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Abstract

Background: Glutathione S-transferases (GSTs) are multifunctional detoxification enzymes that play important roles
in insects. The completion of several insect genome projects has enabled the identification and characterization of
GST genes over recent years. This study presents a genome-wide investigation of the diamondback moth (DBM),
Plutella xylostella, a species in which the GSTs are of special importance because this pest is highly resistant to many
insecticides.

Results: A total of 22 putative cytosolic GSTs were identified from a published P. xylostella genome and grouped
into 6 subclasses (with two unclassified). Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for
each of the subclasses. The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into
Lepidoptera-specific branches. Intron sites and phases as well as GSH binding sites were strongly conserved within each
of the subclasses in the GSTs of P. xylostella. Transcriptome-, RNA-seq- and qRT-PCR-based analyses showed that the
GST genes were developmental stage- and strain-specifically expressed. Most of the highly expressed genes in
insecticide resistant strains were also predominantly expressed in the Malpighian tubules, midgut or epidermis.

Conclusions: To date, this is the most comprehensive study on genome-wide identification, characterization and
expression profiling of the GST family in P. xylostella. The diversified features and expression patterns of the GSTs are
inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and
biological toxins. Our findings provide a base for functional research on specific GST genes, a better understanding of
the evolution of insecticide resistance, and strategies for more sustainable management of the pest.
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Background
The diamondback moth (DBM), Plutella xylostella (L.)
(Lepidoptera: Plutellidae), is a world-wide destructive
pest of wild and cultivated crucifers [1]. The larvae feed
on cruciferous plants and may cause significant reduc-
tions in yield and quality of economically important
crops such as canola and cabbage. Historical reliance on
insecticides has led to the rapid development of
* Correspondence: msyou@iae.fjau.edu.cn
†Equal contributors
1Institute of Applied Ecology and Research Centre for Biodiversity and
Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China
Ministry of Agriculture, Fuzhou 350002, China
Full list of author information is available at the end of the article

© 2015 You et al.; licensee BioMed Central. Th
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
resistance in P. xylostella populations [2], making it diffi-
cult to control.
Several studies have examined the potential mecha-

nisms underlying the development of insecticide resist-
ance in P. xylostella [3-5]. One of the proposed
mechanisms is metabolic resistance through the multi-
functional glutathione S-transferases (GSTs, EC2.5.1.18).
These enzymes can catalyze electrophilic compounds,
making them water soluble and readily excreted [6].
GSTs are known more generally by insects to detoxify
various xenobiotics, including insecticides and plant alle-
lochemicals [7]. The recent work has focused on the po-
tential role of GSTs in oxidative stress responses
[6,8-11].
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Table 1 Description of 22 identified cytosolic GSTs in the
P. xylostella genome

Gene
name

ORF
(bp)

Protein
(AA)

Gene size
(bp)

Scaffold/
orientation

Gene IDa

PxGSTd1b 654 217 2534 38/+ Px010343

PxGSTd2 648 215 3031 75/+ Px015896

PxGSTd3b 660 219 1640 75/- Px015897

PxGSTd4 672 223 2321 221/+ Px006286

PxGSTd5 672 223 2294 73/- Px015631

PxGSTe1 699 232 1823 66/+ Px014816

PxGSTe2b 684 227 3497 363/- Px010078

PxGSTe3 687 228 1699 41/+ Px011036

PxGSTe4 663 220 2922 216/+ Px006106

PxGSTe5 651 216 4863 216/+ Px006105

PxGSTo1 768 255 2649 85/+ Px016897

PxGSTo2b 750 249 6717 554/+ Px016898

PxGSTo3 726 241 3721 25/+ Px007118

PxGSTo4 750 249 750 7/- Px015266

PxGSTo5 738 245 2200 554/+ Px013473

PxGSTs1 615 204 2669 320/- Px009113

PxGSTs2 615 204 8124 328/- Px009257

PxGSTt1 654 217 3261 547/- Px000759

PxGSTu1b 693 230 2771 1088/- Px000790

PxGSTu2 648 215 963 408/- Px010993

PxGSTz1 645 214 2450 16/- Px003659

PxGSTz2 642 213 15681 115/+ Px001225
aThe gene IDs were obtained directly from the published DBM genomic database
(DBM-DB: http://iae.fafu.edu.cn/DBM/family/PxGSTs.php). All the coding
sequences (CDS) of the PxGST genes have been experimentally validated.
bCoding sequences of such genes were incomplete from the DBM-DB,
and have been experimentally completed by PCR, as explained in
the methodology.
Px: Plutella xylostella.

Table 2 Comparison of GST gene numbers of various insect s

Insect species Delta Epsilon Omega

P. xylostella 5 5 5

B. mori 4 8 4

C. quinquefasciatus 17 10 1

D. melanogaster 11 14 5

A. gambiae 12 8 1

A. aegypti 8 8 1

T. castaneum 3 19 3

N. vitripennis 5 0 2

A. mellifera 1 0 1

A. pisum 9 0 2

P. humanus 4 0 1

*Data were from cited literature: Friedman (2011) [30], Oakeshott et al. (2010) [31],
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Insect GSTs are classified as cytosolic and microsomal.
The number of microsomal GSTs is much lower than
that of cytosolic GSTs, which have been grouped into six
subclasses [12]. Delta and Epsilon subclasses are insect
specific, while the other four subclasses, Omega, Sigma,
Theta, and Zeta, are found in various animal taxa
[10,13,14].
GSTs are involved in the resistance of insects to or-

ganophosphate (OPs), chlorine, and pyrethroid insecti-
cides [15,16]. Recombinant GST enzymes from P.
xylostella and Drosophila melanogaster have been shown
to play a role in the metabolism of organophosphate in-
secticides [17,18]. It has been suggested that, under ele-
vated GST activity conditions, Anopheles subpictus can
detoxify fenitrooxon activation products, leading to or-
ganophosphate resistance [19]. The silkworm Zeta GST
recombinant protein (rbmGSTz) has been found to initi-
ate the dechlorination of permethrin and to be abun-
dantly distributed in a permethrin-resistant strain [20].
Similarly, an Omega GST is highly expressed in a
fenitrothion-resistant strain of silkworm and its recom-
binant protein (rbmGSTo) shows high affinity with or-
ganophosphate insecticides, indicating that it may
contribute to insecticide resistance and oxidative stress
responses [21]. The antennae-specific GST was found
being involved with detoxification of xenobiotics and de-
tection of sex pheromones in Manduca sexta [22].
The GSTs were found to be one of the major enzyme

families in the P. xylostella genome and to be linked to
detoxification of plant defense compounds and insecti-
cides [23]. A recent study on the identification and
characterization of multiple glutathione S-transferase
genes [24] based on the DBM transcriptome database
[24,25] provides a primary base for further investigation
of this important gene family. In the present study, the
P. xylostella GSTs (PxGSTs) were identified and com-
pared with the equivalent information from published
pecies*

Sigma Theta Zeta Unclassified Total

2 1 2 2 22

2 1 2 2 23

2 6 0 3 39

1 4 2 0 37

1 2 1 3 28

1 4 1 3 27

7 1 1 2 36

8 3 1 0 19

4 1 1 0 8

5 2 0 6 24

4 1 1 0 11

Yu et al. (2008) [28], Ding et al.(2003) [29] and Nair et al.(2011) [32].

http://iae.fafu.edu.cn/DBM/family/PxGSTs.php


Figure 1 Unrooted phylogenetic tree of the cytosolic GSTs in nine targeted insect species. The tree was constructed using neighbor-
joining approach with MEGA 5.10 [35] on the basis of Poisson correction amino acid model and pairwise deletion of gaps. Species acronym
(Aa: Aedes aegypti; Ag: Anopheles gambiae; Dm: Drosophila melanogaster (Diptera); Bm: Bombyx mori; Pp: Papilio polytes; Dp: Danaus plexippus; Px:
Plutella xylostella (Lepidoptera); Am: Apis mellifera; Nv: Nasonia vitripennis (Hymenoptea)) was used right before each of the GST genes.
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insect genomes to better reveal their phylogenetic rela-
tionships and intron-exon organization. We profiled and
analyzed expression patterns of the PxGSTs using the
published transcriptome [26] and reverse transcription-
quantitative polymerase chain reaction (qRT-PCR) in
different life stages and tissues from insecticide suscep-
tible or resistant strains. We then examined the major
characteristics of GST subclasses and some particular
GST genes in relation to their potential roles in P. xylos-
tella insecticide resistance.

Results and discussion
Identification of the PxGSTs
Queries for PxGSTs were done against the amino acid se-
quences from the other insects: Drosophila melanogaster
(Dm), Culex quinquefasciatus (Cq), Aedes aegypti (Aa),
Anopheles gambiae (Ag) (Diptera), Tribolium castaneum
(Tc) (Coleoptera), Apis mellifera (Am), Nasonia vitripennis
(Nv) (Hymenoptea), Pediculus humanus (Ph), Acyrthosi-
phon pisum (Ap) (Exopterogota), and Bombyx mori (Bm)
(Lepidoptera). Twenty-two putative cytosolic GST genes
with full-length sequence were identified from our P.
xylostella (Px) genome [23,27] (Table 1) and further vali-
dated by cloning and sequencing. Using the listed gene
IDs in Table 1, the coding sequences (Additional file 1), in-
ferred amino acid sequences (Additional file 2) and gen-
omic DNA sequences (Additional file 3) can be found in
the published DBM genomic database (DBM-DB: http://
iae.fafu.edu.cn/DBM/family/PxGSTs.php) [27]. Compared
to the previous DBM GSTs [24] identified from a published

http://iae.fafu.edu.cn/DBM/family/PxGSTs.php
http://iae.fafu.edu.cn/DBM/family/PxGSTs.php


Figure 2 Location of introns of the PxGST genes. Phase 0, 1 and 2 introns are shown by inverted filled triangle, arrow and inverted blank
triangle, respectively. Phase 0 for a splice site lying between two codons, phase 1 for a splice site lying one base inside a codon in the 3’ direction, and
phase 2 for a splice site lying two bases inside the codon in the 3’ direction.
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P. xylostella transcriptomic database, we identified three
additional genes. The PxGSTs represented all six subclasses
found in other insects [28-30], plus two genes that could
not be assigned to any one of the known subclasses, labeled
as unclassified. Numbers of GSTs varied greatly across
insect species. GSTs were expanded in the Diptera and
Coleoptera, with a relatively larger number of total
genes than that in the species of Lepidoptera, Hymen-
optera and Exopterogota (Table 2). The number of
GSTs in P. xylostella was close to that of another lepi-
dopteran species, B. mori. The two insect-specific GST
subclasses (Delta and Epsilon) were numerically super-
ior, accounting for > 50% of the entire cytosolic GSTs in
Diptera and Coleoptera and ~ 50% in Lepidoptera
(Table 2). This indicates that the GSTs in the Delta and
Epsilon subclasses have a greater general trend of du-
plication than the GSTs in the other four subclasses as
previously reported by Friedman [30].
Phylogenetic analysis of the PxGSTs
The phylogenetic tree illustrated that the seven sub-
classes were well clustered into their relevant phylo-
genetic branches (Figure 1). The unclassified subclass
diverged from the Delta subclass, suggesting that they
may have similar functions. In all the subclasses, the P.
xylostella GSTs were all clustered into the Lepidoptera-
specific branches. Within a specific subclass, the same
genes in different species were first clustered into an
upper branch within the phylogenetic tree, suggesting that



Figure 3 GSH and substrate binding sites of glutathione S-transferase genes. The short vertical lines represent functionally conserved
residues of GST genes among insect species. Red vertical lines represent the GSH binding sites of GSTs (G sites) and blue vertical lines represent
the substrate binding sites GSTs (H sites).
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specific GSTs in different species might have same or
similar functions [33,34].
Delta and Epsilon GST subclasses are unique to in-

sects and have been suggested to be implicated in in-
secticide resistance [10,36,37]. The earlier diverging
insects Hymenoptera and Exopterygota do not have
Epsilon subclass GSTs. Hymenoptera has a few genes
present in the Delta subclass but none for Exoptero-
gota suggesting that these orders may be from an
evolutionary older lineage [30]. Our tree suggests that
Delta and Epsilon GSTs have diverged more recently
from the other subclasses.
The range of amino acid identities in the insect-

specific GSTs of P. xylostella are fairly variable, ranged
from 38.39 ~ 84.75% in Delta and 23.05 ~ 60.91% in
Epsilon (Additional file 4: Table S1). Except for
PxGSTe1, the remaining Epsilon PxGSTs were clus-
tered in a monophyletic clade of Lepidoptera (Figure 1),
suggesting a lineage-specific expansion within the
Epsilon subclass in lepidopteran order.
Characterization of the PxGST introns
A total of 80 introns were identified in the PxGSTs. Ex-
cept for one intronless gene (PxGSTo4), the intron num-
bers of individual PxGSTs ranged from 2 to 6 (Figure 2)
with an average of 3.6. These numbers are similar to
those of B. mori GSTs with an average of 3.4 [28] and
larger than those of Dipteran (A. gambiae) and Coleop-
teran (T. castaneum) GSTs with averages of 1.5 and 2.3,
respectively [29,38]. The number of GSTs introns has
been shown to vary across insect species. It is thought to
be associated with the ability to respond to xenobiotics
and endogenous compounds [39].
In the PxGSTs, the splice sites of introns were classi-

fied into three phases: 0 with 45 introns, 1 with 17 in-
trons, and 2 with 18 introns, according to their positions
in the codons. The phase-1 introns were present only in
the Omega, Zeta and Sigma subclasses. Most phase-2 in-
trons were found in insect-specific subclasses (Delta and
Epsilon) as well as in Zeta subclass. Most of the PxGST
introns spliced in a given site tended to be from the



Figure 4 Expression profiling of the PxGSTs at different developmental stages based on RPKM value. 1st (L): first instar larva; 2nd (L):
second instar larva; 3rd (L): third instar larva; 4th (L): fourth instar larva; F: female; M: male; Gray denoted missing values. The data were obtained
from our unpublished RNA-seq data. The RPKM values are presented in Additional file 7: Table S3. The data have been uploaded to the P.
xylostella genomic database (DBM-DB: http://iae.fafu.edu.cn/DBM/family/PxGSTs.php).
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same phase, suggesting that they might be relatively con-
served (Figure 2).
Intron sites are similar across different PxGST sub-

classes. There are three highly conserved sites of introns
within the Delta and Epsilon GST subclasses, except for
the PxGSTd1 and PxGSTe1. These were between the
47th and 51st, the 114th and 118th and the 180th and
186th amino acids. Most of the PxGSTs tended to have a
nearby conserved site of the introns located between the
111th and 125th amino acids belonging to phase 0. Both
of the intron sites and phases were strongly conserved
within Sigma and Zeta subclasses (Figure 2), implying
that these genes might have similar functions. There ap-
peared to be a correlation between the intron conserva-
tion and the phylogenetic cluster within a given PxGST
subclass, indicating that gene structure evolution might
be involved in the phylogenetic development of a spe-
cific subclass.
Despite the conserved nature of intron sites and

phases, the lengths were highly variable in the PxGSTs
ranging from 28 to 17,644 bp with a larger proportion
ranging from 300 to 399 bp (Additional file 5: Figure S1)
and an average of 918 bp. The shortest intron was
PxGSTu1 (28 bp), while the longest were PxGSTo3
(17,644 bp) and PxGSTz2 (13,241 bp). A previous study
has shown that long introns were considered to involve
more functional elements than short introns and could
effectively regulate gene expressions, possibly via the for-
mation of pre-mRNA secondary structures [40]. How-
ever, the function of the longest introns in PxGSTo3 and
PxGSTz2 needs to be further investigated.

GSH and substrate binding sites in the PxGSTs
Most of the insect GSTs are composed of a conserved
thioredoxin domain containing the GSH binding site (G-
site) and a more variable α-helical domain containing
the substrate binding site (H-site) [41], and can trans-
fer GSH to a substrate by stabilization of the GSH
thiolate [42]. Both G-sites and H-sites among the
PxGSTs were analyzed with the NCBI CD-search pro-
gram, and the results showed that the G-sites appeared
fairly conserved while the H-sites were variable among
different subclasses (Figure 3, Additional file 6: Table
S2). The conserved G-sites indicate their important
enzyme functions while the variable H-sites are related
to their evolutionary divergence [43]. No G-sites were
found for all the genes in Omega GSTs as well as some
genes in other subclasses in P. xylostella (Figure 3).

http://iae.fafu.edu.cn/DBM/family/PxGSTs.php


Figure 5 Expression profiling of selected preferentially expressed PxGSTs at larval (A) and adult (B) stages based on qRT-PCR. 1st (L):
first instar larva; 2nd (L): second instar larva; 3rd (L): third instar larva; 4th (L): fourth instar larva.
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Such GSTs (without G-site) may act as intracellular
ligand transporters as documented in Nilaparvata
lugens and Anopheles cracens [43,44].

Expression profiling of the PxGSTs
Stage-specific expression profiling
Using our unpublished P. xylostella RNA-seq data, expres-
sion patterns of the PxGSTs at different developmental
stages of the susceptible strain were characterized (Figure 4,
Additional file 7: Table S3). The results showed that all 22
PxGSTs could be expressed at different developmental
stages, and exhibited gene-differential and stage-
specific patterns. Sixteen genes were found to be con-
sistently expressed throughout different stages, two of
which (PxGSTd2 and PxGSTs2, Figure 4, I) tended to
be expressed with high levels, four (PxGSTd3,
PxGSTu1, PxGSTo2, and PxGSTo3) with moderate
levels (Figure 4, III) and ten with low levels (Figure 4,
IV). Those highly and moderately expressed genes may
function as housekeeping genes with potential roles of
protecting cells against endogenous oxidative stress or
xenobiotics [28]. Four insect-specific PxGSTs (Figure 4,
II) were predominantly and highly expressed at in larval
(the main feeding stage), indicating that these genes
might play important roles in metabolizing plant sec-
ondary metabolites [45,46].
Expression profiling with qRT-PCR confirmed that the

22 PxGSTs genes could express at different developmen-
tal stages, but exhibited stage-specific patterns. Six genes
were predominantly expressed at the larval stage, exhi-
biting the same patterns based on RPKM value (Figure 4)
and qRT-PCR (Figure 5A), which suggests that they
might be associated with detoxification of plant defense
compounds and insecticides [34,46]. The insect-specific



Figure 6 Differential expressions of the PxGSTs in different resistant strains based on RPKM value. CRS: chlorpyrifos resistant strain; FRS:
fipronil resistant strain. Differential expressions are illustrated by different colors compared to the expression in susceptible strain (SS), with the red
representing up-regulated, the green down-regulated and the black no difference with SS. The gray denotes missing values. The data were
obtained from our published transcriptome data. The RPKM values are presented in Additional file 8: Table S4. The data have been uploaded to
the P. xylostella genomic database (DBM-DB: http://iae.fafu.edu.cn/DBM/family/PxGSTs.php).
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Delta and Epsilon GSTs showed high expression in P.
xylostella (Figure 5A), while most of these GSTs had lit-
tle or no expression in the main detoxification organ (fat
body) of domesticated B. mori with little exposure to in-
secticides for thousands years [28], suggesting that these
genes are associated with the evolution of insecticide re-
sistance as proposed in previous reports [34,45]. PxGSTd1,
PxGSTe1, PxGSTe5 and PxGSTo3 were highly expressed
in the P. xylostella adults (Figure 5B), suggesting that these
genes may be involved in odorant processing and/or xeno-
biotic metabolism [22]. Most of the PxGSTs exhibited low
gene expression at the egg stage (Figure 5). Such diversi-
fied expression patterns of the PxGSTs imply that GSTs
may have multiple functions in P. xylostella, as docu-
mented in other insects [34,47,48].

Strain- and tissue-specific expression profiling
Based on the DBM transcriptome, all of the PxGSTs were
either up- or down-regulated in the insecticide resistant
strains when compared to the susceptible strain (SS)
(Figure 6, Additional file 8: Table S4). Seven PxGSTs were
up-regulated in both of the chlorpyrifos- and fipronil-
resistant strains (CRS and FRS) (Figure 6, group I). They
are mostly insect specific GSTs (Delta and Epsilon) with
the potential function of detoxification. However, seven
PxGSTs were down-regulated in CRS and FRS (Figure 6,
group II). Most of the rest were up-regulated in FRS, but
down- regulated in CRS, possibly reflecting different mech-
anisms of detoxification between the two strains.
The qRT-PCR-based analysis showed that four of the

PxGSTs (PxGSTd3, PxGSTd4, PxGSTo2 and PxGSTo5)
showed significantly greater expression in both CRS and
FRS. PxGSTd5, PxGSTs1, PxGSTs2 and PxGSTz2 in FRS
and PxGSTo1 and PxGSTo4 in CRS also had greater
gene expressions than in SS. Interestingly, PxGSTe4 and
PxGSTt1 exhibited higher expressions in FRS but lower
expressions in CRS when compared to the SS (Figure 7).
Expression of the other 10 PxGSTs were not significantly
different among strains. The qRT-PCR-based analysis
could not confirm the transcriptome-based expression
profiling patterns of all the PxGSTs, which might result
from different sampling times when the resistant DBMs
(FRS and CRS) were collected for transcriptome sequen-
cing in December 2009, and collected three years later
for qRT-PCR. The diversified patterns of strain-specific
expressions suggest that the PxGSTs might involve a
functionally complex system in response to detoxifying
different classes of insecticides [34,49,50].
Twelve PxGSTs with significantly high expression in

resistant strains were further analyzed using qRT-PCR in
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Figure 7 Expression patterns of PxGSTs in three strains as determined by qRT-PCR. SS, insecticide susceptible strain; FRS, fipronil resistant
strain; CRS, chlorpyrifos resistant strain; Error bars indicate standard errors of the mean. Statistically significant differences were labeled with
different letters as evaluated with one-way ANOVA (Duncan’s multiple range test, P < 0.05, n = 3).
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different tissues of fipronil-resistant strain. The results
showed that 6 genes (PxGSTd3, PxGSTd5, PxGSTs2,
PxGSTz2, PxGSTo1 and PxGSTo4) were significantly more
highly expressed in Malpighian tubules, 4 (PxGSTd4,
PxGSTo2, PxGSTe4 and PxGSTt1) both in Malpighian tu-
bules and midguts and 1 (PxGSTs1) in epidermis, except
for PxGSTo5 with no significant different expression in
the various tissues (Figure 8). These results further valid-
ate the association of the PxGSTs with insecticide detoxifi-
cation because these tissues were documented to play
important roles in digestion and metabolism of xenobi-
otics in insects [51,52].
Conclusions
To date, this is the most comprehensive study on
genome-wide identification, characterization and expres-
sion profile of the GSTs in P. xylostella. Twenty-two
GSTs were found in P. xylostella, which is similar in
number to another lepidopteran species, B. mori. Vari-
able features and different expression patterns of the
genes reveal that the P. xylostella GSTs are evolutionary
and functionally diversified, and may be involved in the
evolution of adaptive capacity in response to environ-
mental variation. Because GST enzymes are considered
to be important in insecticide resistance, many of these



Figure 8 Expression patterns of PxGSTs in multiple tissues as determined by qRT-PCR. FRS, fipronil resistant strain; EP, epidermis; FB, fat
body; H, head; MG, midgut; MT, Malpighian tubules; Error bars indicate standard errors of the mean. Statistically significant differences were
labeled with different letters as evaluated with one-way ANOVA (Duncan’s multiple range test, P < 0.05, n = 3).
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newly identified genes are potential candidates for inhi-
biting the pathway of insecticide resistance and targeting
lepidopteran-selective insecticides. Thus, further func-
tional research on the PxGSTs is essential to identify the
key genes and their roles in xenobiotic detoxification of
insects, and understand the mechanisms underlying the
insecticide resistance.

Methods
Experimental DBM strains
The experimental population of P. xylostella was de-
rived from a susceptible strain (SS) that was collected
from a vegetable field of Fuzhou (26.08°N, 119.28°E) in
2004 and used for genome sequencing [23]. Since then
this initial population was reared on potted radish
seedlings (Raphanus sativus L.) at 25 ± 1°C, 65 ± 5%
RH and L:D = 16:8 h in a separate greenhouse without
exposure to insecticides over the past ten years. Two
insecticide resistant strains (chlorpyrifos- and fipronil-
resistant strains (CRS and FRS)) were selected from
this susceptible strain, and detailed in DBM transcrip-
tome [26].

Identification of P. xylostella GST genes
To identify putative GST genes from the DBM genome
database [23,27], the GST protein sequences of D. melano-
gaster, C. quinquefasciatus, A. aegypti, A. gambiae, T. cas-
taneum, A. mellifera, N. vitripennis, A. pisum, P. humanus,
B. mori and other lepidopteran insects were downloaded
from their genome databases [53-57] and/or GenBank
(http://www.ncbi.nlm.nih.gov/) and Uniprot (http://www.
uniprot.org/). These insect GST protein sequences were
used as queries to perform local TBLASTN searches
against the DBM genome database. The putative gen-
omic sequences were retrieved, and then predicted
using Fgenesh + (http://www.softberry.com/). The DBM
GST protein sequences were confirmed using online
BLASTP in NCBI.

http://www.ncbi.nlm.nih.gov/
http://www.uniprot.org/
http://www.uniprot.org/
http://www.softberry.com/
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Phylogenetic analysis
The GSTs of A. aegypti (Aa), A. gambiae (Ag), D. mela-
nogaster (Dm), A. mellifera (Am), N. vitripennis (Nv),
Papilio polytes (Pp), Danaus plexippus (Dp), B. mori
(Bm) and P. xylostella (Px) were used for the phylogen-
etic analysis. Putative amino acid sequences of the GSTs
were aligned using Clustal X2.0 [58], and then gaps and
missing data were manually trimmed. A phylogenetic
tree was constructed with the neighbor-joining method
[59] using MEGA 5.10 [35]. Bootstrap analysis with
1,000 replicates was used to evaluate the significance of
the nodes. Poisson correction amino acid model and
pairwise deletion of gaps were selected for the tree
reconstruction.

RNA extraction and cDNA synthesis
DBM eggs, 1st- to 4th-instar larvae, pupae and adults from
susceptible and resistant strains were frozen in liquid ni-
trogen. Total RNA was extracted using the RNAiso Plus
(Takara, Code: D9108A, Japan). The 4th-instar larvae were
surface sterilized in 75% ethanol, then dipped in DNAase
and RNAse free water and dissected. Tissues (head, mid-
gut, Malpighian tubules, fatbody and epidermis) from re-
sistant strains were briefly immersed in RNAlater™ RNA
Stabilization Reagent (QIAGEN, Code: 76104, Germany)
then stored at 4°C. Total RNA was extracted with the
RNeasy Plus Micro Kit (QIAGEN, Code: 74034, Germany)
and RNA concentration was determined using a spectro-
photometer (Nanodrop 2000: Thermo, USA).
The cDNA template for PCR was synthesized with

1 μg of total RNA using PrimeScript®RT reagent Kit
with gDNA Eraser (Perfect Real Time) (Takara, Code:
DRR047A, Japan).

Validation of gene expression by qRT-PCR
The qRT-PCR primers used in the validation of gene ex-
pression were identified based on the encoding se-
quences of the DBM GSTs (Additional file 9: Table S5).
DBM ribosomal protein L8 (RPL8) was used as reference
gene for different strains and tissues, and DBM riboso-
mal protein S4 (RPS4) for different stages/instars. The
assays were run in triplicate in CFX96 Touch™ Real-
Time PCR Detection Systems (Bio-Rad, USA). PCR
amplification was performed in a total reaction volume
of 20 μL reaction mixture, containing 20 ng cDNA,
10 μL 2 × SYBR® Premix Ex Taq™ (Takara, DRR420A,
Japan), 0.2 μM of each primer. PCR was conducted with
standard thermal cycle conditions using the two-step
qRT-PCR method: an initial denaturation at 95°C for 30s
followed by 40 cycles of 3s at 95°C and 30s at 60°C. Spe-
cificity of the PCR products was assessed by melting
curve analysis for all samples. For each treatment (tis-
sues, strains and developmental stages), there were three
biological replicates.
Statistical analysis
The 2−ΔCt method was used to analyze the qRT-PCR-
based expression patterns. One-way ANOVA, using
PASW Statistics 18, followed by a Duncan’s multiple
range test was used to evaluate significant differences
among patterns. The results were presented by mean ±
standard deviation of the relative mRNA expressions.

Availability of supporting data
The nucleic acid sequences and protein sequences have
been deposited in the published DBM genomic database
(DBM-DB: http://iae.fafu.edu.cn/DBM/family/PxGSTs.php).
Other supporting data are presented in Additional file 7:
Tables S3 and Additional file 8: Table S4, and also deposited
in the same database.
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Additional file 5: Figure S1. Numerical distribution of intron length in
the PxGSTs.

Additional file 6: Table S2. GSH and substrate binding sites of the
PxGSTs.

Additional file 7: Table S3. RPKM of the PxGSTs at different
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