~100 
trained aerial observers (including those from the GoMMAPPS 
project) and biologists with no aerial survey observer experience. 
Seventy-eight individuals completed the online quiz. The quiz con-
sisted of background questions regarding respondents’ level of 
experience conducting aerial bird surveys (Expert, Intermediate, 
Novice, No Experience; Appendix S2, Table A1) and confidence in 
their flock counting skills (High, Medium, Low; Appendix S2, Table 
A2). The flock counting portion of the quiz consisted of two practice 
images and 22 timed quiz images of known-size flocks (Appendix S2, 
Table A3 and Figure A1) that were representative of flock sizes ob-
served during GoMMAPPS surveys (Appendix S2, Figure A2). Each 
image was displayed for 10 s before it disappeared, and the quiz au-
tomatically advanced to a question asking how many birds were in 
the image. See Appendix S2 for additional details.

3  |  RESULTS

3.1  |  Data summaries

3.1.1  |  Literature review

Of the 108 items returned by the Web of Science search and the 250 
items returned by the Google Scholar search, 102 papers that were 
published from 1974 to 2020 met our inclusion criteria (Appendix 

S1). Although the number of peer-reviewed publications using aerial 
survey methods has increased over time, papers focused specifically 
on methodology of aerial surveys have not exhibited the same trend 
(Figure 2). Most of the papers in our collection examined a single 
species (N = 49) or taxonomic group (N = 37), but six papers focused 
on multiple taxa, three were based on simulations, and seven did 
not name specific species of interest. The taxonomic groups studied 
were birds (N = 26), marine mammals (N = 11), terrestrial ungulates 
(N = 47), and macropods (N = 8). The aerial surveys covered a wide 
range of environments including terrestrial (i.e., savanna, forest, 
mountain; N = 64) and aquatic/marine (i.e., open-ocean, nearshore, 
wetlands; N = 31) across North America (N = 47), Australia (N = 23), 
Africa (N = 16), and Europe (N = 5). Fixed-wing aircraft were used 
most frequently (N = 43), but helicopters were also employed in a 
sizable portion of projects (N = 26). Seven papers used both types of 
aircrafts, and 26 either did not name the aircraft type or it was not 
applicable because the study used aerial photos or simulated data. 
Approximately one-third (32.4%; N = 33) of papers discussed survey 
design variables including the size, shape, and configuration of sur-
vey units, delineation of survey units across a study area, and the 
timing and cost of surveys. The most common aerial survey designs 
included transect-based designs, primarily strip transects (N = 61), 
quadrat (N = 8) or complete census designs (N = 6).

The three primary aerial survey issues (nondetection [N = 78], 
counting error [N = 27], and species identification [N = 10]) were not 
unique to any specific taxa or environment and 31 papers addressed 
more than one of the three focal issues of nondetection, counting 
error, and species identification. Issues related to nondetection were 
pervasive throughout the entire time period examined; however, the 
methods used to handle nondetection changed over time. Although 
counting error and species misidentification were presented as is-
sues in early papers, approaches to rectify these issues were largely 
missing from the literature until recently.

F I G U R E  2 Aerial wildlife survey papers 
published by year during 1970–2020. 
The methods focused papers included 
in our review are shown in blue, and the 
general aerial survey literature are shown 
in orange. Black lines show regressions 
for the general aerial survey literature 
and aerial survey methods literature, 
respectively. The general aerial survey 
literature consists of the first 500 results 
of the following Google Scholar query: 
“aerial survey*” AND helicopter OR fixed-
wing OR aircraft OR plane AND count OR 
abundance AND wildlife OR ecology OR 
conservation

https://www.fws.gov/waterfowlsurveys/
https://www.fws.gov/waterfowlsurveys/
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3.1.2  |  Case study

During GoMMAPPS surveys, double observers collected 2056 total 
records during the winter 2018 survey, 1620 in summer 2018, 1706 
in winter 2019, and 2584 in winter 2020. We were unable to recon-
cile double-observer records for winter 2020 data due to technical 
difficulties with syncing in-flight data computer clocks. Recorded 
flock sizes varied from one individual to thousands across survey 
events (Maximum counts—winter 2018: 2000; summer 2018: 800; 
winter 2019: 3200; winter 2020: 500). However, most observa-
tions were of single individuals (winter 2018: 71%; summer 2018: 
66%; winter 2019: 77%; winter 2020: 74%). The median-recorded 
flock size was one individual across all survey time periods while the 
mean recorded flock size ranged between four and seven individuals 
for the different survey events. Observers recorded 31–49 unique 
waterbird species during survey events (winter 2018: 49  species; 
summer 2018: 34  species; winter 2019: 31  species; winter 2020: 
35  species). During winter seasons, the most prevalent waterbird 
species were northern gannets (Morus bassanus) followed by gull 
and tern (Laridae) species, and during the summer seasons, the most 
prevalent waterbird species were gulls and terns followed by brown 
pelicans (Pelecanus occidentalis).

The issues identified in the literature were present in our water-
bird case study, highlighting the high likelihood that these issues are 
prevalent in most aerial surveys even if they are not reported. We 
report results from both the literature review and our case study 
on each of the issues of nondetection, counting error, and species 
misidentification in the following sections.

3.2  |  Analyses of aerial survey challenges

3.2.1  |  Nondetection: failure to record individuals 
when they are present

A majority of papers (76.5%, N = 78) identified nondetection as a 
problem that can lead to undercounting and biased estimates of 
abundance. Some of the earliest literature (i.e., published before 
1985) focused on describing the issue of nondetection but did not 
offer any comparative analyses. The main source of nondetection 
described was visibility bias, where animals were not visible because 
they were concealed or obscured by vegetation or other habitat 
features. Other sources of nondetection errors that were described 
in the literature were observer fatigue, sun glare, and poor survey 
design (i.e., survey units did not cover suitable habitat for target spe-
cies, or survey timing did not coincide with target species activity 
patterns). Nearly half of the nondetection literature demonstrated 
the magnitude of nondetection errors by contrasting different sur-
vey methods, such as aerial count surveys versus known-presence 
surveys, including telemetry or infrared camera surveys. The re-
maining nondetection literature developed and introduced methods 
for estimating and correcting nondetection biases (discussed in fur-
ther detail below).

In the GoMMAPPS survey data, approximately 36% of observa-
tions recorded by one observer were missed by the other observer 
on the same side of the aircraft (Table 1: No Match across all sur-
veys). Of these missed observations, most were single individuals 
(77.7%, N = 1503), and frequency of missed observations decreased 

TA B L E  1 Summary of data matches between two observers recording data on the same side of an aerial survey for each season of the 
Gulf of Mexico Marine Assessment Program for Protected Species (GoMMAPPS) surveys. We grouped double-observer records that were 
recorded within 10 s of each other and classified these records into categories based on the following criteria: Species + Count Match 
– count and species identification matched between observer records, Generic + Count Match – count and taxonomic family matched 
between observer records, Species + Bin Match – log10 count bin (i.e., 0, 1–10, 11–100, 101–1000, and 1000+) and species identification 
matched between observer records (after count matches accounted for), Generic + Bin Match – log10 count bin (i.e., 0, 1–10, 11–100, 101–
1000, and 1000+) and taxonomic family matched between observer records (after count matches accounted for), Species Only Match—
species identification matched but neither count nor count bin matched between observer records, Generic Only Match—species taxonomic 
family matched but neither count nor count bin matched between observer records, Mismatch—species did not match between observer 
records, and No Match—there was no observation from the other observer recorded within 10 s. For the purposes of this study, the 
identifications of “gull” and “tern” were included in the species-level identifications described above, and these identifications were pooled 
under the family Laridae for higher-level generic identifications

Winter 2018 Summer 2018 Winter 2019 Totala

Species + Count Match 645 458 651 1754 (32.5%)

Generic + Count Match 86 71 85 242 (4.5%)

Species + Bin Match 144 150 111 405 (7.5%)

Generic + Bin Match 84 88 54 226 (4.2%)

Species Only Match 25 17 20 62 (1.2%)

Generic Only Match 11 3 3 17 (0.3%)

Mismatch 339 219 184 742 (13.8%)

No Match 722 614 598 1934 (36.0%)

Totalb 2056 1620 1706 5382 (100%)

aRow totals are the total of all records in each category across all survey and observers.
bColumn totals are the total records for each season across all observers.
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with increasing group size. Of the 36% missed observations, 8% 
were the result of one observer recording more species present than 
the other observer (N = 158). We note that our “No Match” results 
include instances where a bird record was available to be counted 
for one observer and not the other. In certain instances, the move-
ment of the plane resulted in birds flushing from the flight transect, 
which could have resulted in them having been recorded by one ob-
server (likely front observer) but missed by the other (likely rear ob-
server). Thus, we recognize that our results represent a “worst-case 
scenario” for missed observations.

We also compared naïve detection probabilities across crew 
members for each survey event, where we calculated the pro-
portion of records that were matched between pairs of double 
observers (all but No Match category). Naïve detection prob-
abilities of groups of waterbirds were highly variable among in-
dividual observers and across survey events (Table 2). Although 
pilot-biologists were responsible for flying aircrafts and collect-
ing survey data simultaneously, their naïve detection probabilities 
were comparable to those of nonpilot observers (Table 2). Average 
nondetection errors also differed between the eastern and west-
ern halves of our study area with 20% of records classified as No 
Match for the western half of the study area across winter 2018, 
summer 2018, and winter 2019 surveys and 58% of records clas-
sified as No Match for the eastern half. These results suggest that 
detection may vary by individual observer, survey event, and spa-
tial location, whether or not that information is included in the 
analysis of the data.

Methodological and statistical developments for handling non-
detection errors have been a major focus of ecological research for 
decades, and aerial survey research is no exception. Prior to the 
1990s, much of the aerial survey literature focused on calculat-
ing “correction factors” from “sightability models” (Caughley et al., 
1976). These sightability models considered survey variables, such 
as flight height, flight speed, and observation strip width to calculate 
a correction factor that was then applied to the aerial count data to 
correct for visibility biases. Although this method is less common in 
more recent literature (2000–present), correction factors continue 
to be used. The primary reason that the use of correction factors 
has declined is because such models are cumbersome to implement 
over varying conditions, heterogeneous landscapes, and across 
multiple species as a different model/correction factor is required 
for each scenario (Steinhorst & Samuel, 1989). For example, based 
on the nondetection errors we uncovered in the GoMMAPPS data, 
we would need to model a correction factor for each region, sur-
vey event, and observer, and we would likely need to account for 
different visibility conditions, as well. Thus, the correction factor 
approach can become untenable when many factors contribute to 
nondetection errors.

In the 1990s, other statistical techniques were introduced to for-
mally address issues of nondetection in aerial count data (Quang & 
Becker, 1997), including distance sampling and reconciled double-
observer methods. In distance sampling (sometimes referred to 
as “line transect sampling” in the aerial survey literature [Quang 
& Becker, 1997]), observers move along a transect line and record 
the distance to detected animals. The recorded distances are used 
to fit a detection function that describes the change in detection 
probability as a function of distance from transect and is used to 
estimate the proportion of animals not detected (Buckland et al., 
2001). Reconciled double-observer methods exploit mark-recapture 
methods (often called the “double-count technique” in early aerial 
survey literature (Graham & Bell, 1989), where two observers in-
dependently record the number of detected animals and agree on 
which animals were detected by both observers. The first observer 
“marks” and “releases” certain animals while the second observer 
“recaptures” the animals. This creates a two-occasion capture his-
tory that can be used to estimate the number of missed animals 
(Graham & Bell, 1989). These methods are an improvement over use 
of correction factors because they allow researchers to model de-
tection as a dynamic variable across heterogeneous environments 
and visibility conditions, as well as estimate uncertainty around de-
tection probability (Walter & Hone, 2003).

In the last decade, researchers have combined methods for es-
timating detection from double-observer mark-recapture and dis-
tance sampling into a single model (Burt et al., 2014). This approach 
uses the strengths of both distance sampling and mark-recapture 
sampling to fit a detection function where the shape of the function 
is estimated with distance sampling methods and the intercept of 
the function is estimated using the mark-recapture data (Laake et al., 
2008). Mark-recapture distance sampling thus relaxes the assump-
tion of distance sampling that all individuals on the transect line are 

TA B L E  2 Naïve detection probabilities for each of the 
nine observers that participated in the Gulf of Mexico Marine 
Assessment Program for Protected Species (GoMMAPPS) data 
collection, calculated as the proportion of records that matched 
between double-observer pairs excluding the No Match category. 
Detection probabilities were highly variable across observers and 
survey events

Observer
Winter 
2018

Summer 
2018

Winter 
2019

Standard 
Deviation

Observer 1 — 0.83 —

Observer 2a 0.74 0.83 0.90 0.08

Observer 3 — 0.80 —

Observer 4 0.82 0.61 0.80 0.12

Observer 5 — 0.49 —

Observer 6a 0.71 0.61 0.70 0.06

Observer 7 0.82 — 0.81 0.01

Observer 8 0.68 — 0.73 0.04

Observer 9 0.65 — 0.67 0.01

Standard 
Deviation

0.07 0.14 0.08

Note: Only six observers were used in each survey event. A dash “—” 
symbol in the survey season columns indicates that the observer did 
not participate in that survey.
aPilot biologists.
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detected, which is often violated in aerial surveys. A double-observer 
protocol, as required for mark-recapture sampling, can be prohib-
itively expensive because two observers are needed to record the 
same data. Thus, these approaches to correct for nondetection may 
not be feasible under all survey scenarios. In such cases, researchers 
should consider whether estimates of detection probability are fea-
sible given the sampling conditions and operational budget.

Distance sampling was not feasible in the GoMMAPPS surveys 
because there was limited time available to record all the necessary 
data from mixed-species flocks, which is frequently the case for 
highly mobile species. In addition, when groups are loosely aggre-
gated, crossing over multiple distance bands or expanding outside 
the sampling area, as was often the case on our surveys, it is un-
clear from where the distance measurement should be taken, and 
this becomes especially burdensome when groups contain multiple 
species. Double-observer mark-recapture sampling was also im-
practical with the GoMMAPPS surveys again because of the limited 
time available to reconcile which individuals were seen (or missed) 
by both observers due to the speed of the planes and fast mobility 
of waterbirds. Thus, the GoMMAPPS project reveals that many of 
the analytical approaches designed to account for nondetection may 
be impossible to implement broadly. However, post hoc data pro-
cessing allowed us to reconcile double-observer counts that were 
recorded within 10 s of each other. The reconciled data could then 
potentially be used to fit mark-recapture models to estimate detec-
tion probability, if the assumptions made to simplify data collection 
(e.g., a temporal cutoff for matching records) are tenable. Using the 
reconciled double-observer data, we found differences in detection 
between survey regions. Thus, a covariate to capture this spatial 
heterogeneity would be useful to estimate indices of abundance in 
our case, particularly in a region like the northern Gulf of Mexico 
where levels of anthropogenic activity vary from west to east. When 
sampling methods that allow for estimating detection probability are 
infeasible, researchers should carefully consider observational vari-
ables that may affect detection and include those in their models 
when estimating indices of abundance (Johnson, 2008). However, in 
doing so, researchers should recognize a potential loss in clarity of 
inference when variables that affect abundance and detection are 
both present in a single model (i.e., not separated in a hierarchical 
framework).

3.2.2  |  Counting Error: failure to correctly 
enumerate group size

Most aerial survey research treats issues of counting error as a 
nondetection problem. However, about one quarter of the papers 
(N  =  27) addressed counting error distinctly from nondetection. 
When possible to assess, researchers have found that observers 
undercount group size on average, leading to underestimates of 
abundance (Frederick et al., 2003; Gerrodette et al., 2019). Many 
aerial survey efforts focus on species that often occur in groups, 
including wintering waterfowl, seabirds, wading birds, ungulates, 

and cetaceans among others. Aerial counts of animals are usually 
obtained by trained in-flight observers or by collection and analysis 
of aerial photos and videos captured by on-board cameras (Chabot 
& Francis, 2016; Žydelis et al., 2019). Although widely used, in-flight 
observer counts are often biased (Caughley, 1977; Jolly, 1969), with 
variability among observers and a tendency to underestimate group 
size (Chabot & Francis, 2016), particularly for large groups (Buckland 
et al., 2012; Frederick et al., 2003).

In the GoMMAPPS survey data, flock counts varied between 
same-side observers, with the magnitude of differences between 
front- and rear-observer counts increasing with flock size (Figure 3a). 

F I G U R E  3 (a) Counts of waterbirds from front and rear 
same-side observers, shown for the winter 2018 Gulf of Mexico 
Marine Assessment Program for Protected Species (GoMMAPPS) 
survey. The inset figure shows the log10 of flock counts <100 of 
waterbirds from front and rear same-side observers. Blue lines 
show 1:1 lines. (b) Absolute value of the percent difference in 
respondents’ counts and the true flock size for each of the 22 quiz 
images. Points plotted are the mean absolute value of the percent 
difference in respondent counts and true flock sizes. Error bars are 
95% confidence intervals. The inset figure shows quiz responses 
(black points) from 78 online counting quiz respondents for each 
of the 22 quiz images. Orange points show the median response 
value for each of the 22 quiz images. The blue line is a 1:1 line; 
observer responses plotted above this line are overcounts of the 
true flock size, and observer responses plotted below this line are 
undercounts
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Double-observer records indicated that roughly 33% of observers’ 
counts (across all species) matched across records from all sur-
veys (N = 1996; ~85% of which consisted of single-individual count 
matches). Thirty-five percent of double-observer counts matched 
for flocks with five individuals or fewer across all possible species 
in a flock (N  =  4946), and approximately 10% of double-observer 
log10 count bins matched when exact counts did not match. For 
flock sizes between six and 30 individuals (N = 319), approximately 
7.5% of double-observer counts matched, and approximately 33% of 
double-observer log10 count bins matched when exact counts did 
not match. Approximately 8.5% of double-observer count records 
matched for flock sizes greater than 30 individuals (N = 117), and 
approximately 32% of double-observer log10 count bins matched 
when exact counts did not match. Counts >30 individuals may have 
had slightly more agreement between double observers than smaller 
group sizes due to similar rounding tendencies when large groups 
were encountered. Binning counts into a log10 categorical scheme 
resulted in substantially more agreement between double-observer 
records than comparing exact counts alone (49% agreement ver-
sus 37% agreement, respectively), particularly for flock sizes >5 
individuals.

Our online quiz revealed that even trained observers have diffi-
culty correctly enumerating flock size from images taken during ae-
rial surveys of waterbirds (Figure 3b, Appendix S2, Figures A3–A5). 
At large flock sizes (200–1000), observer counts ranged from 40% to 
150% of the true flock size, which is consistent with previous studies 
(Frederick et al., 2003). On average for the large flocks (>100), ob-
server counts were 35–48% of the true flock size. However, even at 
small flock sizes (<100), mean observer errors were as high as 30%. 
Observers most frequently under-counted flock sizes, a tendency 
that increased with flock size with 50–70% of all observers underes-
timating flock size some or all the time when the true size was above 
30 individuals. Observer experience and confidence in counting 
skills had no effect on observer ability to correctly enumerate flock 
size in the online quiz (Appendix S2, Figures A6–A7).

As most aerial survey research treats counting error as a non-
detection issue, the solutions for handing nondetection errors are 
generally applicable to counting errors. However, recent advances 
in hierarchical modeling have made it possible to partition nonde-
tection errors from counting errors. Clement et al. (2017) combined 
a mark-recapture distance sampling model with an N-mixture model 
(Royle, 2004) to separately account for nondetection and counting 
errors. Under this approach, observers independently recorded 
counts of observed groups in addition to the detection history and 
distance data collected for a mark-recapture distance sampling 
model. Combining the three sampling methods into a single hier-
archical model allows for unbiased abundance estimates when ob-
servers imperfectly detect individuals due to nondetection errors, 
as well as counting error (Clement et al., 2017). A limitation to this 
model is that it requires a double-observer protocol, which may be 
costly or impractical for some survey efforts, and it also requires 
distance sampling, which is not feasible in all survey situations (such 
as the GoMMAPPS surveys).

Another potential solution for handling counting errors is to use 
ordinal modeling (Guisan & Harrell, 2000). In this approach, count 
data are binned into categories (e.g., 0, 1–10 individuals, 11–50 indi-
viduals), and the probability of obtaining a certain category is then 
modeled instead of the counts directly (Guisan & Harrell, 2000). The 
appropriate bin breaks may be based on a log scale or another scale 
based on magnitude of observer error (Figure 3) or where natural 
breaks occur in the data (Valle et al., 2019). Modeling-binned count 
data rather than the counts themselves may alleviate potential con-
cerns regarding inferences based on counts with errors and allow 
for the estimation of uncertainty around the probability of ordinal 
classifications (Fitzgerald et al., 2021). Additionally, if ordinal mod-
eling approaches are comparable to or better than the typical ap-
proach of using a count distribution (such as the negative binomial) 
to model abundance (Zipkin et al., 2014), collecting count data on a 
categorical scale may limit the training and time needed to for data 
collection. Count data may also be binned after field data collection 
if concerns arise regarding accuracy of recorded counts.

3.2.3  | Misidentification: failure to correctly identify 
individuals

Wildlife survey data are often analyzed without consideration of 
species identification errors, despite evidence that identification 
errors occur regularly (Conn et al., 2013). Indeed, only 10 out of 
the 102 (~10%) papers directly dealt with species misidentification. 
Papers that reported issues associated with species misidentifica-
tion tended to focus on small- or medium-bodied animals that are 
difficult to clearly identify or even detect from the air (Greene et al., 
2017; Lamprey et al., 2020). One paper addressed difficulties with 
age and sex classification in elk (Cervus canadensis); like species iden-
tification, age, and sex classification also requires observers to dis-
cern small details from the survey aircraft (Bender et al., 2003).

Although the GoMMAPPS survey observers were trained in 
waterbird species identification, our double-observer data indicated 
that only ~41% of the observations recorded by both observers 
contained matching species identifications (Table 1: species + count 
match, species + bin match, and species only match categories). In 
addition, GoMMAPPS observers had difficulty discerning individ-
ual gull and tern species due to their small body sizes, speed of the 
planes, and often indiscernible features (e.g., similar plumage char-
acteristics, body-size, or bill shape); thus, higher-level gull and tern 
identifications (e.g., gull, tern, or larid spp.) were used when defini-
tive species identifications could not be made (~85% of all gull and 
tern records across survey events). Generic identifications, including 
individuals identified by double observers as different species within 
the same taxonomic family (e.g., white-winged scoter [Melanitta de-
glandi] versus black scoter [Melanitta americana]) or individuals that 
were not identified to species-level (except for gulls and terns), com-
prised ~9% of the total records (Table 1: generic + count match, ge-
neric + bin match, and generic only match categories). Mismatched 
records, including individuals identified as different species by the 



10 of 14  |     DAVIS et al.

two observers (where taxonomic family also did not match between 
double-observer records), comprised ~13% of the total records 
(Table 1). It is possible that some of these records are likely to be 
detection errors rather than misidentification errors, as we could not 
separate these issues. Nevertheless, given the findings of our study, 
it appears that species identification errors are likely to be present 
and possibly pervasive in multispecies aerial survey datasets, espe-
cially when similar species (e.g., similar in body size and/or color-
ation) co-occur as they often do in waterbirds.

Auxiliary data that contain species-level (or sex/age class) re-
cords are generally needed to correct identification errors. For 
most studies in our literature review, researchers were only able to 
report that identification errors existed because they had access 
to other, independent survey data in addition to the aerial survey 
data (e.g., ground-based [Laursen et al., 2008, Greene et al., 2017, 
Lamprey et al., 2020] and vessel-based [Johnston et al., 2015] sur-
veys). However, auxiliary data are rarely available because it is costly 
and time consuming to obtain as it requires a second, simultaneous 
surveying effort. Furthermore, secondary surveys may suffer from 
the same errors present in aerial survey data. Because of misidenti-
fication errors, it may be inappropriate to model individual species, 
sex, or age class counts when identifying features are difficult to 
distinguish and secondary sources of data are unavailable.

No secondary sources of data were available to complement 
the GoMMAPPS aerial survey data that could be used to correct for 
potential misidentification errors. However, when we aggregated 
species records by higher-order taxonomic classifications (i.e., fam-
ily), we found that the records complementarily identified by both 
observers (front and rear) increased by approximately 10% (Table 1: 
generic + count match, generic + bin match, and generic only match 
categories). This suggests that analyzing data at higher taxonomic 
levels, rather than species, may be a reasonable approach to over-
come identification issues when similar species co-occur if species-
level identification is not a primary goal.

4  |  SYNTHESIZING SOLUTIONS: A PATH 
FORWARD

Our literature review and empirical case study reveal that issues of 
nondetection, counting error, and species misidentification are prev-
alent in aerial survey count data. The extent to which each of these 
issues may bias inferences depends on the unique circumstances of 
individual survey efforts, including the frequency and severity of the 
errors as well as the goals of the survey and the subsequent analyses 
of the data. The ideal approach for mitigating potential biases from 
aerial survey data will vary based on the specific questions asked 
and which issue(s) are likely to occur with the particular survey con-
ditions. A good first step when designing an aerial count survey is to 
determine which issues are probable under given survey conditions. 
For example, if the aerial survey targets a single, solitary species, 
counting and species misidentification errors are unlikely to present 
serious issues for inference, leaving nondetection as the only major 

source of bias. However, when multiple, similar-looking species 
that aggregate are targeted, such as in our GoMMAPPS case study, 
all three detection errors should be carefully considered. Prior to 
data collection, a simulation study can help determine the extent 
to which nondetection, counting, and misidentification errors may 
bias estimates under various survey conditions, revealing where and 
when survey effort would be best utilized (e.g., focusing on improv-
ing species identification versus nondetection errors) to minimize 
effects on abundance and covariate inferences. In any case, the like-
lihood of encountering these issues should be considered prior to 
designing an aerial sampling scheme to minimize potential errors or 
at least understand when and where they might occur.

Sampling errors can be partially mitigated during survey plan-
ning, data collection procedures, and/or data analysis stages of a 
project. The appropriate methods for handling various sources of 
bias will depend on the stage at which these issues are considered. 
If the potential for nondetection, counting, and misidentification 
errors is considered during study development, steps can be taken 
to design a survey that can both identify and measure these errors 
while taking logistical considerations into account. Recognizing con-
ditions that are likely to present data issues can help researchers 
identify where and when resources may best be used to maximize 
count data quality and when auxiliary sources of data may be neces-
sary to address research goals. Considering the many methods pre-
sented in the literature and our own experience with waterbird aerial 
surveys, we consolidate the methods presented above into a few 
recommended approaches for handling nondetection, counting, and 
identification errors. Our recommendations are organized across the 
different stages of survey implementation including survey planning, 
sampling methodology, and modeling approach. We also suggest 
potentially exciting future directions in aerial survey research and 
methods.

4.1  |  Survey planning

Selecting an appropriate sampling framework for particular re-
search question(s) or management objective(s) is paramount for 
choosing an effective study design that will result in reliable infer-
ences. However, aerial surveys must balance a number of logistical 
and practical considerations with the scientific goal(s) of the study. 
Logistical considerations, such as defining the spatial extent of sam-
pling and determining the appropriate configuration of aerial sam-
pling units influence survey cost and efficiency and contribute to 
what sampling methodologies are feasible (Caughley, 1977; Gibbs 
et al., 1998). Standardizing sampling methodologies across survey 
events, including the survey design as well as data collection proto-
cols, is important to ensure that indices of abundance or distribution 
of species are comparable across years/seasons.

These design considerations also influence the types of research 
questions that are possible to address. Understanding the effects of 
environmental variables on species abundance requires a great deal 
of survey data, and if this is the goal, researchers should prioritize 
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sampling a range of environmental conditions many times (Zipkin 
et al., 2015). However, if the goal of the survey is to estimate abun-
dance of a species (or a group of species), researchers may consider 
using probabilistic sampling strategies rather than stratifying sam-
pling units across the full range of environmental variables of in-
terest. In many cases, aerial surveys are used to estimate indices of 
abundance or distribution that are used to track changes over time, 
and if this is the goal of the survey, researcher efforts should focus 
on maintaining consistency in design, personnel, and protocols over 
time to minimize observer errors related to changes in the survey. 
When designing an aerial survey, researchers are encouraged to 
carefully consider their research goals and the extent to which sur-
vey design can be used to either mitigate or elucidate nondetection, 
counting, and misidentification errors.

4.2  |  Sampling methodology

Our literature review revealed that distance sampling is the most 
popular framework for collecting aerial count data and modeling 
abundance with a detection probability. However, we suggest this 
approach only be used when observers have adequate time to re-
cord distances (or distance bands) and when the survey targets a 
small number of species. One solution could be using high resolution 
photography or video in addition to or instead of in-flight observ-
ers which would allow for a number of different analytical methods 
for estimating abundance and detection probability. However, in the 
presence of other errors (e.g., counting and species identification er-
rors), estimating absolute abundance may be misguided as relative 
abundance indices may be the only obtainable parameter.

The double-observer method can be used to reconcile disparate 
observer data during data collection if observers work together to 
agree on what was observed (Quang & Becker, 1997). However, in the 
GoMMAPPS case study, the speed of the aircraft and frequency of 
observations presented logistical limitations for reconciling in-flight 
double-observer data. Additionally, employing a second observer 
to record duplicate data may be prohibitively expensive for some 
survey efforts. Thus, we emphasize the importance of standardizing 
survey design and sampling protocols across survey efforts to min-
imize potential biases related to differences in procedures among 
surveys. However, use of a second observer (even on a limited basis), 
to estimate detection factors and counting errors and/or assist with 
species identification can be very beneficial to determining the rate 
and nature of errors. When estimating detection errors explicitly is 
intractable, researchers may opt to instead estimate relative abun-
dance using generalized linear models by incorporating covariates 
that affect detection into models of abundance.

4.3  |  Modeling

Despite survey training, numerous studies, including our own water-
bird work, have shown that in-flight observers often undercount 

group size, especially for large, aggregated groups, and misidentify 
species when multiple species are present. Without auxiliary data, 
such as a simultaneous survey effort (e.g., ground-based or vessel-
based sampling) or a double-observer protocol, it is impossible to 
identify that these errors are present. When group sizes are very 
small (<10 individuals) and only a single species or obviously dissimi-
lar species are targeted (e.g., African elephant [Loxodonta africana] 
versus African buffalo [Syncerus caffer] [Greene et al., 2017]), these 
errors may be limited; however, outside of these circumstances, it is 
likely that counting and misidentification errors are not only present 
but also prevalent. Nevertheless, despite these issues, aerial surveys 
have often been used to identify significant changes in population 
sizes through time as well as to elucidate important environmental 
relationships. In these cases, it is assumed that the effect sizes of 
covariate relationships are larger than the errors encountered during 
data collection, yet when these errors are substantial and variable 
across surveys, abundance indices may not be accurate and impor-
tant covariate relationships may be missed.

An obvious, albeit perhaps unsatisfying suggestion for address-
ing species misidentification and counting errors, is to pool data. 
Although grouping species records by taxonomic group or foraging 
guild dilutes information contained in the data, it may alleviate some 
species misidentification errors when similar species are targeted. 
Pooling count data to create binned categories decreases the res-
olution of available data but may more accurately reflect the true 
uncertainty regarding the precision of the survey count data (Guisan 
& Harrell, 2000; Valle et al., 2019). Our GoMMAPPS analyses sug-
gest that binning counts is beneficial for group sizes as small as 6–30 
individuals and certainly for group sizes reaching hundreds or thou-
sands of individuals. Although ordinal modeling is used relatively in-
frequently in ecology, this framework offers a promising alternative 
to modeling exact counts and can reflect uncertainty in count data 
when counting errors may be present. If species-level inferences 
are required, researchers could explore data integration with pub-
licly available datasets (e.g., eBird, iNaturalist). Data integration, 
or modeling that incorporates multiple, dissimilar data types, (e.g., 
count data and presence/absence data) can yield more detailed in-
formation about a process of interest, including more accuracy and 
precision in estimates, than an analysis using a single data source 
(Zipkin et al., 2019).

4.4  |  Digital data collection and future directions

The last decade of aerial survey research has seen a rise in digital 
data collection methods, including photography and video col-
lected by drones and unstaffed aerial vehicles (Corcoran et al., 
2021; Nowak et al., 2019). These technologies have the advantage 
of being less expensive than traditional staffed flights as well as 
being safer for research personnel as they do not require in-flight 
observations. However, a drawback to unstaffed aerial vehicles is 
that it is not possible to cover as large of a spatial area as quickly as 
can be done in a traditional staffed flight. Nevertheless, photo and 
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video observations typically produce higher quality abundance 
and density estimates than traditional in-flight observer methods 
(Buckland et al., 2012; Chabot & Francis, 2016). After data are 
collected, photographs and videos may be reviewed by numer-
ous observers which can allow researchers to utilize a number of 
different methods for estimating detection probability, as well as 
identifying counting and identification errors. However, despite 
these advantages, this technology is not immune to the previously 
discussed issues. Manual image or video classification is subject 
to the same human errors of nondetection, counting error, and 
especially species misidentification that in-flight observers expe-
rience (Chabot & Francis, 2016). Although photos and videos may 
be proofed multiple times, this is time-consuming and potentially 
costly. High resolution photography and videography is undoubt-
edly helpful in resolving counting errors, but imagery must be of 
high enough quality that distinguishing features can be discerned 
to differentiate among similar species.

Digital object classification (i.e., machine learning) offers a 
promising way forward for handling the time-intensive data pro-
cessing required of digital data collection. Methods for automating 
object classification have improved in recent years and are already 
useful for reducing nondetection and counting errors (Torney 
et al., 2019), but automated species identification is more chal-
lenging (Chabot & Francis, 2016; Villon et al., 2020). Future work 
on digital object classification presents an opportunity to engage 
the public to help classify images that can be used as training data 
for classification algorithms (Torney et al., 2019), broadening the 
impact of research beyond the study system itself (Adler et al., 
2020). Although digital methods may help to combat some of the 
human errors observed in the literature (including our own work), 
these technologies may also suffer some of the same shortcom-
ings as count data collected by in-flight observers. Thus, the sug-
gestions presented in this paper should be useful for combatting 
errors in count data collected both by human observers and digital 
methods.

5  |  CONCLUSIONS

Imperfect detection can manifest as nondetection, counting error, 
and species misidentification, and all these sources of error should 
be considered when collecting and analyzing aerial survey data. 
Although counting error and species misidentification have re-
ceived comparatively limited attention (and thus fewer solutions) 
relative to nondetection, errors generated by all three sources are 
present and likely prevalent in aerial survey count data. Ignoring 
these errors or neglecting to address them explicitly could lead to 
biased or misleading inferences. Researchers should be aware that 
these issues exist and take measures to combat them during the 
design, data collection, and analysis stages of a study. Recognizing 
the conditions that can lead to data collection errors can allow 
researchers to allocate resources toward minimizing potential 

errors or invest more resources toward goals with fewer perceived 
challenges.
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