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ABSTRACT
Objective Current non-invasive diagnostic tests can
distinguish between pancreatic cancer (pancreatic ductal
adenocarcinoma (PDAC)) and chronic pancreatitis (CP) in
only about two thirds of patients. We have searched for
blood-derived metabolite biomarkers for this diagnostic
purpose.
Design For a case–control study in three tertiary referral
centres, 914 subjects were prospectively recruited with
PDAC (n=271), CP (n=282), liver cirrhosis (n=100) or
healthy as well as non-pancreatic disease controls (n=261)
in three consecutive studies. Metabolomic profiles of
plasma and serum samples were generated from 477
metabolites identified by gas chromatography–mass
spectrometry and liquid chromatography–tandem mass
spectrometry.
Results A biomarker signature (nine metabolites and
additionally CA19-9) was identified for the differential
diagnosis between PDAC and CP. The biomarker signature
distinguished PDAC from CP in the training set with an
area under the curve (AUC) of 0.96 (95% CI 0.93–0.98).
The biomarker signature cut-off of 0.384 at 85% fixed
specificity showed a sensitivity of 94.9% (95%
CI 87.0%–97.0%). In the test set, an AUC of 0.94
(95% CI 0.91–0.97) and, using the same cut-off, a
sensitivity of 89.9% (95% CI 81.0%–95.5%) and a
specificity of 91.3% (95% CI 82.8%–96.4%) were
achieved, successfully validating the biomarker signature.
Conclusions In patients with CP with an increased risk
for pancreatic cancer (cumulative incidence 1.95%), the
performance of this biomarker signature results in a
negative predictive value of 99.9% (95% CI 99.7%–

99.9%) (training set) and 99.8% (95% CI 99.6%–99.9%)
(test set). In one third of our patients, the clinical use of
this biomarker signature would have improved diagnosis
and treatment stratification in comparison to CA19-9.

INTRODUCTION
Pancreatic cancer is projected to be the third
leading cause of cancer-related death by 2030 due
to delayed diagnosis and slow progress in treatment
options.1 Chronic pancreatitis (CP) arises with an
incidence of between 4 and 23/100 000 in different
populations (the prevalence is 10-fold higher)2 and
represents a risk factor for pancreatic cancer3 and a
frequent differential diagnosis. Commonly used

diagnostic methods for either disorder include
transabdominal ultrasound, various blood tests and
trans-sectional imaging. The best-established blood
test for this purpose is the carbohydrate antigen
19-9 (CA19-9), a Lewis antigen of the MUC1
protein class. Unfortunately, CA19-9 can also be
elevated in patients with non-malignant diseases,
including liver cirrhosis (LC), CP, cholangitis and

Significance of this study

What is already known on this subject?
▸ Pancreatic adenocarcinoma is burdened with a

5-year survival rate of around 6%. Pancreatic
cancer is difficult to distinguish from chronic
pancreatitis, a disease in which this cancer can
arise and is then even harder to detect (current
diagnostic accuracy between 50% and 60%).

▸ The carbohydrate antigen 19-9 (CA19-9) is
currently the only blood-based biomarker in
clinical use for pancreatic cancer.

▸ Metabolomics, the ‘omics technique’ that can
furnish a dynamic portrait of metabolic profiles,
has been proposed to be useful for identifying
new biomarkers for an earlier diagnosis of
different malignancies.

What are the new findings?
▸ In the largest study ever conducted to identify

a tumour biomarker signature distinguishing
pancreatic cancer from chronic pancreatitis
using a metabolomics approach, we
investigated 914 subjects and identified a
metabolic biomarker signature comprising nine
metabolites in addition to CA19-9 for
pancreatic cancer with a much higher
diagnostic accuracy than CA19-9 alone.

▸ The biomarker signature identified here
improved the diagnostic accuracy for the
detection of pancreatic cancer and for the
detection of resectable stages of pancreatic
cancer.

▸ For one third of our patients, this would have
improved the diagnostic workup and treatment
stratification.
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other GI cancers.4 CA19-9 has been reported to discriminate
between patients with pancreatic cancer and healthy controls
(sensitivity 80.3%, 95% CI 77.7 to 82.6; specificity 80.2%,
95% CI 78.0 to 82.3)5 and benign pancreatic disease (sensitivity
78.2%, 95% CI 72.3 to 80.4; specificity 82.8%).6 As CA19-9 is
not expressed in Lewis blood-type negative patients, its sensitiv-
ity can even theoretically not surpass 92%.

The fact that the sensitivity and specificity of the distinction
between cancer and CP is often no better than 65% or 60%,
respectively,7 has prompted a search for alternative biomarkers.
Our study was designed to exclude suspected pancreatic cancer
(local, locally advanced and metastatic) in patients with CP and we,
therefore, aimed at optimising the negative predictive value (NPV).

It has been previously established that a new diagnostic assay
for pancreatic cancer, to reduce healthcare expenditure and
prolong patient survival, would have to perform with a
minimum sensitivity of 88% at a specificity of 85%.8 These
requirements can be relaxed, when the incidence rises from
0.71%, as in newly diagnosed diabetics, to 1.95%, as in patients
with CP,3 9 10 or even higher, as in familial pancreatic cancer or
hereditary cancer syndromes.11 12

While much effort has been devoted to proteomic and
genomic profiling and the identification of various protein and
gene components of cancer13–20 data on metabolic signatures in
body fluids, cancer cells or tissues are still very limited.
Fortunately, metabolomics, including lipidomics, has recently
become more feasible allowing the identification of clinical
metabolite biomarkers and several smaller studies recruiting up
to 50 patients per group suggest that metabolomics could be
useful in pancreatic cancer detection.21–23

Here, a three-phase biomarker development strategy was applied
(exploratory, training and test set)24 in 914 subjects including clinic-
ally relevant controls. A comprehensive metabolomics platform
including lipidomics (MxP Broad Profiling, MxP Steroids, MxP
Lipids) was used for the discovery and subsequent validation of a
metabolic signature and to assess the performance of a biomarker
signature to distinguish patients with pancreatic cancer, including
those with resectable stages, from patients with CP.

MATERIALS AND METHOD
Sample preparation
The study was designed according to the REMARK guidelines
for diagnostic tumour marker development. Nine hundred and

fourteen patients with pancreatic cancer, CP, LC, healthy blood
donors (BDs) and preoperative patients with non-pancreatic
disease were prospectively enrolled. For details, see online
supplementary material methods. CA19-9 was measured in a
certified clinical laboratory using a cut-off of 37 U/mL. As
required by the National Cancer Institute (NCI) Early Detection
Research Network,24 we started with an exploratory study (dis-
covery, n=201) from two different centres (Greifswald n=101,
Kiel n=100 (CP: 43, pancreatic ductal adenocarcinoma
(PDAC): 34, LC: 20, BD: 104)). Due to the unbalanced distri-
bution of disease groups over centres, results of the exploratory
study are not presented here nor used as trainings set. In the
initial phase (exploratory study) of our project, we present
advancement criteria to proceed to an identification and valid-
ation study. In a second phase (training set), we recruited 474
subjects with two different matrixes (Greifswald, serum: 80
PDAC, 79 CP, 80 LC, 77 BDs; Dresden, plasma: 78 PDAC, 80
CP). Only the plasma samples of the second phase (n=158)
were used as a training set. A third independent cohort
(Dresden, plasma: 79 PDAC, 80 CP, 80 non-pancreatic controls)
was employed as test set for validation of the biomarker signa-
ture (figure 1). For the principal component analysis (PCA), we
used all samples (plasma and serum) from the identification and
validation study (figure 1).

Metabolite profiling
MxP broad profiling, MxP steroids and MxP lipids
Three types of mass spectrometry analyses were applied. Gas
chromatography–mass spectrometry (GC-MS; Agilent 6890 GC
coupled to an Agilent 5973 MS System, Waldbronn, Germany)
and liquid chromatography–MS/MS (LC–MS/MS; Agilent 1100
HPLC-System coupled to an Applied Biosystems API4000 MS/
MS-System, Darmstadt, Germany).25 Solid-phase extraction-LC–
MS/MS (SPE-LC–MS/MS; Symbiosis Pharma, Spark, Emmen,
The Netherlands) coupled to an Applied Biosystems API4000
MS/MS-System was used for the determination of steroid
levels.26–28

Total lipids were extracted from plasma by liquid/liquid
extraction using chloroform/methanol. The lipid extracts were
subsequently fractionated by normal phase liquid chromatog-
raphy into 11 different lipid groups.27 For further details, see
online supplementary material methods.

Statistics
Prior to statistical analysis, log10 transformation of ratios was
conducted so that the data distribution becomes approximately
normal. SIMCA-P V.13.0 (Umetrics AB, Umea, Sweden), TIBCO
Spotfire 3.3.1 and R 2.8.1 were used for data analyses and
visualisations. Initially, an exploratory multivariate analysis
(PCA) was applied to log10-transformed ratios scaled to unit
variance.

A simple linear model (analysis of variance (ANOVA),
package nlme) with ‘disease’, ‘age’, ‘body mass index’, ‘gender’
and ‘sample storage time’ as fixed effects was fitted to the data.
Significance level was set to 5%. The multiple test problem was
addressed by calculating the false discovery rate (FDR) using the
Benjamini and Hochberg method.

To classify patients depending on their metabolic profiles, a
penalised logistic regression was fitted via the elastic net (EN)
algorithm using the R package glmnet.29 Equal penalties were
used for both the L1 and the L2 norms. Performance, measured
as sensitivity at a fixed specificity of 85%, was determined on
the training data by 10-fold cross-validation. This corresponded

Significance of this study

How might it impact on clinical practice in foreseeable
future?
▸ Identifying pancreatic cancer in an earlier (still resectable)

stage by surveillance of high-risk patients would increase
survival by 30%–40%.

▸ Such a surveillance strategy is cost-effective once a test
becomes available whose sensitivity exceeds 88% with a
specificity of 85%—two conditions now met for the first
time by the metabolic biomarker signature identified here.

▸ The results demonstrate the feasibility of developing a
diagnostic test that can detect pancreatic cancer with greater
accuracy (>90%) than has previously been achieved with
either conventional tumour markers or a micro RNA panel.
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to a cut-off of 0.384. Thereafter, the cut-off was applied
without retraining on the test data, and the performance mea-
sured in terms of sensitivity and specificity. The PCA of the
combined data set was done after successful validation. For
further details, see online supplementary material methods.

RESULTS
The characteristics of the study participants are presented in
table 2 and figure 1. Two hundred and seventy-one patients
with pancreatic cancer were recruited at three different centres.
Blood was drawn as presurgical samples (for resectable pancre-
atic cancer, n=135) and as prechemotherapy samples (for unre-
sectable pancreatic cancer, n=136).

In the exploratory study, we compared plasma metabolomic
profiles (MxP Broad Profiling, MxP Steroids and MxP Lipids)

of 43 patients with CP, 20 patients with LC, 104 BDs and 34
patients with PDAC to identify a metabolic PDAC signature.
To generate a training set for the biomarker signature discrimin-
ating well between PDAC and CP, an identification study
was recruited with patients with pancreatic cancer (n=158)
and clinically relevant controls (77 BDs, 159 patients with
CP, 80 patients with LC). In this set, we used two
different sample types (serum and plasma) to test the robustness
of the method. As a training set, we used plasma samples
from 78 patients with PDAC and 80 patients with CP. For the
test set, we recruited an additional 79 patients with PDAC, 80
patients with CP and 80 controls in the validation study
(undergoing distress due to surgery and general anaesthesia (vas-
cular surgery, hernia repair, thyroid resection and others; for
details, see online supplementary material methods). In the

Figure 1 Study design. Description
of the exploratory, identification study
and validation study. In addition,
description of cohort for the principal
component analysis (see figure 2A).
The identification study was performed
in two centres on serum and plasma.
Plasma samples were used to generate
a training set. Samples for the
validation study were recruited
independently as test set. Participant
numbers are given for each study
phase. PDAC, pancreatic ductal
adenocarcinoma; CP, chronic
pancreatitis; LC, liver cirrhosis; BD,
blood donors; controls, non-pancreatic
disease preoperative patients.

Table 1 List of metabolites selected based on the multivariate elastic net analysis comprising the biomarker signature and their analysis of
variance results

Metabolite name

Trainings set Test set

Fold change p Value FDR Fold change p Value FDR

CA19-9 18.36 6.89E-09 7.65E-06 14.27 3.17E-09 1.07E-06
Proline 0.69 2.24E-05 0.0027 0.75 0.0001 0.0082
Sphingomyelin (d18:2,C17:0) 1.15 0.005612 0.0400 1.15 0.0119 0.0696
Phosphatidylcholine (C18:0,C22:6) 1.26 8.59E-05 0.0034 1.06 0.2091 0.4619
Isocitrate 1.26 0.008074 0.0518 0.99 0.9159 0.9377
Sphinganine-1-phosphate (d18:0) 0.79 0.025867 0.1175 0.85 0.0705 0.2430
Histidine 0.77 0.000324 0.0073 0.79 0.0004 0.0109
Pyruvate 0.93 0.367408 0.6114 0.97 0.6479 0.7976
Ceramide (d18:1,C24:0) 0.79 0.001509 0.0167 0.80 0.0087 0.0583
Sphingomyelin (d17:1,C18:0) 1.36 4.86E-05 0.0029 1.37 4.61E-05 0.0078

Univariate statistical analysis was done by a linear model on log10-transformed data with disease, gender, body mass index, age and storage time as fixed effects. Multiple testing was
addressed by calculating the false discovery rate (FDR) described by Benjamini and Hochberg.
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training and test sets, the disease groups were balanced for age
and gender (table 2).

Metabolite profile
Using the MxP platform, we identified up to 477 high priority
metabolites (exploratory: 364, training: 477; test: 337) in serum
and plasma samples which were distributed over 10 ontology
classes shown in online supplementary table S1. The largest group
of metabolites identified were complex lipids, fatty acids and
related metabolites comprising up to 64% in the exploratory
study. In the biomarker signature which discriminated best
between pancreatic cancer and CP, five out of nine metabolites (in
addition to CA19-9) belonged to the ontology class of lipids
(table 1). Ratios, p values and FDR of ANOVA for each metabolite
of the biomarker signature are given in table 1. ANOVA results of
all metabolites are given in online supplementary table S2.

Biomarker discovery
In an unsupervised multivariate PCA, 237 patients with pancre-
atic cancer and 239 patients with CP were separated by the
principal components 3 (7.2%) and 4 (6.6%) (figure 2A). This
is remarkable as we investigated a heterogeneous cohort with
respect to gender, age, life style, comedication and comorbidity.
On ANOVA of the training set, we detected 29 significantly
changed metabolites between PDAC and CP in serum and
plasma samples after correction for gender, age, body mass
index (BMI) and sample storage time (figure 2B). To construct
an effective diagnostic model for pancreatic cancer, we applied
an elastic net algorithm using the data from the training set.
Based on the model, nine plasma metabolites were selected in
addition to CA19-9, shown in table 1, for the training set which
was then applied to the test set.

Clinical performance evaluation
The biomarker signature, comprising nine metabolites and
CA19-9, detected PDAC in comparison to patients with CP with
an area under the curve (AUC) of 0.96 (95% CI 0.93 to 0.98), a
fixed specificity of 85% and a sensitivity of 94.9% (95% CI
87.0% to 97.0%) resulting in an NPVof 99.9% (95% CI 99.7%
to 99.9%) (receiver operating characteristic (ROC) curves, figure
3A, table 3) in the training study when assuming a cumulative
incidence of 1.95% of PDAC in the CP population. The diagnos-
tic accuracy was 90.0% (95% CI 86.0% to 91.0%). Furthermore,
the biomarker signature detected 98% of resectable pancreatic
cancers (55 out of 78, stages IA to IIB) with an accuracy of
90.4% (95% CI 80.4% to 90.9%). In comparison, abdominal
ultrasound in our cohort had a sensitivity of 68% and a specifi-
city of 75%, confirming previous reports30).31 The cut-off of
0.384 was transferred from the training set to the test set, and
the diagnostic performance was evaluated. In the test set, we
detected pancreatic cancer with an AUC of 0.94 (95% CI 0.91 to
0.97), a specificity of 91.3% (95% CI 82.8% to 96.4%) and a
sensitivity of 89.9% (95% CI 81.0% to 95.5%), resulting in an
NPV of 99.8% (95% CI 99.6% to 99.9%) (ROC curve, figure
3A, table 3). The AUC of our biomarker signature was signifi-
cantly higher than the AUC of CA19-9 (0.94 vs 0.85, p<0.001).
Sensitivity (89.9% vs 74.7%, p<0.01) and specificity (91.3% vs
77.5%, p<0.05) were also significantly better. As illustrated by
figure 3B, the biomarker signature improved the diagnostic accur-
acy in the training and test sets for the detection of pancreatic
cancer and for the detection of resectable stages of pancreatic

Table 2 Patients characteristics for exploratory, identification and
validation studies

Exploratory study PDAC CP LC BD

n
Total 34 43 20 104
Male 15 36 15 49
Female 19 7 5 55

Age, years
Median 64 50 56 53
IQR 59–71 44–57 46–62 26–59

Stage
0 0
IA 0
IB 1
IIA 4
IIB 8
III 11
IV 10

Histology/cytology
Ductal adenocarcinoma 34

Identification study PDAC CP LC BD

n
Total 158 159 80 77
Male 102 136 60 51
Female 56 23 20 26

Age, year
Median 70 50 61 55
IQR 62–74 45–55 49–69 52–58

Stage
IA 2
IB 3

IIA 18
IIB 59
III 22
IV 54

Histology/cytology
Ductal adenocarcinoma 158

Validation study PDAC CP Controls

Group
n
Total 79 80 80
Male 37 62 42
Female 42 18 38

Age, years
Median 69 51 68
IQR 61–74 46–57 55–74

Stage
IA 1
IB 0
IIA 11
IIB 28
III 26
IV 13

Histology/cytology
Ductal adenocarcinoma 79

BD, blood donor; control, non-pancreatic disease; CP, chronic pancreatitis; LC, liver
cirrhosis; PDAC, pancreatic ductal adenocarcinoma.
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cancer when compared with CA19-9 (0.93 vs 0.84, p<0.001).
Using a cut-off with a fixed 85% specificity for CA19-9 in the
training set (cut-off 20.9 U/mL), a sensitivity of 86% (91% for
resectable PDAC) was reached. In the test set, PDAC was detected
with a 74% specificity and a 85% sensitivity (83% for resectable
PDAC, online supplementary table S3) applying a cut-off of
20.9 U/mL for CA19-9. The biomarker panel performed with
significantly higher specificity (p<0.01) than CA19-9 (cut-off
level of 20.9 U/mL). Sensitivity increase was not significant. ROC

curves for comparisons on serum samples and non-pancreatic
controls are given in the online supplementary figure S1A–C.

When applying the biomarker signature for the comparison of
pancreatic cancer to the non-pancreatic control group, our bio-
marker signature performed with an AUC of 0.95 in the training
set (serum samples) and with an AUC of 0.90 in the test set
(plasma samples) (figure 3C, online supplementary tables S4 and
S5). When only resectable stages were considered, an AUC of
0.87 in the training set (serum samples) and an AUC of 0.88 in

Figure 2 (A) Principal component analysis of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP) metabolomics data from the
combined identification and validation data sets (plasma and serum samples). The numbers on the axes are representative for the fraction of
variability captured by the principal component. In total, 36 principal components were calculated capturing 55% of the variability. Data were log10
transformed and scaled to unit variance. (B) Number of significant metabolite changes in PDAC versus CP. Plasma and serum data sets comprise
two independent sample collections from two different hospitals. Statistical analysis was done by a linear model on log10-transformed data with
disease, gender, BMI, age and storage time as fixed effects on the identification study. Multiple testing was addressed by calculating the false
discovery rate (FDR) described by Benjamini and Hochberg. Significance level was set to p<0.05 and FDR<0.2.
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the test set (figure 3D) were determined. AUC versus
non-pancreatic control were not significantly different between
the biomarker signature and CA19-9. The score of the biomarker
signature as applied to the test set is shown in figure 4A.
The overlap between non-pancreatic controls and patients with
CP indicates that the distinguishing biomarker signature is char-
acteristic for pancreatic cancer, rather than CP. Jaundice did
neither affect sensitivity of our metabolite signature in all patients
with pancreatic cancer (sensitivity 90%) nor in resectable stages
of pancreatic cancer (sensitivity 100%) (see online
supplementary table S6). For CA19-9 concentrations, we found a
25% (n=20) false-negative rate (cut-off 37 U/mL) in the test set.
Using the biomarker signature, the rate of false negatives
decreased to 11% (n=8, figure 4B, online supplementary
figure S2). False positives for CA19-9 were 23% (n=18) com-
pared with 9% (n=7) for the biomarker signature. In other
words, in the test set we would have saved 14 of 80 patients with
CP (17.5%), in whom pancreatic cancer could have been sus-
pected, from unnecessary surgery. Conversely, 12 of the 79
patients with pancreatic cancer (15.2%) would have undergone
surgery for pancreatic cancer based on the biomarker signature
but would have been missed when CA19-9 alone was used to dis-
tinguish between cancer and pancreatitis (figure 4B).

Of note, the accuracy of the test was highest when using
EDTA plasma in comparison to serum samples (see online
supplementary table S4).

DISCUSSION
Our study was designed to exclude suspected pancreatic cancer
in patients with CP and we therefore aimed at optimising the
NPVof the assay. To reduce healthcare expenditure and improve
patient survival, any new diagnostic test requires the following:
the sensitivity should exceed 88% and the specificity 85% when
the pancreatic cancer incidence is 0.71%8 or 0.85% as in newly
diagnosed diabetics within a period of 3 years.19 32 33 This
requirement can be levelled when the incidence rises as in her-
editary CP,3 9 34 35 familial pancreatic cancer or hereditary
cancer syndromes.10–12 Thus, the biomarker signature identified
here would exceed these high standards.

In 2011, Bathe and coworkers showed the feasibility of untar-
geted metabolomics to distinguish malignant pancreatic lesions
by employing 1Proton Nuclear Magnetic Resonance (1H NMR)
analysis of 58 metabolites in 99 samples from patients with
hepatobiliary disease and pancreatic cancer.36 This study was
followed by three independent studies which investigated 298
patients by MS-based metabolite profiling in blood
samples.21 37 38 In a targeted approach on 80 patients, complex
lipids were shown to be of some diagnostic use.39 We used
untargeted and targeted metabolomics approaches including
lipidomics to identify a multimarker signature which was con-
secutively tested in a training and validation (test) set together
with CA19-9. Both sets were compared with CA19-9 as an
established biomarker and current gold standard. The strengths
of our study are the large number of patients and controls
included, the large number of metabolites analysed (477) and
the differentiation between training and test sets. Furthermore,
we tested both serum and plasma as basis for a robust assay
development. To the best of our knowledge, this study repre-
sents the largest metabolome investigation of any kind of cancer
to date. Our biomarker signature and the classification model
were selected before the test data set was analysed; therefore,
our performance estimates of the test data are unbiased.

The biomarker signature identified here detected only 9%
false positives compared with 23% for CA19-9. Theoretically,
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the latter patients would have undergone unnecessary pancreatic
resection with a reported mortality of up to 8%.40 Conversely,
the biomarker signature identified an additional 15% of patients
in whom the diagnosis of pancreatic cancer was missed when
using CA19-9 alone. Assuming a cumulative cancer incidence of
1.95% (as in patients with CP), the NPV of our biomarker sig-
nature in the test dataset was 99.8% (95% CI 99.6% to 99.9%)
and the diagnostic accuracy 90.6% (95% CI 84.9% to 94.6%).
This can be regarded as a significant advance in the field.

Of note, there was no loss of diagnostic accuracy in the train-
ing and test studies when only patients with resectable pancre-
atic cancer were analysed, suggesting that total tumour burden
has little influence on the metabolic signature of pancreatic
cancer.

We have used a semiquantitative assessment of metabolite
measurement produced by using untargeted and targeted meta-
bolomics platforms in our study. The benefit of employing these

platforms is the ability to detect biologically relevant metabolites
for which no commercial standards are available and express
their abundance as a ratio to a well-characterised sample pool
(for details, see online supplementary material methods). As we
used untargeted and targeted platforms, we took utmost care to
obtain most accurate semiquantitative values by excluding an
instrumental drift, using two different reference samples always
analysed in parallel to allow an alignment of different analytical
batches and by applying quality control measures for metabolo-
mics as previously suggested.41 We have performed a technical
validation, and our multimarker signature plus CA19-9 will
shortly undergo external validation.

More recently, a microRNA (miRNA) panel for the differen-
tial diagnosis of pancreatic cancer and CP has been reported by
Schultz et al20. Based on this panel, a Clinical Laboratory
Improvement Amendments (CLIA) service is now available in
the USA. The authors reported a sensitivity of 85%/85%

Figure 3 (A–D) ROC curves of the biomarker (biomarker signature) results on EDTA plasma samples from all patients with pancreatic cancer versus
patients with chronic pancreatitis (CP) (A) as well as from patients with resectable pancreatic ductal adenocarcinoma (PDAC) only in comparison to
the patients with CP (B). The left panel represents the training set, whereas the right panel depicts the test set. ROC curves of the biomarker
(biomarker signature) results on serum samples from all patients with pancreatic cancer versus blood donors and on EDTA plasma samples from all
patients with pancreatic cancer versus non-pancreatic controls (C) as well as from patients with resectable PDAC only (D) in comparison to blood
donors or non-pancreatic controls. EN included a 10-fold cross-validation and was applied on log10-transformed data. AUC, area under the curve.
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(training/test) and a specificity of 85%/99%, respectively. Thus,
the biomarker signature described here is more sensitive
(94.9%/89.9%) with a similar specificity (85%/91.3%), allowing
for a more accurate exclusion of pancreatic cancer in individuals
with a negative test result.

Setting out with the aim of earlier diagnosis of pancreatic
cancer, Mayers and co-workers showed an elevation of
branched-chain amino acids conferring a twofold risk to
develop pancreatic cancer within 2–5 years.42 The same group
also showed prediagnostic circulating levels of tricarboxylic acid

Figure 4 (A) Score of the pancreatic biomarker signature identified in the training set and applied on the test set. Non-pancreatic controls in green
(n=80), chronic pancreatitis in yellow (n=80) and pancreatic cancer in blue (n=79). Box plots give median, upper quartile and lower quartile by the
box and the upper adjacent and lower adjacent values by the whiskers. The upper adjacent value is the largest observation that is less than or equal
to the upper inner fence, which is the third quartile plus 1.5-fold IQR. The lower adjacent value gives the corresponding value for downregulation.
The diagnostic cut-off of the pancreatic biomarker score was set to ≥0.384. (B) Scatter plot for graphical representation of the biomarker signature
score. Classifiers are the biomarker signature generated in the training set and presented here for the test set. Y-axis score of biomarker signature
with the cut-off of ≥0.384 and CA19-9 on the X axis with the cut-off ≥37 U/mL. Chronic pancreatitis in yellow circles (n=80) and pancreatic cancer
in blue circles (n=79). Numbers give subjects that benefit from the biomarker signature and all numbers in the respective area of the plot.
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intermediates to predict survival of patients with pancreatic
cancer.43 Of note the role of complex lipids has not been
addressed in this setting.

Pancreatic cancer has a very poor prognosis with a 5-year sur-
vival rate of only 6%. This is largely due to the late detection of
pancreatic cancer with 80%–85% of patients being diagnosed in
unresectable stages. Diagnosis is further hampered in the pres-
ence of CP, but earlier detection would increase survival by 30%–

40%. Thus, there is a clear medical need for the early detection
of pancreatic cancer in patients with CP. Current guidelines on
CP recommend annual follow-up visits for patients with CP to
detect complications early, which include tumour formation in
the pancreas.44 However, the means for such a surveillance of
approximately 432.015 patients with CP in the USA alone are
currently neither available nor affordable.2 A metabolic bio-
marker signature may also have the potential for screening in
other high-risk cohorts, for example, patients with newly diag-
nosed diabetes over the age of 45 years (>1 292 000 cases annu-
ally in the USA) (http://diabetes.niddk.nih.gov/dm/pubs/statistics),
but this application of the biomarker panel would require con-
firmation in population-based studies. The identification of a
metabolic biomarker signature for pancreatic cancer may give
some insight into the underlying disease mechanisms of pancre-
atic cancer. Sphingolipids are characterised by the presence of the
particular aliphatic aminoalcohol sphingosine, also termed a
long-chain base. Cleavage of sphingomyelins by sphingomyeli-
nase generates ceramide, which promotes apoptosis, cell cycle
arrest and cellular senescence.25 45 Ceramide concentrations
increase in response to cellular stress, such as DNA damage, dis-
ruption of lysosomal compartments or exposure to apoptotic
stimuli.46 Although ceramide can be synthesised de novo, it is
rapidly produced from sphingomyelin by the stress-induced acti-
vation of neutral and acid sphingomyelinase.47 Ceramide can
promote the clustering of death receptors and interferes with the
relay of PI3K signals. Sphingolipid metabolites have therefore
been recognised as important modulators of cell survival, cell
growth, migration and angiogenesis and have been attributed an
important role in cancer progression.25 48 Among our 477 meta-
bolites, the 10 compounds that make up the final panel include
two sphingomyelins, one phosphatidylcholine, one sphinganine-
phosphate and one ceramide. This further supports the role of
ceramides in previously suggested regulating senescence and
apoptosis in human pancreatic cancer48 and emphasises the value
of this first large-scale study investigating cancer metabolomics
and lipid metabolites. To what extent this finding has potential
beyond the development of a diagnostic assay for the more accur-
ate and earlier detection of pancreatic cancer will be the focus of
further mechanistic studies.

In conclusion, metabolomics has just begun to enter the field
of cancer diagnostics and tumour biology. Our data clearly dem-
onstrate the value of a comprehensive metabolite profiling plat-
form, including lipidomics, in the largest cancer cohort
investigated so far. The results demonstrate the feasibility of
developing a diagnostic test that can detect pancreatic cancer
with greater accuracy (>90%) than has previously been achieved
with either conventional tumour markers or an miRNA panel.
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