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Abstract: In this study, femtosecond laser double pulses were tested to improve their nickel ablation
efficiency. The experimental results indicated that compared with single pulses, double pulses with
different delay times generated craters with larger diameters and depths. The results obtained for
three sets of double pulses with different energy ratios indicated that double pulses with an energy
ratio of 1:9 had the highest ablation efficiency, followed by those with energy ratios of 2:8 and 5:5. The
double pulses with the aforementioned three energy ratios achieved the maximum ablation efficiency
when the delay time was 3–4 ps. Compared with single pulses, double pulses with an energy ratio of
1:9 generated craters with an up to 34% greater depth and up to 14% larger diameter. In addition,
an interference effect was observed with a double pulse delay time of 0 ps, which has seldom been
reported in the literature. The double pulses were simulated using the two-temperature model. The
simulation results indicated that double pulses with an energy ratio of 1:9 with a delay time of 4 ps
can perform the strongest ablation. These simulation results are in line with the experimental results.

Keywords: femtosecond laser; double pulses; nickel; two-temperature model

1. Introduction

In recent decades, the development of pulse-shaping technology has provided greater
opportunities for the application of ultrashort pulse laser technology. By integrating ma-
terials science, chemistry, physics, and other disciplines, femtosecond laser micro/nano
processing technology has been extensively developed and applied in information-related
fields, the chemical industry, aerospace, and the environmental industry [1–7]. Femtosec-
ond lasers have an extremely high peak power (higher than 1014 W/cm2) and extremely
short pulse width (approximately 10−15 s); thus, these lasers can process most materials.
Materials processed using femtosecond lasers have an extremely small heat-affected zone
(HAZ), which can safely be ignored [8,9]. Therefore, femtosecond lasers are increasingly
used in micro/nano manufacturing.

Femtosecond lasers are widely used in metal processing due to their aforementioned
advantages. For example, femtosecond lasers are used for producing high-quality and
high-aspect-ratio micro-holes in metallic materials, especially those used in aircraft en-
gines [10] and inertial-confinement nuclear fusion devices [11,12]. Nickel is a highly
versatile metal, and femtosecond lasers have been used in the fabrication of various nickel
structures [13–15]. In recent years, nickel has been widely used for fabricating the film-
cooling holes of aerospace engine turbine blades. The air inlet passage in a turbine blade
engine must contain film-cooling holes in order to enable the engine to operate stably. To
ensure the normal operation and reliability of film-cooling holes in ultra-high tempera-
ture environments, advanced cooling technologies must be used, and these holes should
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be made of a nickel-based superalloy. Film-cooling holes have a small diameter (about
0.2–0.8 mm), high aspect ratio, and complex spatial angle; therefore, they must be pro-
cessed with a high precision and efficiency. Many methods, such as the electric discharge
machining method [16], coaxial water-jet-assisted machining method [17], electrochemical
drilling method [18], and picosecond laser processing [19], have been used for process-
ing the film-cooling holes of turbine blades; however, these methods are associated with
problems such as a large heat-affected zone, low geometric accuracy, and uneven quality.
Femtosecond lasers can solve these problems, but their processing efficiency is low. Deter-
mining a suitable method for improving the processing efficiency of femtosecond lasers
when producing film-cooling holes is a critical problem. The main component of nickel-
based superalloys is metallic nickel [10]. Zhang et al. [20] compared the depths and areas
of the craters formed in nickel during femtosecond double-pulse (with the same energy
ratio) and single-pulse irradiation. They found that the ablation efficiency of double pulses
was higher than that of single pulse. Shen et al. [13] conducted an experimental study of
collinear geometric double-pulse femtosecond LIBS’ on nickel samples in the ambient air in
order to clarify the contribution process of the double-pulse signal enhancement observed
compared with the single-pulse case. Donnelly et al. [21] performed a systematic study of
the ultrafast ablation dynamics of nickel samples using the double-pulse configuration and
discussed the changes in ablation efficiency with changes in the pulse delay time. Recently,
there have also been studies [22,23] on promoting the ablation of metals using (near-)THz
bursts of pulses, which usually include double-pulse splits. However, there have been few
studies on the efficiency of the double-pulse ablation of nickel with femtosecond lasers
with different energy ratios. Therefore, in-depth research must be conducted on this topic.

2. Materials and Methods

Figure 1 shows the light path in the experiment. A titanium sapphire femtosecond
laser with an output wavelength of 800 nm, a pulse duration of 35 fs, a maximum output
power of 5 W, and a maximum repetition frequency of 1 kHz was used in the experiment;
the laser was provided by the Spectra Physics company based in the US. The size of the
laser beam was adjusted using a diaphragm. The laser power was attenuated using a
neutral density filter. In the light path, femtosecond laser beams were divided into two
sub-pulses (A sub-pulse and B sub-pulse) by a beam splitter. Neutral-density filters were
placed in the optical path of each sub-pulse. These filters were used to adjust the laser
power of the two sub-pulses. The delay time of the two sub-pulses was adjusted by moving
the one-dimensional linear translation stage back and forth. By adjusting a mirror, the
two laser beams were converged to form a combined beam, and then focused on the
sample, which was placed on a six-degrees-of-freedom translation stage. A computer
was used to control the femtosecond laser’s processing by controlling the opening and
closing of the shutter in the light path. By adjusting the rotation angle of a neutral density
filter, the laser power could be adjusted. The six-degrees-of-freedom translation stage
was produced by the Physik Instrumente (PI) company in Karlsruhe, Germany. This table
had translation freedom along the X-direction, Y-direction, and Z-direction, and rotation
freedom along the U-direction, V-direction, and W-direction. The minimum translation
distance of the aforementioned table is 2 µm. A plano-convex lens (f = 100 mm) was used in
the experiment. A charge-coupled device (CCD) camera was used for capturing images of
the ablation of nickel by the femtosecond laser. The dimensions of the pure nickel samples
used in the experiment were 20 × 20 × 1 mm3, and each nickel sample’s upper surface
was mechanically polished such that their upper surface roughness was 10 nm. Finally, the
nickel sample was in an air atmosphere during the experiment. The optical microscope
(OM) was provided by the Olympus company, and the atomic force microscope (AFM)
was provided by the Bruker company.
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Figure 1. Schematic of the light path in the experiment (1—fs laser; 2—neutral density filter;
3—diaphragm; 4—mirror; 5—beam splitter; 6—one-dimensional linear translation stage; 7—shutter;
8—CCD camera; 9—dichroic mirror; 10—plano-convex lens; 11—sample; 12—six-degrees-of-freedom
translation stage).

The steps for finding the zero delay point in the double-pulse configuration are as
follows. First, to determine the spatial coincidence of the double pulses, with only the
B sub-pulse blocked, by outlining the image formed by the CCD camera of the crater
ablated by the A sub-pulse on the surface of the nickel with a circle. Then, block only the A
sub-pulse, outline the crater ablated by the B sub-pulse with a circle, and finally rotate the
knob of the mirror behind the B sub-pulse so that the crater mark formed by the B sub-pulse
coincides with the A sub-pulse. This completes the double pulses’ spatial coincidence. The
next task is to produce the time coincidence of the double-pulse configuration: leave the
position of the A sub-pulse mirror unchanged, move the translation stage to change the
position of the mirror behind the B sub-pulse, and place a piece of fluorescent paper in the
position at which the two sub-pulses’ beams are combined. Adjust the one-dimensional
translation stage until the most obvious light and dark stripe structure appears on the
fluorescent paper, which can be judged to be the time coincidence. After completing the
last two steps, confirm that the zero delay of the double pulses has been set.

The femtosecond laser single-pulse ablation of the nickel was completed by blocking
one of the sub-pulses. The double-pulse experiment was conducted under various delay
times and energy ratios. When the energy of the two sub-pulses was different, the double-
pulse processing mode in which a low- or high-power laser pulse is in front is called the
low–high or high–low double-pulse mode, respectively. One study [24] proved that the
ablation efficiency of the low–high double pulse-mode is higher than that of the high–
low double-pulse mode; therefore, the low–high double-pulse mode was selected in the
experiment. In order to make the differences between the craters’ results with different
ratios of double pulse more obvious, three energy ratios of double pulse were selected for
the experiments (1:9, 2:8, and 5:5). The sum of the energy of the double pulses of the three
laser fluence ratios remained the same as that of the single pulse. The three double-pulse
processing modes and the single pulse processing mode are illustrated in Figure 2.
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Figure 2. Schematic of the pulses used for ablation, with a single pulse and with double pulses with
varying energy ratios: (a)—single pulse; (b)—a double pulse with an energy ratio of 5:5; (c)—double
pulses with a different energy ratio (1:9 or 2:8). The maximum repetition rate of the laser was 1 kHz.

3. Results

Single-shot ablation experiments were conducted on the surface of nickel by a fem-
tosecond single pulse (F = 1.0 J/cm2) and double pulses (F1 + F2 = 1.0 J/cm2) with three
energy ratios. The diameter and depth of the ablated craters were characterized using the
OM and AFM. When measuring the diameter of the craters, the magnification of the OM
was 100×. When measuring the depth of the craters, the area scanned by the AFM was
50 × 50 µm2. Each group of experiments with different parameters (delay time or laser
fluence ratio) was repeated 6 times, and the diameters and depths were measured using
OM and AFM, respectively, and rounded to obtain the average value. The results of the
OM and AFM are displayed in Figures 3 and 4, respectively. In addition, when the sum
of the double-pulse or single-pulse laser fluence was 0.5 J/cm2, the circle (as shown in
Figure 3a) was not seen in the nickel sample.
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Figure 3. A comparison of the diameters of the craters ablated by the double pulses (with three
energy ratios) and single pulse. The red, black, and pink lines represent the results obtained for
double pulses with energy ratios of 1:9, 2:8, and 5:5, respectively. The downward green triangle
represents the results obtained for the single pulse. Inset (a)—image of a crater ablated by the single
pulse; inset (b)—image of a crater ablated by double pulses with an energy ratio of 1:9 and a delay
time of 4 ps. Insets (a,b) have the same scale bar.
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Figure 4. A comparison of the depths of the craters ablated by the double pulses (with three energy
ratios) and single pulse. The red, black, and pink lines represent the results obtained for double
pulses with energy ratios of 1:9, 2:8, and 5:5, respectively. The downward green triangle represents
the results obtained for the single pulse.

The results displayed in Figure 3 indicate that the maximum diameters of the craters
ablated by double pulses with energy ratios of 1:9, 2:8, and 5:5 were 33.66, 32.90, and
32.17 µm, respectively. These maximum diameters were obtained when the delay time was
3–4 ps. The diameter of the craters ablated by the single pulse was 29.65 µm. Thus, the
diameter of the craters ablated by the double pulse with a delay time of 4 ps and an energy
ratio of 1:9 was up to 14% higher than that of craters ablated by the single pulse. Similarly,
as displayed in Figure 4, the maximum depths of the craters ablated by double pulses
with energy ratios of 1:9, 2:8, and 5:5 were 26.12, 25.10, and 24.86 nm, respectively. These
maximum depths were obtained when the delay time of the double pulses was 3–4 ps. The
depth of the crater ablated by the single pulse was 19.51 nm; thus, the depths of the craters
ablated by double pulses with a delay time of 3 ps and an energy ratio of 1:9 was up to 34%
higher than that of the crater ablated by the single pulse.

Typically, when the laser fluences of single and double pulses are the same (F = F1 + F2),
the ablation result obtained with a double-pulse delay time of 0 ps is close to that obtained
for a single pulse. However, some unusual phenomena were observed in this study’s
double-pulse ablation experiments. As displayed in Figure 5, 28 craters were ablated when
the delay time of the double pulses with three energy ratios was 0 ps. The diameters of
these craters were measured using the OM, and the corresponding results are presented in
Figure 6 and Table 1. The diameters of the craters ablated by double pulses with an energy
ratio of 1:9 were concentrated in the middle area (10–35 µm). At the aforementioned energy
ratio, craters were formed in all 28 experiments, and eight of the craters had a diameter
of more than 35 µm. When the energy ratio of the double pulses was 5:5, 20 craters were
formed over the 28 experiments. At total of 14 of these craters had a diameter of more than
35 µm. Finally, when the energy ratio of the double pulses was 2:8, 22 craters were formed
over the 28 experiments. At total of 10 of these craters had diameters exceeding 35 µm. The
formation of the craters was influenced by the interference of double pulses when the delay
time was 0 ps. The double pulses’ interference was strongest when their energy ratio was
5:5; therefore, the crater diameter had the widest distribution with the lowest proportion
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of values in the middle range (10–35 µm) when the energy ratio of the double pulses was
5:5. It was proved that the processing effect of double pulses at zero delay is obviously
different from that of a single pulse, and this result can be used to develop multi-scale
interference processing. In order to avoid the interference phenomenon of double pulses,
vertical polarization optical pulse processing, achieved by changing the polarization of one
of the double pulses, can also be used.
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Table 1. The distribution of the ablation craters’ diameters under a double-pulse delay time of 0 ps.

Diameter 1:9 2:8 5:5

0~10 0 25.0% 28.6%
10~15 14.2% 0 0
15~20 10.7% 10.7% 0
20~25 17.9% 0 0
25~30 10.7% 7.2% 10.7%
30~35 17.9% 21.4% 10.7%
35~40 28.6% 35.7% 50.0%
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4. Discussion

The two-temperature model (TTM) was used to explain the different ablation effi-
ciencies obtained in the experiment for the single pulses and double pulses with varying
energy ratios.

The TTM describes the heat transfer between the laser heat source, material electrons,
and material lattice during the laser ablation process using the following equations:

Ce[Te, Tl ]
∂Te

∂t
= ∇(Ke[Te, Tl ]∇Te)− G[Te, Tl ](Te − Tl) + Q (1)

Cl [Te, Tl ]
∂Tl
∂t

= G[Te, Tl ](Te − Tl) (2)

where the subscripts e and l represent the electron and lattice parameters, respectively;
Ce and Cl represent the heat capacities of the electrons and lattices, respectively, and are
regarded as constants; G is the electron–lattice coupling coefficient; Q is the average fluence
of the incident laser light; and Ke is the electronic thermal conductivity, which is expressed
as follows [25]:

Ke = K0 ×
Te

Tl
(3)

In the aforementioned equation, K0 is the heat transfer coefficient of the electronic
thermal conductivity. The parameter Q is expressed as follows [26]:

Q(x, t) =

√
4ln2

π

1− R(t)
δ(t) + δb

n

∑
i=1

Fi
tpi

{(
x

δ(t) + δb

)
− 4ln2[

t− 2tpi − (i− 1)∆
tpi

]
2}

(4)

where δb is the depth of the ballistic transportation, δ(t) is the temperature-dependent
depth of the ballistic transportation, R(t) is the temperature-dependent reflectivity, Fi is
the laser energy density of the incident laser beam, tpi is the pulse width of the incident
laser beam (full width at half maximum), x is the depth from the sample surface, and ∆ is
the delay time of the subsequent laser pulse.

The parameters R(t) and δ(t), respectively, are expressed as follows [26]:

R(Te, Tl , ω) =

[
Re(nc)− 1]2+[ Im(nc)]2

[Re(nc) + 1]2+[ Im(nc)]2
(5)

δ(Te, Tl , ω) =
c

2 ·ω · Im(nc)
(6)

where Re(nc) represents the real part of the complex refractive index nc, Im(nc) represents
the imaginary part of the complex refractive index nc, c represents the speed of light in a
vacuum, and ω represents the frequency of the femtosecond laser beam.

The relationship between the complex refractive index nc and the temperature-dependent
complex dielectric function ε is expressed as follows [27]:

nc =
√

ε =
√

ε1 + iε2 (7)

where ε1 and ε2 are the real and imaginary parts of the complex dielectric function ε,
respectively. The temperature-dependent complex dielectric function ε is expressed as
follows [28]:

ε = 1−
ω2

p

ω2 + ν2
m
+ i

νm

ω
∗

ω2
p

ω2 + ν2
m

(8)
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where ωp is the plasma frequency of the material and νm is the total electron scattering
rate. The aforementioned parameters are expressed using Equations (9) and (12), respec-
tively [29]:

ωp =

√
e2 · ne

ε0 ·me
(9)

τe−e =
1

Ae · T2
e

(10)

τe−l =
1

Bl · Tl
(11)

νm =
1

τe−e
+

1
τe−l

(12)

The parameter τe−e is the electron–electron relaxation time; τe−l is the electron–lattice
relaxation time; Ae and Bl are material constants for the electron relaxation time; ε0 is
the vacuum dielectric constant; and ne, me, and e are the electron density, electron mass,
and electron charge, respectively. The parameter electron–lattice coupling coefficient G is
expressed using Equation (13) [30], where G0 is the electron–lattice coupling strength at
room temperature.

G = G0

[
Ae

Bl
(Te − Tl) + 1

]
(13)

The electron density is expressed as follows:

ne =
N · NA · ρ

Y
(14)

where N is the number of valence electrons of the material, NA is the Avogadro constant, ρ
is the material density, and Y is the atomic weight of the material.

The finite-element method was used in this study to solve Equations (1) and (2). The
initial temperatures of the nickel material’s electrons and lattice were assumed to be equal
to the ambient temperature—namely, 300 K. The physical parameter values of nickel are
listed in Table 2.

Table 2. The values of various parameters in the TTM.

Symbol Value

Ce 1065 J·m−3·K−1 [31]
Cl 4.1 × 106 J·m−3·K−1 [30]
G0 3.6 W·m−1·K−1 [32]
K0 90 W·m−1·K−1 [31]
δb 13.5 nm [33]
tpi 35 fs
c 3 × 108m·s−1

ω c /800 nm
e −1.6 × 10−19 C
ε0 8.85418717 × 10−12 F·m−1

me 9.1 × 10−31 Kg
N 2

NA 6.022 × 10−23

ρ 8.88 g ∗ cm−3

Y 59
Ae 0.59 × 10−7 s−1·K−2 [31,34]
Bl 1.4 × 1011s−1·K−1 [31,34]

Some studies have indicated that materials can be ablated only when their lattice
temperatures reach the following three temperatures: their melting point [35], vaporization
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temperature [36], or thermodynamic critical temperature [37]. In our simulation, when the
lattice temperature exceeds the melting point of a material, the material is ablated. Figure 7
shows the process of calculating the depth of a nickel sample ablated by a femtosecond
laser. The minimum unit of the time grid divided by the TTM is t and the minimum unit of
the depth grid is divided by d. The ablation depth of the nickel sample is calculated at t,
2t, 3t, etc. When there is a maximum value and an inflection point in the depth value of
the ablated nickel sample, the ablation depth of the sample under this parameter (specific
delay time and fluence ratio) can be determined. After calculating the ablation depth and
the maximum temperature of the lattice under each set of parameters, it was found that the
ablation depth is proportional to the maximum lattice temperature. The ablation efficiency
of a material is related to the maximum temperature of its lattice [22]. Therefore, only the
maximum lattice temperature of the nickel surface must be known in order to determine
the ablation efficiency.
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Figure 8 displays the electron and lattice temperature trends simulated using the
TTM using MATLAB under irradiation with three sets of double pulses. The position
in the sample, where the temperature evolution was calculated, is the irradiated front
surface of the nickel. Figure 9 shows the maximum lattice temperatures obtained using
double-pulse irradiation with varying delay times and energy ratios. For the three energy
ratios considered, the lattice temperature reached its maximum value when the delay time
was 4.0 ps, 4.0 ps, and 5.0 ps, respectively. In Figure 9, it can be seen that the maximum
temperature of the lattice formed by the double pulses with a laser fluence ratio of 1:9 was
greater than the maximum temperatures reached using the other two ratios with the same
time delay. So, the ablation efficiency was greatest when the energy ratio was 1:9 and the
smallest when the energy ratio was 5:5. The ablation efficiency of a double pulse with an
energy ratio of 5:5 was stronger than that of a single pulse, which has been confirmed in
the literature [20]. Therefore, this result is consistent with the experiment results presented
in Section 3.
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Figure 8. Changes in the lattice and electron temperatures over time under irradiation by double pulses
with three energy ratios: (a)—electron temperatures obtained by irradiation with double pulses with a
delay time of 4.0 ps and energy ratios of 1:9 (solid red line), 2:8 (dotted blue line), and 5:5 (dotted pink
line); (b)—lattice temperatures obtained by irradiation with double pulses with a delay time of 4.0 ps
and energy ratios of 1:9 (solid red line), 2:8 (dotted blue line), and 5:5 (dotted pink line).
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Figure 9. Changes in the maximum lattice temperatures with respect to the delay time for irradiation
by double pulses with three energy ratios. The solid red, blue, and black lines represent the results
obtained using double pulses with energy ratios of 1:9, 2:8, and 5:5, respectively.
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5. Conclusions

In this study, single-shot ablation experiments were conducted on nickel samples
using a femtosecond laser. The experimental results indicated that the double pulses with
an energy ratio of 1:9 had the highest ablation efficiency, followed by those with energy
ratios of 2:8 and 5:5. When the laser energy was the same, all the ablation efficiencies
attained using double pulses were higher than those attained using a single pulse. The
experimental results also indicated that the ablation efficiency (depth and diameter of the
craters) of the double pulses with the aforementioned three energy ratios was the highest
when the delay time was 3–4 ps. Moreover, when the delay time was 0 ps, the double pulses’
interference was the strongest at an energy ratio of 5:5. Finally, by changing the delay
time of the double pulses, the maximum temperature of a sample’s lattice surface could be
adjusted and different ablation depths could be obtained, which verified the experimental
results. This research provides theoretical and experimental guidance for the efficient
micro/nano processing of nickel-based materials, such as producing the film-cooling holes
of turbine blades.
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