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Abstract: Prostate-specific membrane antigen (PSMA) is an essential molecular regulator of prostate
cancer (PCa) progression coded by the FOLH1 gene. The PSMA protein has become an important
factor in metastatic PCa diagnosis and radioligand therapy. However, low PSMA expression is
suggested to be a resistance mechanism to PSMA-based imaging and therapy. Clinical studies
revealed that androgen receptor (AR) inhibition increases PSMA expression. The mechanism has
not yet been elucidated. Therefore, this study investigated the effect of activation and inhibition of
androgen signaling on PSMA expression levels in vitro and compared these findings with PSMA
levels in PCa patients receiving systemic therapy. To this end, LAPC4, LNCaP, and C4-2 PCa cells were
treated with various concentrations of the synthetic androgen R1881 and antiandrogens. Changes
in FOLH1 mRNA were determined using qPCR. Open access databases were used for ChIP-Seq
and tissue expression analysis. Changes in PSMA protein were determined using western blot.
For PSMA staining in patients’ specimens, immunohistochemistry (IHC) was performed. Results
revealed that treatment with the synthetic androgen R1881 led to decreased FOLH1 mRNA and
PSMA protein. This effect was partially reversed by antiandrogen treatment. However, AR ChIP-Seq
analysis revealed no canonical AR binding sites in the regulatory elements of the FOLH1 gene. IHC
analysis indicated that androgen deprivation only resulted in increased PSMA expression in patients
with low PSMA levels. The data demonstrate that AR activation and inhibition affects PSMA protein
levels via a possible non-canonical mechanism. Moreover, analysis of PCa tissue reveals that low
PSMA expression rates may be mandatory to increase PSMA by androgen deprivation.

Keywords: FOLH1; AR; PCa; antiandrogen; androgen deprivation therapy

1. Introduction

Prostate cancer (PCa) is the most common cancer in men. According to the “Cancer
Today” project, PCa has the second-highest incidence of all cancers in men, with 1,414,259

Int. J. Mol. Sci. 2022, 23, 1046. https://doi.org/10.3390/ijms23031046 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23031046
https://doi.org/10.3390/ijms23031046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1807-0894
https://orcid.org/0000-0001-5209-7914
https://doi.org/10.3390/ijms23031046
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23031046?type=check_update&version=3


Int. J. Mol. Sci. 2022, 23, 1046 2 of 17

newly diagnosed cases (Europe 473,344, North America 239,574) and 375,304 deaths yearly
related to PCa worldwide (Europe 108,088, USA 37,192) [1]. Local confined PCa is treated
by radiotherapy or radical prostatectomy with curative intent [2], whereas locally advanced
or metastatic PCa is palliatively treated. The proliferation and progress of PCa are highly
dependent on androgens [3]. Therefore, to reduce androgen levels, androgen deprivation
therapy (ADT) is the primary treatment option for locally advanced or metastatic PCa [4].
This treatment regimen includes surgical or chemical castration with luteinizing hormone-
releasing hormone agonists and antagonists or gonadotropin-releasing hormone agonist
and antagonists [2]. Since 2021, it has been recommended to combine ADT with novel
hormonal therapy (ADT+NHT) such as the antiandrogens enzalutamide, apalutamide,
darolutamide, or the CYP17A1 inhibitor abiraterone [4,5]. In addition, ADT combined with
taxan-based chemotherapeutic docetaxel represents a further therapy option. However,
ADT alone or in combination inevitably leads to disease progression and the development
of castration-resistant PCa (CRPC), which is currently incurable [2,4]. Present day treatment
strategies include ADT, enzalutamide, apalutamide, darolutamide, abiraterone, docetaxel,
cabazitaxel, olaparib, Radium-223, and Lutetium-177-PSMA [4,6,7].

Prostate-specific membrane antigen (PSMA), also known as Folate Hydrolase 1 or
Glutamate carboxypeptidase II, is a transmembrane type II glycoprotein coded by the
FOLH1 gene located in the short arm of chromosome 11 [6,7]. The protein has a unique 3-
part structure containing a 19-amino-acid internal portion, a 24-amino-acid transmembrane
portion, and a 707-amino-acid external portion [6,7]. It is expressed in various benign
and malignant tissues, including, e.g., salivary glands, the duodenal mucosa, proximal
renal tubular cells, and neuroendocrine cells [6–8]. However, compared with other tissues,
PSMA expression significantly increases in prostate cancer (PCa), where it is localized
at the luminal surface of the prostatic ducts and presents a large extracellular ligand-
binding domain [6–8]. The exact biological function of PSMA in PCa is still not wholly
understood; however, its possible role as a carboxypeptidase (folate hydrolase) on poly-g-
gluta-mated folates, as a peptidase on the acidic neuropeptide N-acetylaspartyl glutamate,
in endocytosis transport function, and invasiveness have all been suggested [6,7].

PSMA became one of the most promising targets for imaging and novel therapies in
PCa [6,7]. Several studies have revealed that PSMA-targeted imaging has a higher positive
predictive value and sensitivity compared to conventional imaging such as multiparamet-
ric magnetic resonance imaging (MRI) or computed tomography (CT) [6,7]. In particular,
positron emission tomography (PET) fluorine-18 (18F)- and 68Gallium (68Ga)-labelled radio-
tracers targeting PSMA have demonstrated significantly higher sensitivity. They became
part of the primary diagnostic in PCa guidelines for cases of PSA-recurrence after local
therapy [2,4]. Besides imaging, PSMA therapy has emerged as a game-changing ther-
apeutic target, where small-molecule inhibitors of PSMA are linked to radioligands [6].
An example of this is Lutetium-177 (177Lu), labelled PSMA in metastatic castration-resistant
PCa (mCRPC) that delivers β radiation to PSMA expressing cells. Cellular uptake of 177Lu
labelled PSMA led to a higher PSA response and fewer adverse events than cabazitaxel [9].
Moreover, the VISION trial demonstrated that the addition of 177Lu -PSMA-617 to standard
care significantly extended survival among patients with mCRPC [10].

In vivo and in vitro studies suggested an influence of the androgen receptor (AR) on
PSMA expression [11,12]. The AR belongs to the nuclear receptor family and is activated
by androgens. AR activity is controlled by androgen binding followed by nuclear translo-
cation, DNA-binding, and activation of AR-target gene expression [13]. DNA binding
of the AR is directed by a 15-bp palindromic sequence, the so-called AR-binding sites
(ARBs). ARBs are located in intronic or intergenic regions and contain two hexameric
5′-AGAACA-3′ half-sites with a three base pairs spacer [14,15]. Next to the idealized or gen-
eralized (canonical) AR pathway, non-canonical AR pathways have been described. These
include signaling crosstalk with the SRC kinase, PI3K Pathway, and ligand-independent AR
activation [16]. Progress and growth of PCa are highly dependent on the AR, and therefore
representing the main therapeutic target in metastatic PCa [4]. AR-based therapy includes
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ADT and treatment with antiandrogens. For ADT and enzalutamide, there is evidence that
treatment leads to a change in PSMA levels [11]. A high number of PCa patients receiving
PSMA-ligand PET or PSMA-guided radiotherapy are on ADT or antiandrogen treatment.
The connection between PSMA levels and the AR needs to be clarified [11,17,18].

The study aimed to investigate the influence of androgen activity manipulation by
ADT and the antiandrogens bicalutamide, enzalutamide, apalutamide, or darolutamide
on PSMA levels in vitro and to compare these findings with PSMA expression in patients
receiving systemic therapy. To substantiate our investigation, three AR-positive cell lines
(LNCaP, C4-2, LAPC4) and one AR negative cell line (PC3) have been used (Table 1).
The LNCaP cell line represents an androgen-sensitive human PCa cell derived from a
supraclavicular lymph node metastasis from a 50-year-old Caucasian male in 1977 [19,20].
LNCaP cells express an endogenous mutated AR (T877A), normal prostate epithelial cell
markers, and represent a luminal phenotype [20–23]. The AR-positive cell line C4-2 is a
PCa sub-cell line derived from LNCaP cells that grows without androgens but responds to
androgen levels [24]. The cell line represents a CRPC status and also has a luminal pheno-
type [23,24]. Moreover, the C4-2 cells express the ligand-independent AR splice variant V7
(ARv7) protein [25,26]. The cell line LAPC4 has been harvested from a lymph node metas-
tasis of a male patient with CRPC and subsequently xenografted into SCID mice [27,28].
Explants were later used to establish the immortalized PCa cell line. In contrast to the
LNCaP and C4-2 cells, LAPC4 cells express wild type AR, luminal and basal cell markers
such as cytokeratin 5 [20]. The PC3 cell line was established in 1979 from a PCa bone
metastasis of a 62-year-old Caucasian male [29]. The cell line expresses no AR, STAT3,
STAT5, and luminal markers [20,30,31]. In addition, PC3 cells express several basal cell
markers and have prostatic small cell carcinoma characteristics [32].

Table 1. Characteristics of the used cell lines.

Name AR Status Origin Tissue Reference

LNCaP AR T877A,
Androgen dependent Lymph node [19]

C4-2
AR T877A, ARv7 postive
Androgen independent,

LNCaP sub-cell line
Lymph node [24]

LAPC4 AR wt, Androgen dependent Lymph node [27]

PC3
Cells express no AR protein,

AR negative, small cell
neuroendocrine carcinoma

Bone metastasis [29,32]

2. Results
2.1. FOLH1 mRNA and PSMA Protein Levels in the PCa Cell Lines LAPC4, LNCaP,
C4-2 and PC3

To analyze the influence of increased and decreased AR activity on FOLH1 expression,
the AR-positive castration sensitive cell lines LAPC4, LNCaP, and the castration-resistant
LNCaP sub-cell line C4-2 was used [20]. In addition, the AR negative cell line PC3 was
used as a negative control for PSMA and AR [20,29,33]. qPCR analysis (Figure 1A) revealed
that all AR-positive cell lines express FOLH1 mRNA at which LAPC4 expressed the lowest
and C4-2 the highest amount of FOHL1 mRNA. On protein level (Figure 1B,C), in contrast,
LAPC4 expressed no detectable level of PSMA protein. However, in line with the mRNA
data, C4-2 cells expressed the highest level of PSMA protein.
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Figure 1. FOLH1 mRNA and PSMA protein levels in the AR-positive PCa cell lines LAPC4, LNCaP, C4-2,
and PC3: (A) FOLH1 mRNA levels (n = 3) in LAPC4, LNCaP, C4-2, and PC3, cell lines cultures normalized
to the geometric mean of TBP and HPRT1. Values are expressed as mean ± SEM. (B) Representative
western blot for PSMA, AR, and GAPDH expression in LAPC4, LNCaP, C4-2, and PC3. (C) Densiometric
analysis of PSMA western blot analysis normalized to GAPDH. Values are expressed as mean ± SD.
All differences highlighted by asterisks were statistically significant (*** p ≤ 0.001).

2.2. Changes in AR Activity Modulate FOLH1 mRNA Levels

Several studies reported that modulated AR activity could change FOLH1 transcrip-
tion [12,34–37]. Therefore, the cell lines LAPC4, LNCaP, and C4-2 were starved for 24 h with
a medium containing 5% FBSdcc and subsequently treated with different concentrations
of the synthetic androgen R1881 for 16 h (Figure 2A–C). All tested cell lines showed a
concentration-dependent decrease in FOLH1 mRNA peaking at 1 nM R1881. To investigate
if this effect can be rescued by inhibition of the AR, the cells were treated with R1881 com-
bined with the antiandrogens bicalutamide, enzalutamide, apalutamide, or darolutamide.
To this end, the cell lines LAPC4, LNCaP, and C4-2 were again starved for 24 h with a
medium containing 5% FBSdcc and subsequently treated for 16 h with the synthetic an-
drogen R1881 or with a combination of R1881 and antiandrogens (Figure 2D–F). In LAPC4
(Figure 2D), all tested antiandrogens reversed the inhibitory effect of the R1881 treatment.
However, antiandrogen treatment in LNCaP only revealed a significant rescue of the R1881
effects on the FOLH1 transcription after apalutamide treatment (Figure 2E). Even if not
significant, enzalutamide also showed the tendency to reverse the inhibitory effect of
the R1881 treatment, whereas bicalutamide and darolutamide showed only minor effects.
In C4-2 cells (Figure 2F), except for enzalutamide, all antiandrogens partially abolished the
inhibitory effect of R1881 on FOLH1 transcription.
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Figure 2. Changes in AR activity modulate FOLH1 mRNA levels: (A–C) Change of the FOLH1 mRNA
levels after 16 h treatment with different concentrations of R1881 in the cell lines LAPC4 (A), LNCaP
(B), and C4-2 (C). Values are expressed as mean ± SEM of at least three independent experiments.
(D–F) Change of the FOLH1 mRNA levels after 16 h treatment with different concentrations of 1 nM
R1881 and 10 µM bicalutamide, 10 µM enzalutamide, 10 µM apalutamide, or 10 µM darolutamide in
the cell lines LAPC4 (A), LNCaP (B), and C4-2 (C). Values are expressed as mean ± SEM of at least
three independent experiments. All differences highlighted by asterisks were statistically significant
(* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001); **** p ≤ 0.0001).

2.3. The AR Is Not Mandatory for FOLH1 Gene Expression

To assess whether the AR can alter the PSMA expression, publicly available AR chromatin
immunoprecipitation sequencing (ChIP-Seq) datasets (GSE62442, GSE65066, Figure 3A,B) were
analyzed for the loci of FOLH1 in the AR-positive cell lines LNCaP, C4-2, and 22Rv1 [38].
In the genomic region surrounding FOLH1, two AR binding sites (ARBs) have been found in
all examined cell lines (Figure 3A), and four AR binding sites are found uniquely in 22Rv1.
Analysis of the dataset GSE62442 (Figure 3B) revealed that only at the ARB around exon
11, identified in 22Rv1, was there a peak increase after treatment with 1 nM of the synthetic
androgen Mibolerone in the cell lines LNCaP and C4-2. In addition, the GSE62442 dataset
also identified three additional ARBs in the proximity of exon 5 and exon 6. Furthermore, AR
ChiP-Seq analysis of samples obtained from hormone-sensitive PCa (HSPC) and castration-
resistant PCa (CRPC) identified no new ARB (Figure 3C). Motif analysis of the gene sequence
revealed that the hexameric 5′-AGAACA-3′ half-sites are distributed over the whole FOLH1
gene (Figure S1). However, the canonical ARB was not found.
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Figure 3. The AR is not mandatory for FOLH1 gene expression: (A) Visualization of the AR bind-
ing sites from a publicly available ChIP-Seq dataset (GSE62442) at the FOLH1 locus of the AR-
positive cell lines LNCaP, VCaP, and 22Rv1, which were treated with vehicle or 1 nM R1881 for 1 h.
(B) Visualization of AR chromatin binding and normalized peak heights from a publicly available
ChIP-Seq dataset (GSE65066) at the FOLH1 locus of the cell lines LNCaP and C4-2, which were treated
with vehicle (EtOH) or 1 nM of the synthetic androgen Mibolerone. (C) AR ChiP-Seq analysis of
samples obtained from hormone-sensitive PCa (HSPC) and castration-resistant PCa (CRPC) taken
from the publicly ChIP-Seq dataset GSE28219.

To assess if the expression of the AR is mandatory for FOLH1 mRNA expression, AR
knockdown and overexpression were investigated. To this end, the datasets GSE11428 and
GSE13332 were analyzed for changes in FOLH1 mRNA levels. These datasets reveal no
change in FOLH1 mRNA levels after AR knockdown (Figure 4A). Analysis of the dataset
GSE15091 also indicated no change in FOLH1 mRNA levels after overexpression of the AR
in PC3 (Figure 4B). As knockdown and overexpression did not change FOLH1 mRNA levels,
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AR and FOLH1 mRNA levels were investigated in different tissue using the Affymetrix
tissue dataset published on the publicly available database Project Betastasis (https://
www.betastasis.com/tissues/affymetrix_tissue_dataset/, accessed on 24 October 2021).
No correlation could be shown between AR and FOLH1 mRNA expression (Figure 4C,D).

Figure 4. Verification of the necessity of the AR for the expression of the FOLH1 gene. (A) Analysis of
FOLH1 mRNA expression in several AR-positive cell lines after AR-knockdown. Values are expressed
as mean ± SD. (B) Analysis of FOLH1 mRNA expression in the AR-negative cell line PC3 after AR
overexpression and AR overexpression combined with 1 nM R1881 treatment. (C) Analysis of the
AR and FOLH1 mRNA levels in different tissue using the Affymetrix tissue dataset published on
the publicly available database Project Betastasis (https://www.betastasis.com/tissues/affymetrix_
tissue_dataset/, accessed on 24 October 2021). (D) Correlation of AR and FOLH1 mRNA levels in
different tissue obtained from the publicly available database Project Betastasis.

2.4. Impact of AR Activity on PSMA Protein Levels

As the inhibitory effect of R1881 on FOLH1 mRNA levels could at least partially
be rescued by antiandrogens, the influence of R1881 and the combination of R1881 with
antiandrogens on protein levels were assessed using western blot. In line with the results
of the cell line comparison (Figure 1B,C), no PSMA protein could be detected (Figure 5A)
after 48 h androgen deprivation. In LNCaP cells, 48 h treatment with 1 nM R1881 resulted
in a significant decrease in PSMA protein levels (Figure 5B,D). This effect could be reduced
to a small extent by treatment with antiandrogens (Figure 5D). Similar effects could be
observed in cell line C4-2. Following 48 h of treatment with 1 nM R1881 PSMA protein
levels significantly decreased (Figure 5C,E). Identical to the LNCaP cells, antiandrogen
treatment abolished the effects of 1 nM R1881 in C4-2 cells partially.

https://www.betastasis.com/tissues/affymetrix_tissue_dataset/
https://www.betastasis.com/tissues/affymetrix_tissue_dataset/
https://www.betastasis.com/tissues/affymetrix_tissue_dataset/
https://www.betastasis.com/tissues/affymetrix_tissue_dataset/
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Figure 5. Impact of AR activity on PSMA protein levels: (A–C) Representative western blots
of PSMA protein and GAPDH protein in the cell lines LAPC4 (A), PC3 (A), LNCaP (B),
and C4-2 (C) after 1 nM R1881 and 10 µM bicalutamide, 10 µM enzalutamide, 10 µM apalutamide,
or 10 µM darolutamide treatment. (D,E) Densiometric analysis of PSMA western blot analysis
normalized to GAPDH after treatment with 1 nM R1881 and 10 µM bicalutamide, 10 µM enzalu-
tamide, 10 µM apalutamide, or 10 µM darolutamide in the cell lines LNCaP (D) and C4-2 (E). Values
are expressed as mean ± SD. All differences highlighted by asterisks were statistically significant
(* p ≤ 0.05; ** p ≤ 0.01).

2.5. Inhibition of AR Activity Does Not Generally Change PSMA Protein Levels in PCa Tissue

Our western blot results (Figure 5) revealed a change in PSMA protein expression after
activation and inhibition of the AR in LNCaP and C4-2. PSMA protein was assessed in PCa
patients’ tissue specimens before and during androgen deprivation therapy (Figure 6A,B).
The PCa cohort included 34 treatment-naive samples, 55 tissue samples of patients under
ADT, and 15 tissue samples from patients under ADT+NHT. Therefore, the patients were
still under treatment as they received transurethral resection of the prostate (TURP). In
the used cohort, ADT was induced by treatment with buserelin, triptorelin, degarelix
or leuprorelin. For ADT+NHT, ADT combined with enzalutamide or abiraterone was
administered. The treatment regimen was used for at least 1 month. To assess the influence
of androgen manipulation on PSMA protein expression, samples from treatment-naive
HSPC and ADT/ADT+NHT treated PCa samples (n = 70) were analyzed (Figure 6C).
The data demonstrated an insignificant and marginal increase in the IRS from a mean of
9.97 ± 3.25 to 10.10 ± 3.50. To assess if further treatment with antiandrogens impacts
PSMA expression, the ADT/ADT+NHT cohort was subgrouped into ADT and ADT+NHT.
The treatment duration was over at least a one month period. In line with the preceding
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result, ADT+NHT marginal and insignificant increased the PSMA protein expression from
an IRS 10.07 ± 3.79 to 10.20 ± 2.21 (Figure 6D). As a general comparison of the cohorts
only revealed a slight difference in PSMA protein expression, TURP tissue of 6 patients
before and under ADT was assessed (Figure 6E). PSMA protein expression was elevated
after ADT treatment in 3 out of 6 patients (Figure 6A). These 3 patients showed a mean IRS
of 7.67 ± 1.53, whereas the patients with no change in PSMA had an IRS of 12.00 ± 0.00.
Vice versa, only one patient (IRS 12) showed a decrease in PSMA protein expression after
ADT. Two patients showed no change in PSMA levels (Figure 6B).

Figure 6. Modulation of AR activity does not generally change PSMA protein levels in PCa tissue:
(A,B) Representative immunohistochemical staining of PSMA protein in treatment-naive and ADT
treated PCa specimens of two patients. Scale bar represents 100 µm. (C) Quantification of PSMA
within the HSPC and ADT/ADT+NHT cohort. (D) Quantification of PSMA within the ADT and
ADT+NHT cohort. (E) Quantification of PSMA within the tissue of 6 patients before (treatment-naive)
and under ADT. Values are expressed as a box whisker plot (min to max). ns: not significant.

3. Discussion

PSMA has become an important target in PCa diagnostics and therapy [6,7]. Both
diagnostic and therapeutic approaches take advantage of the high PSMA protein expres-
sion on PCa cells and, therefore, small metastasis can be targeted. However, in line with
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reported PCa heterogeneity, PSMA is also heterogeneously expressed. Low PSMA protein
levels have been reported as possible resistance mechanisms to PSMA-based radioligand
diagnostic and therapies [39–42]. For this reason, the study of FOLH1 gene regulation
came into scientific focus to improve the effectiveness of PSMA-targeted diagnostics and
therapies. This work also focused on regulating the FOLH1 gene and how its expression
can be affected by manipulating AR-mediated gene transactivity with androgen depletion
and the antiandrogens bicalutamide, enzalutamide, apalutamide, and darolutamide. Regu-
lation of the PSMA protein by androgen manipulation has been previously reported, and
therefore antiandrogen therapy has been discussed as a possible enhancer for PSMA-based
theragnostic [6,7,11,36]. For example, enzalutamide has been reported to enhance the
PSMA protein expression of PCa cells with low PSMA protein levels. Therefore, enzalu-
tamide treatment may be a way to overcome resistance to PSMA-targeted diagnostics and
therapies [11]. Two castration-sensitive PCa cell lines with non-detectable PSMA protein
level (LAPC4) and average PSMA protein level (LNCaP) were used to investigate the
effects of manipulating the AR activity. In addition, the LNCaP sub-cell line C4-2 was
used, representing a castration-resistant cell model with high PSMA protein expression.
In line with the data of Evans et al., treatment with the synthetic antiandrogen R1881
downregulated FOLH1 mRNA in all tested cell lines [43]. This effect could only entirely be
rescued in LAPC4 cells by all used antiandrogens. In LNCaP cells, only enzalutamide and
apalutamide could partially reverse the effect of R1881 on FOLH1 mRNA levels, whereas,
in C4-2, only enzalutamide showed no impact. Cell line-specific effects of antiandrogens
have been identified in a previous study and explained with the AR mutation status and AR
protein stability after antiandrogen treatment [44]. AR point mutations have been reported
to change transcriptional activity, ligand specificity, and response to antiandrogens [45].
For example, the F877L mutation alters the antagonistic effects of the antiandrogens to
agonistic effects of the antiandrogen enzalutamide and apalutamide [45–48]. LNCaP and
C4-2 cells express the AR T877A mutant, which has been associated with low antiandrogen
response [45,48]. This mutation may partially explain the different effects of antiandrogens
on FOHL1 in LNCaP and C4-2. Moreover, C4-2 cells express the ligand-independent AR
splice variant V7 protein reported to change full-length AR activity and antiandrogens
response [25,26].

These qPCR results demonstrated regulation of FOLH1 mRNA levels in the tested cell
lines independent of castration status. However, not all cell lines responded to the tested antian-
drogens; therefore, general antiandrogen control of FOLH1 mRNA levels cannot be assumed.

As the AR is targeted by R1881 and antiandrogens directly, two publicly available
ChiP-Seq (GSE62442, GSE65066, GSE28219) databases were used to analyze the FOLH1
locus for ARBs. The AR ChIP-Seq analysis identified several ARBs among multiple areas
of the FOLH1 gene in PCa cell lines. However, none of these ARBs are located in the
FOLH1 promoter or FOLH1 enhancer, located within the third intron of FOLH1 [11,49,50].
However, the previous analysis of these regulatory sequences revealed a half-site ARB in
the enhancer element, which could not be identified by the analyzed ChiP-Seq data [51].
Therefore, it is hypothesized that FOLH1 gene transcription is either regulated by un-
typical ARBs or through competition with other regulatory proteins such as AP1 and
CREB [51–54]. To underpin the ChIP-Seq results, we analyzed AR-positive PCa cell lines
after AR-knockdown and AR-negative PCa cell lines after AR overexpression. Neither the
knockdown nor overexpression experiments changed FOLH1 mRNA levels. Interestingly,
estrogen treatment of the PSMA and AR negative cell line PC3 increased the PSMA protein
expression in these cells, indicating that the FOLH1 gene does not harbor a deletion mu-
tation nor is it epigenetically silenced [33]. Together with the fact that ChiP-Seq analysis
should also reveal untypical ARBs, AR and FOLH1 mRNA expression do not correlate
in different tissue, and modulation of AR expression did not influence FOLH1 mRNA
expression, there is strong evidence that the FOLH1 gene is regulated through competition
of the AR with other regulatory proteins. In addition, inhibition of vascular endothelial
growth factor receptor tyrosine kinases by cediranib has also been reported to regulate
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FOLH1 in Alveolar soft part sarcoma [55]. As AR also regulates several kinases such as SRC
and PI3K, there is also the possibility that the observed effects on FOLH1 mRNA are due
to the non-genomic AR pathway. However, more investigations are needed to strengthen
this hypothesis.

Furthermore, as the mechanism is not fully solved yet, the already published data
has revealed that FOLH1 mRNA is regulated by modulation of the AR activity in in vitro
models [11,43,49,50]. In contrast to in vivo and patient data, the low PSMA protein expres-
sion of LAPC4 could not be increased to a detectable level by androgen deprivation or
antiandrogen treatment [36]. Low PSMA protein in a small cell subpopulation has been
demonstrated previously in the cell lines LAPC4 and 22Rv1 [56]. Phenotype analysis of
LAPC4 cells have demonstrated that LAPC4 expresses luminal and basal cell markers;
therefore, the low PSMA protein expression could be a consequence of partial dedifferenti-
ation or a stem cell-like transition [20]. This hypothesis is strengthened by the observations
that basal epithelium and stromal cells are PSMA negative [57]. In contrast, androgen treat-
ment reduced PSMA protein expression, as shown by Evans et al., an effect which could be
partially rescued by treatment with an antiandrogen. However, there was no general rescue
by all antiandrogens on protein level, and each antiandrogen showed different effects in
the used cell lines. Moreover, the impact of the antiandrogens on the protein was not in line
with the mRNA data presented in this study. The discrepancy may be due to the different
incubation times for the mRNA and protein experiments and the cellular background of
the AR-positive cell lines.

The data in this study could not generalize the regulating effects of antiandrogens on
PSMA protein levels. However, direct regulation of PSMA by the synthetic androgen R1881
could be shown in the cell lines LNCaP and C4-2. Therefore, tissue specimens of treatment-
naive and ADT PCa patients were analyzed for PSMA levels. Interestingly, the suggested
increase in PSMA level after ADT or ADT+NHT could not be confirmed here [11,35,36,58].
However, closer tissue inspection from the same patients with a low PSMA IRS before and
during ADT reveals an increase in PSMA expression after ADT. In contrast, patients with a
high PSMA IRS had a stable or a decreased PSMA expression after ADT. This heterogenous
regulation of PSMA by ADT have been reported before. In line with the results here,
Staniszewska and colleagues reported an increase in PSMA levels after blockade of AR
signaling in patients with low baseline tumoral PSMA levels. In contrast, several reports
have shown a decrease in PSMA levels after ADT [59,60]. However, due to the small cohort
size, no generalization is possible if AR-mediated regulation of PSMA is dependent on the
PSMA level. Therefore, further investigations on a larger patient cohort are necessary to
reveal if PSMA levels may predict changes of PSMA after manipulating the AR.

In this study, the influence of the manipulation of the AR activity on the expression
of FOLH1 in vivo and patients’ specimens was assessed. The data demonstrated that
activation and inhibition of the AR influence PSMA protein levels by a possible non-
canonical mechanism. Moreover, analysis of PCa tissue reveals that low PSMA expression
may be mandatory to increase PSMA by ADT. However, more studies are required to
decipher how the AR influences PSMA to recommend ADT before diagnostics or treatment
with PSMA-ligands. Moreover, as the endocytosis transport function is mandatory for
PSMA ligand-based methods, the relationship between AR signaling and the transport
function of PSMA needs further investigation.

4. Materials and Methods
4.1. Cell Culture

The human PCa cell lines LNCaP and PC3 were obtained from the American Type Culture
Collection. C4-2 cells were kindly provided by Prof. Thalmann (University of Berne, Switzer-
land) [24]. LAPC4 cells were provided by Dr A. Cato (University of Karlsruhe, Karlsruhe,
Germany). LNCaP and C4-2 have been chosen as they represent a connected cell model system
representing the castration sensitive (LNCaP) and castration-resistant (C4-2) PCa. Moreover,
C4-2 express ARv7. LAPC4 has been selected as it expresses a wild type AR. PC3 has been
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chosen as AR and PSMA negative control. LAPC4, LNCaP, C4-2, and PC3 were cultured
as described in Erb et al. 2020 [30]. Characteristics of the cell lines have been previously
described in Table 1. All cell lines were maintained at 37 ◦C in 5% CO2. Mycoplasma testing
was performed using the Mycoalert Detection Assay (Lonza, Basel, Switzerland). STR profiling
was used to verify cell line authentication.

4.2. ChIP-Seq Analysis and Data Mining

For AR ChIP-Seq analysis, the AR binding sites were extracted from the publicly
available GEO dataset (GSE62442, GSE65066, GSE28219) and the data were visualized with
the Integrative Genomics Viewer [38,61,62].

For PSMA expression analysis, the public datasets GSE11428, GSE13332, and GSE15091
have been used. GSE11428 investigated AR-induced gene expression in PCa cells LNCaP
and LNCaP abl by transfecting siRNA against AR [63]. GSE13332 explores gene expression
in C4-2 cells after AR knockdown [64]. GSE15091 analyzed PC3 cells harboring the wild
type-AR construct in the growth conditions of 10nM R1881 and ethanol (the solvent for
R1881) [65].

4.3. Drug Treatment

R1881 (Sigma-Aldrich, St. Louis, MO, USA, R0908-10MG, Lot No: 085M4610V), bicalu-
tamide (Selleck Chemicals LLC., Houston, TX, USA, S1190, Lot Number: 5), enzalutamide
(Astellas Pharma, 3343, Lot Number: RS-8BK0189-4), apalutamide (Selleck Chemicals LLC.,
S2840, Lot Number: 2), and darolutamide (Selleck Chemicals LLC., S75559, Lot Number: 1)
were dissolved in DMSO (100 mM stock solution), and aliquots were stored at −80 ◦C.

Bicalutamide is a first-generation non-steroidal antiandrogen used to treat metastatic
and local advanced PC combined with LHRH analogues or orchiectomy [66]. While the
exact mechanism of action is still elusive, it is suggested that bicalutamide stimulates the
AR to bind DNA and mediates the recruitment of corepressors (e.g., NCoR) instead of
coactivators (e.g., CBP or p300) [67,68].

The second-generation antiandrogen enzalutamide is indicated for metastatic PC [66].
Enzalutamide blocks the ligand-binding domain of the AR, preventing the binding of
androgens such as 5α-dihydrotestosterone. In addition, it inhibits nuclear translocation of
the AR and, therefore, DNA binding and coactivator recruitment [67,68].

Apalutamide is a second-generation antiandrogen indicated for metastatic PC treat-
ment [69]. Its mechanism of action includes binding to the AR ligand-binding domain,
preventing AR activation, inhibiting the AR nuclear translocation, and DNA binding,
therefore inhibiting the androgen receptor-mediated transcription [70,71].

Darolutamide is a non-steroidal AR antagonist used in metastatic PC and inhibits
nuclear translocation of the AR, thereby decreasing the activation of genes required for the
growth and survival of PC cells [72].

The medium was changed to 5% dextran-coated charcoal treated FBS (FBSdcc; Thermo
Fisher Scientifc, Waltham, MA, USA) 24 h after seeding cells to deplete the steroid hormones
and growth factors. After 24 h, for qPCR, cells were subsequently treated for 16 h with the
synthetic androgen 1 nM R1881 or with a combination of 1 nM R1881 and 10 µM antiandrogens.
For western blot analysis, cells were subsequently treated for 48 h with the synthetic androgen
1 nM R1881 or with a combination of 1 nM R1881 and 10 µM antiandrogens.

4.4. Western Blot Analysis

As described earlier, subcellular fractionation, cell harvest, protein determination,
and western blot were performed [30]. SDS-gel separated 20 µg protein lysate electrophorese
using NuPAGE™ 4–12% Bis-Tris protein gels and transferred to a nitrocellulose membrane
using the iBlot dry blotting system (all Thermo Fisher Scientifc, Waltham, MA, USA). Addi-
tionally, 5 µL Spectra Multicolour Broad Range (Thermo Fisher Scientifc, Waltham, MA, USA)
protein standard and 1 µL MagicMark™ XP western protein standard (Thermo Fisher Sci-
entifc, Waltham, MA, USA) were used. For detection, the membranes were incubated with
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WesternBright Sirius HRP substrate (Advansta), and signals were detected by a Microchemi
chemiluminescence system (DNR Bio-Imaging Systems, Ha-Satat, Israel). The antibodies used
are listed in Table 2. Densitometric analysis of experiments was performed with the Image-
Studio Lite 5.2 software (LI-COR, Lincoln, NE, USA). Uncropped western blot images are
displayed in the Supplementary Materials. Raw images files are displayed in S1_raw_images.

Table 2. Antibodies used in the study.

Name Company Lot Dilution

Monoclonal Mouse
Anti-Human PSM IgG2b

(Y-PSMA2)
Santa Cruz Biotechnology I1611 1:10,000

Androgen Receptor
(D6F11) XP Rabbit mAb

Cell Signaling
Technology 9 1:5000

Mouse Monoclonal
anti-GAPDH (6C5) Novus Biologicals 19/05-G4cc-C5cc 1:10,000

Polyclonal Rabbit
Anti-Mouse

Immunoglobulins/HRP
Agilent Technologies 20066043 1:10,000

Polyclonal Swine
Anti-Rabbit

Immunoglobulins/HRP
Agilent Technologies 41289300 1:10,000

4.5. RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated using the DIRECT-ZOL RNA MINIPREP (Zymo Research,
Freiburg im Breisgau, Germany) following the manufacturer’s instructions. cDNA synthesis
was performed with 500 ng total RNA using the Superscript II RNase H Reverse Transcriptase
kit (Thermo Fisher Scientifc, Waltham, MA, USA). The quantitative real-time polymerase chain
reaction (qPCR) was performed with GoTaq Probe qPCR Master Mix (Promega, Mannheim,
Germany) and appropriate primers for 45 cycles on a LightCycler 480 instrument (Roche,
Mannheim, Germany). The geometric mean of HPRT1 and TBP was used for normalization.
The LightCycler®480 Software, Version 1.5 (Roche, Mannheim, Germany) was used for the
determination of crossing point (Cp) values. ∆Cp = CpGOI-CpHousekeeper values were calcu-
lated and expressed as 2−∆Cp. The following primer assays have been used (all Thermo Fisher
Scientifc, Waltham, MA, USA): FOLH1 (Hs00379515_m1), HPRT1 (Hs02800695_m1), and TBP
(Hs00427620_m1).

4.6. Patient Material and Immunohistochemistry (IHC)

Patients’ samples were selected from the Tumor and Normal Tissue Bank of the
University Cancer Center Dresden. The Ethics Committee approved the use of archived
material of the Medical University of Dresden (Study no. EK59032007, 6 March 2007).
Written consent was obtained from all patients and documented in the medical hospital
Carl Gustav Carus Dresden database according to statutory provisions. The cohort contained
105 tissue specimens of 97 PCa patients undergoing TURP recruited from 2011 and 2020.
Tissue blocks were cut in serial sections of 1–2 µm thickness; sections were deparaffinized
with BenchMark XT (Ventana Medical Systems, Oro Valley, AZ, USA) and then exposed
to a heat-induced epitope retrieval. The PSMA (Clone 3E6; LOT: 11292493) antibody
(Dako Agilent, Frankfurt am Main, Germany) was used in a 1:50 dilution for staining,
followed by counterstaining with hematoxylin, dehydration, and mounting of the slides.
For PSMA, IHC was evaluated by the department of pathology Dresden using the following
modified “quick-score” protocol: staining intensity was scored 0–4 (0= absent, 1 = weak,
2 = intermediate, 3 = strong, very strong = 4). The percentage of positively stained cells was
scored 0–4 (0 = absent, 1 ≤ 10%, 2 ≤ 50%, 3 ≤ 75%, 4 > 75%). Both scores were multiplied
to obtain an immunoreactivity score (IRS), ranging from 0–16.
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4.7. Statistical Analysis

Prism 9.2 (GraphPad Software, San Diego, CA, USA) was used for statistical analyses.
Differences between treatment groups were analyzed using ordinary a one-way ANOVA
or Student’s t-test. Data are presented as mean ± s.e.m. to estimate the various means
in multiple repeated experiments [73]. p-values of ≤0.05 were considered statistically
significant. All differences highlighted by asterisks were statistically significant as encoded
in figure legends (* p≤ 0.05; ** p≤ 0.01; *** p≤ 0.001). All experiments have been performed
in at least three biological replicates unless noted otherwise

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
ijms23031046/s1.
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