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Abstract: In the present work, a fast, relatively cheap, and green analytical strategy to identify
and quantify the fraudulent (or voluntary) addition of a drug (alprazolam, the API of Xanax®)
to an alcoholic drink of large consumption, namely gin and tonic, was developed using coupling
near-infrared spectroscopy (NIR) and chemometrics. The approach used was both qualitative and
quantitative as models were built that would allow for highlighting the presence of alprazolam
with high accuracy, and to quantify its concentration with, in many cases, an acceptable error.
Classification models built using partial least squares discriminant analysis (PLS-DA) allowed for
identifying whether a drink was spiked or not with the drug, with a prediction accuracy in the
validation phase often higher than 90%. On the other hand, calibration models established through
the use of partial least squares (PLS) regression allowed for quantifying the drug added with errors
of the order of 2–5 mg/L.

Keywords: near infrared (NIR) spectroscopy; alprazolam; chemometrics; partial least squares (PLS)
regression; partial least squares discriminant analysis (PLS-DA); drug-facilitated sex assault (DFSA)

1. Introduction

Alprazolam is an active pharmaceutical ingredient (API) present in different psy-
chotropic drugs belonging to the class of benzodiazepines. Benzodiazepines are a class of
anxiolytics effective in both the acute and chronic treatment of patients with sustained or
recurrent anxiety attacks. In addition to their anxiolytic effects, benzodiazepines produce
sedative, hypnotic, anesthetic, anticonvulsant, and muscle relaxant effects. They can alter
motor control and enhance the effects of other substances, such as alcohol. One of the most
well-known pharmaceutical preparations containing alprazolam is Xanax®, which is sold
under this name both in Europe and in the USA. The Xanax® formulation is conceived for
immediate effect and relief is almost instantaneous, but its effect is short-lived. In recent
years, its use for the preparation of “spiked” cocktails for recreational purposes, or, in even
worse cases, for doping unaware victims, has been reported. In particular, Xanax® is
combined with alcoholic beverages, which increase the persistence and the concentration of
Alprazolam in the blood and brain, enhancing the effects of the drug, acting on the central
nervous system [1].

Drug-facilitated sex assault (DFSA) is a form of sexual violence against an individual
made not fully cognizant by a substance that alters her/his physical and mental state,
such as alcohol or drugs [2]. Several APIs (alone or mixed with alcohol) can induce loss of
inhibition or consciousness, and are associated with antegrade amnesia. In DFSA, the most
commonly reported drugs are GHB (γ-hydroxybutyric acid), benzodiazepines (Valium®,
Xanax®, or Rohypnol®), antidepressants (Venlafaxine), muscle relaxants (Ciclobenzaprine),
antihistamines, over-the-counter sleeping pills (Diphenhydramine), hallucinogens, and opi-
oids. Cocktails spiked with Xanax® can be easily used as a doping agent to achieve a stun
effect in unsuspecting victims, because the taste of the excipients can be confused with

Molecules 2022, 27, 6420. https://doi.org/10.3390/molecules27196420 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27196420
https://doi.org/10.3390/molecules27196420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-2671-3231
https://orcid.org/0000-0002-9461-9597
https://orcid.org/0000-0001-8266-1117
https://doi.org/10.3390/molecules27196420
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196420?type=check_update&version=2


Molecules 2022, 27, 6420 2 of 12

the flavors of the long drink. As the percentage of psychotropic drug mixed with alcohol
increases, the resulting effects range between not having any sensitive effect, to losing the
inhibitory brakes, to loss of consciousness and loss of control of the central nervous system
to the point of being unable to breathe autonomously [3].

Generally, in the case of suspected DFSA, different biological matrices of the victim
can be analyzed, such as urine, blood, or hair [4].

The most common analytical techniques recommended for the analysis of DFSA-
related samples (coupled with methodologies tailored for detecting “rape drugs” and their
metabolites) are gas chromatography coupled with mass spectrometry (GC-MS) and liquid
chromatography coupled with tandem mass spectrometry (LC-MS/MS) or a diode array
detector (LC-DAD) [5,6].

Liquid chromatography (LC) coupled with UV–visible operating in full scan acqui-
sition has also been proposed [7], but then the spectra need to be further compared with
references to confirm drug detection.

Unfortunately, in practice, most of the samples are delivered to the analytical labora-
tories long after their collection, compromising the detection of low drug concentrations.
To overcome this issue, MS/MS detection, such as LCMS/MS or GC-MS/MS, has been
recommended due to its higher sensitivity and selectivity [7].

In recent years, together with the analysis of alternative biological matrices, the possi-
bility of using faster and portable techniques has been investigated. In this context, a recent
study demonstrated that the electrochemical determination of flunitrazepam in different
degassed alcoholic beverages using plain or silk-screened graphite electrodes modified
with graphene can be efficiently carried out [8].

In addition to these methods, a Raman-based solution, finalized to the detection of
flunitrazepam in drinks, has also been proposed. In fact, Ali et al. demonstrated that it
is possible to collect the Raman signals of beverages spiked with flunitrazepam (concen-
trations from 0.01 to 0.04% w/v), compare them with the reference spectra, and identify
doped drinks [9].

Given this background, the purpose of the present work is to develop a fast and
green analytical methodology to identify and quantify the presence of an adulterating drug
(alprazolam, the API of Xanax®) within an alcoholic beverage of large consumption, namely
gin and tonic, coupling near-infrared spectroscopy (NIR) and chemometrics. In particular,
partial least squares (PLS) regression [10] and partial least squares discriminant analysis
(PLS-DA) [11] have been exploited for quantification and detection. These strategies were
chosen because they have demonstrated their suitability in similar contexts [12,13]. The final
outcome of this study is manifold. In fact, if needed (e.g., in case of DFSA), the developed
strategy can be applied to analyze a drink (if available) and determine whether it was
(voluntarily or not) spiked with alprazolam. A further, but not less relevant, aspect is that
this work can represent a feasibility study for the development of an NIR-based portable
device, which can be kept in bars and night clubs, and allow customers to check their drink
in case of suspected tampering.

2. Results and Discussion

As anticipated, the present study is two-folded involved. The first step is qualita-
tive, aimed at discriminating pure from spiked drinks, followed by a second step, where
multivariate regression was used to quantify the added drug.

2.1. Discrimination of Pure and Spiked Drinks by PLS-DA

To discriminate pure and spiked drinks, a multivariate classification strategy based on
the use of partial least squares discriminant analysis (PLS-DA) on the collected NIR spectra
was adopted. To validate such a strategy and evaluate its generalizability as unbiasedly
as possible, particular attention was paid to the proper definition of the training and test
samples. Indeed, in order to have the validation samples be as independent as possible
from the training ones, it was decided to leave out all of the samples prepared with a
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particular brand of gin as a test set, leaving the other spectra for model building and model
selection. Moreover, to check the robustness of the results with respect to the identification
of the specific brands to be used for model building and validation, the procedure was
repeated three times, each time selecting all of the samples prepared with a specific brand
of gin as the test set and using the others as the training set.

This means that the first model was built using all mixtures prepared with gins G1 and
G2 (i.e., G1T1, G1T2, G1T3, G2T1, G2T2, and G2T3, for a total of 342 samples) as the training
set and the remaining 171 samples, corresponding to the pure and spiked drinks prepared
using the third gin brand (G3T1, G3T2, and G3T3) as test set. Following the same conceptual
scheme, the selection of the optimal parameters and meta-parameters (number of latent
variables and best spectral preprocessing) to build the final model was conducted on the
training samples based on the results of a split-half cross-validation, where the two cancelation
groups coincided with the two brands of gin used to prepare the mixtures (here, G1 and G2).

Similarly, a second model was built using all of the mixtures prepared with gins
G1 and G3 (i.e., G1T1, G1T2, G1T3, G3T1, G3T2, and G3T3, for 342 samples) and was
validated on the 171 samples prepared with gin G2 (G2T1, G2T2, and G2T3). Analogously,
a third model was built on G2 and G3-based mixtures and validated on all of the samples
prepared using G1.

Successively, to further check the robustness of the approach, a similar training/test
splitting scheme was adopted, this time leaving out, in turn, as the test set, all the mixtures
prepared using a specific brand of tonic water. This means that a fourth PLS model was
built using all of the mixtures prepared with tonic waters T1 and T2 as the training set (i.e.,
G1T1, G2T1, G3T1, G1T2, G2T2, and G3T2, for a total of 342 samples), and was validated on
the remaining 171 samples prepared using tonic water T3 (G1T3, G2T3 and G3T3). In this
case, model selection was based on the results of a split-half cross-validation, where the
two cancelation groups coincided with the two brands of tonic water used to prepare the
training mixtures (here, T1 and T2).

The procedure was then repeated to build and validate a fifth (using mixtures prepared
with T1 and T3 tonic waters as the training and those with T2 as the test sets) and a sixth
(using mixtures prepared with T2 and T3 tonic waters as the training and those with the
T3 as test sets) model.

The results obtained are summarized in Table 1, where the classification figures of
merit on the six models on their respective test set samples are reported.

When considering the ability of the models to correctly recognize the class of the
training samples used for model building and model optimization, a very high accuracy
was obtained (in most of the cases, higher than 97%). In particular, the sensitivity for
the pure class was always higher (2 to 10%, depending on the model) than that of the
spiked category, irrespectively of the training/test splitting scheme adopted. The results
obtained in the validation stage, i.e., when the models were applied to their respective
test set samples, which are shown in Table 1, indicate that, in general, the models can be
applied to new samples with a similarly high classification accuracy (almost 90% or higher
in most of the cases).

The classification ability of the different models on the training and test samples can also
be graphically appreciated in Figure 1, where the predicted values of the response variable
coding for class belonging are graphically displayed. In the same figure, the dashed horizontal
line in each subplot represents the classification threshold: samples falling above the threshold
are predicted as having been spiked, whereas those falling below are recognized as pure.

By looking at the results in Table 1 and Figure 1, and comparing the outcomes for the
training and test samples, it is possible to observe how, as already pointed out, in most of
the cases, the accuracy of the predictions in the validation phase was comparable to that in
the model building step, and, in general, very high. In only two cases, significantly lower
correct classification rates were obtained on the test set, i.e., when either all the mixtures
with gin brand 1 or those with tonic water brand 1 were used for validation; however,
accuracy values higher than 70% were still obtained.
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Table 1. Classification results of the six calculated PLS-DA models on their respective test set samples.

Model Mixtures Used as Test Set Pre-Treatment * LVs *
Accuracy

(%)
Average
% CCR *

Sensitivity (%)

Spiked Pure

1
G3T1
G3T2
G3T3

MC 13 95.32 94.86 96.40 93.33

2
G2T1
G2T2
G2T3

MC 10 95.32 96.40 92.79 100.00

3
G1T1
G1T2
G1T3

MC 6 78.36 71.08 95.50 46.67

4
G1T3
G2T3
G3T3

D1+MC 21 88.89 88.00 90.99 85.00

5
G1T2
G2T2
G3T2

SNV+MC 16 92.98 92.30 94.59 90.00

6
G1T1
G2T1
G3T1

MC 3 71.35 73.72 65.77 81.67

* MC, mean centering; SNV, standard normal variate; D1, first derivative; % CCR, correct classification rate (%);
LVs, number of latent variables.
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Figure 1. Graphical representation of the predictions of the different PLS-DA models on their
respective training (empty symbols) and test (filled symbols) samples. Legend: red circles, spiked
drinks; blue squares, pure drinks.
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The models were further inspected to evaluate which spectral variables contributed
the most to the discrimination, and this was accomplished through the calculation and
evaluation of the values of the variable importance in the projection (VIP) [14] indexes.
Indeed, VIP is one of the indexes that is customarily considered to evaluate the variable
contribution in PLS-based algorithms, especially as, because of the way they are calculated
and normalized, a greater-than-one criterion can be adopted to identify those predictors that
are relevantly involved in the definition of the model. Figure 2 shows the spectral regions
identified as significantly contributing to each of the six calculated models according to the
results of VIP analysis (i.e., the bands corresponding to VIP values greater than one).
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It is possible to observe in the figure how, irrespective of the training/test splitting
adopted to build the models, most of the spectral variables identified as relevant are the
same. This represents a further confirmation of the robustness of the proposed approach.
In particular, the spectral intervals 5300–5400 cm−1, 6380–6520 cm−1, 7043–7062 cm−1,
and 7166–7174 cm−1 are highlighted as being relevant for all of the models. The first
one (5300–5400 cm−1, combination of O-H stretching and deformation) and the last ones
(7043–7062 cm−1 and 7166–7174 cm−1, first overtone of O-H stretching) are related to the
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drink matrix, whereas the peak at 6380–6520 cm−1 is characteristic of alprazolam, as also
shown in [15].

2.2. Quantification of Alprazolam by PLS

In a second stage of the study, based on the promising results of the qualitative analysis,
the possibility of quantifying the concentration of alprazolam in the spiked drinks based
on NIR spectroscopy and chemometrics was also explored. In particular, PLS regression
was used to build calibration models relating the spectral profile recorded on the samples
to the amount of alprazolam in the drinks.

For model building and validation, the same sample splitting schemes described
in Section 2.1 for the discrimination step were adopted, i.e., leaving out, in turn, all the
mixtures prepared with one gin brand or one tonic brand as the test set. Moreover, for each
model, the choice of the best preprocessing and of the optimal number of latent variables
was based on the results of a split half cross-validation on the training data, also carried
out analogously to what is already described in Section 2.1.

The results of the PLS calibration on the six different training/test splitting schemes
investigated are summarized in Table 2, where, for the sake of a better clarity, the set of
mixtures selected as test set samples for each model have also been explicitly reported.

Table 2. Results of PLS calibration for the quantification of the alprazolam concentration in spiked drinks.

Model Mixtures Used
as Test Set

Pre-Treatment * LVs *

Calibration
(Training Set)

Validation
(Test Set)

RMSEC * Bias R2 RMSEP * Bias R2

1
G3T1
G3T2
G3T3

MC 14 4.0 0.0 0.9321 4.9 0.5 0.9017

2
G2T1
G2T2
G2T3

D2+MC 14 4.2 0.0 0.9270 12.7 −0.9 0.3352

3
G1T1
G1T2
G1T3

MC 6 2.6 0.0 0.9730 19.6 −15.1 −0.5879

4
G1T3
G2T3
G3T3

SNV+MC 24 2.5 0.0 0.9748 5.8 −0.1 0.8596

5
G1T2
G2T2
G3T2

SNV+MC 25 2.1 0.0 0.9810 5.1 −0.7 0.8919

6
G1T1
G2T1
G3T1

MC 22 2.1 0.0 0.9820 13.0 6.3 0.2965

* MC, mean centering; SNV, standard normal variate; D2, second derivative; RMSE, root mean square error of
calibration; RMSEC, root mean square error of prediction; LVs, number of latent variables.

The results reported in the table confirm what has already been seen when discussing
the outcomes of the classification study: while the values of the figures of merit on the
training set samples always indicate a high accuracy, the model performances on the test
set individuals are comparably valid only in some of the investigated splitting schemes
(here, in the case of models 1, 4, and 5). These outcomes suggest, on the one hand, that it
can be possible to quantify the concentration of alprazolam in spiked drinks based on the
recorded NIR spectra, but, on the other hand, they also indicate that some gin or tonic
water brands have more distinctive spectral features that, if not accounted for in the model
building phase, can interfere with the predictions, leading to a lower accuracy.
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The results obtained on the training and test samples can also be visually appreciated
in Figure 3, where, for each model, the predicted concentrations of alprazolam in the
mixtures are compared with their true values.
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Figure 3. Results of PLS calibration for the quantification of alprazolam in spiked drinks. Plots of
predicted vs. true values for the six calculated models. Legend: red circles, training samples; black
squares, test samples.

The plots in the figure highlight how, in the case of splitting schemes 1, 4, and 5,
the prediction accuracy on the test samples is comparable to that observed for the training
set. On the other hand, in the case of model 6, the not completely satisfactory results
are mostly due to the inaccuracy in predicting the absence of the drug in the drink (the
highest absolute errors are for the samples where the alprazolam concentration is zero.
Lastly, model 2 and, in particular, model 3, suffer from the obvious presence of a relevant
systematic error when applied to the test samples.

For all of the models, a multivariate limit of detection was estimated according to the
approach proposed by Allegrini and Olivieri [16], and the values obtained were found to
be in the range of 0.4 to 0.9 mg/L. Considering that the volume of a long drink serving is
usually about 200 mL, such LOD values would allow for detecting the addition of 0.08 to
0.18 mg of alprazolam, which is well below the minimum dose considered as metabolically
relevant (0.5–1.0 mg) [17], indicating that the proposed approach is suitable for the detection
of the fraudulent addition of API to long drinks.
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Analogously to what has already been done when interpreting the classification
models, also in the calibration context, VIP scores can be calculated and inspected in order
to identify the variables contributing the most to the definition of the regression relation.

Accordingly, Figure 4 shows, for each calculated model, the spectral regions identified
as significantly contributing to the regression on the basis of their VIP index.
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By looking at Figure 4 and comparing it with Figure 2, it is evident how the spectral
regions identified as significant for the quantification of the drug in the drinks are practically
the same, resulting in being relevant for the discrimination between pure and spiked drinks.
This is further confirmation of the soundness of the proposed approach and provides an
additional validation of the results obtained.

3. Materials and Methods
3.1. Sample Preparation

For the preparation of all of the gin and tonic samples, both spiked and pure, it was
decided to use three different commercial brands of gin (G1, G2, and G3) and three diverse
brands of tonic water (T1, T2, and T3), and preparing all of the possible combinations of
gins and tonic water, corresponding to mixing a brand of gin with a type of tonic water.
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This resulted in nine series of mixtures, here labeled as G1T1, G1T2, G1T3, G2T1, G2T2,
G2T3, G3T1, G3T2, and G3T3. All of the beverages were bought in Italian supermarkets.

All of the gin tonic samples were prepared by mixing the selected brands of gin and
tonic water at a ratio of 1:2 (v/v). For each of the nine combinations of gin and tonic
water brands, 20 samples of pure (unspiked) gin tonic were prepared, resulting in a total
of 180 genuine specimens. On the other hand, for each combination of the gin and tonic
water brands, 37 spiked samples with an alprazolam concentration ranging from 1.6 to
34.6 mg/L were prepared by adding to the drink the proper amount of Xanax® (oral drops;
alprazolam concentration 0.75 mg/mL, Ph. Eur.). Accordingly, a total of 333 spiked samples
were prepared.

3.2. NIR Spectra Collection

Near infrared spectra were acquired using a FT-NIR Antaris II instrument (Thermo Sci-
entific Inc., Madison, WI, USA), equipped with a tungsten–halogen source and an InGaAs
detector. The spectra were acquired in transmission mode in the range 10,000–4000 cm−1,
accumulating 16 scans at a nominal resolution of 4 cm−1. Operationally, 0.9 mL of sample
was pipetted into a polypropylene vial (8 mm diameter), which was then placed into the
instrumental compartment for spectral acquisition. The NIR signals were acquired and
exported for further chemometric processing by means of the instrumental software Result
(Thermo Scientific Inc., Madison, WI, USA).

3.3. Chemometric Methods
3.3.1. Partial Least Squares

Partial least squares [10,18,19] is a regression approach, which allows for approximat-
ing the relationship between one or more dependent variables (Y) and a set of predictors
(X). PLS is a very efficient regression tool, and it can be profitably used for the quantification
of analytes in mixtures based on spectroscopic measurements due to its ability to cope
with many correlated variables and with problems where the number of training sample is
lower than that of the predictors.

For a single response case (y) [20], the algorithm iteratively extracts orthogonal
X-scores (T), presenting the highest covariance with y:

T = XR (1)

where R is a matrix of weights allowing for the direct calculation of scores from the
predictor matrix X. Once the desired number of components (F) are extracted, the response
is regressed onto the scores according to the following:

ŷ = Tq (2)

where the predicted responses are collected into the vector ŷ while q is the regression
coefficients expressed in terms of the scores (Y-loadings). Substituting Equation (1) into (2),
it is possible to obtain a regression model where the predicted responses are directly
expressed in terms of the measured variables:

ŷ = Tq = XRq = Xb (3)

where the regression coefficient vector is given by

b = Rq (4)

As the predictions depend on the selected number of components (also called latent
variables (LVs)), this parameter has to be optimized during the model selection stage. This
is usually done by selecting the number of latent variables that lead to the lowest prediction
error in cross-validation, and such an approach was also followed in the present study.
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3.3.2. Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) [11,21,22] is a discriminant tech-
nique that exploits the advantages of the PLS algorithm to deal with classification problems
involving predictor matrices with many variables, which can also be highly correlated.

The possibility of using a regression algorithm such as PLS to deal with classification
problems relies on finding a suitable way for coding the response variable y, so as to
account for the class membership. In particular, in the case of a two-class problem, such as
the one considered in the present studies (where the categories involved are “pure” and
“spiked” drinks), the class belonging is encoded in a dummy binary y vector, in which
1 codes for the one of the classes (here, “spiked”) and 0 for the other (here “pure”). Then,
a PLS regression model relating the X matrix containing the instrumental responses and
the binary-valued y matrix encoding class membership is built, and classification is then
carried out on the basis of the predicted values of the response. However, differently than
their target values, which are binary-coded, predictions are real-valued and therefore a
classification rule is needed in order to be able to assign the samples to one or another
category. In a two-class problem, this corresponds to identifying a threshold value for
the response, so that if the predicted response is higher than that threshold, the sample is
assigned to the class labeled as 1, while if it is lower, the sample is predicted as belonging
to the class coded as 0. In the present study, the classification threshold was defined by
applying linear discriminant analysis (LDA) [23] to the vector of the predicted responses.

As PLS-DA is based on the PLS algorithm, in this case, it is also necessary to define the
optimal number of components to be included in the model. In the present study, this was
accomplished by selecting the model complexity leading to the lowest classification error
in cross-validation.

4. Conclusions

The presence of drugs in beverages, both alcoholic and non-alcoholic, is a problem
of significant importance and, with the aid of quick detection approaches, numerous rape
cases could be solved. The aim of this study was to verify the possibility of identification
and quantification of the fraudulent addition of these drugs, more specifically alprazolam,
to an alcoholic drink, gin and tonic, by means of the coupling of near-infrared spectroscopy
and chemometric techniques.

The approach used was both qualitative and quantitative, as models were built that
would allow for highlighting the presence of aprazolam with a high accuracy, and to
quantify its concentration with, in many cases, an acceptable error.

Thanks to the use of PLS-DA, it was possible to build models that allowed the samples
to be classified as spiked or not, obtaining correct prediction rates, in the validation phase,
often higher than 90%. In parallel, with the further use of the PLS algorithm, it was possible
to build calibration models that allowed for quantifying the drug added with errors of the
order of 2–5 mg/L.

In conclusion, the proposed method allows for the rapid and non-destructive detection
of the addition of alprazolam to gin and tonic samples, and the quantification of the added
drug with a good degree of accuracy. At the same time, the proposed validation scheme
has made it possible to highlight that there may be a non-negligible effect of the matrix on
the possibility of making correct predictions; therefore, in order to obtain more accurate
predictions, it would be appropriate to extend the set of samples to others gin and tonic
water brands.

Furthermore, the results obtained suggest that this approach could also be extended to
the identification of the addition of other rape drugs to alcoholic and non-alcoholic beverages.
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