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INTRODUCTION
Increased occurrence of lipid species such as triglyceride, diacyl-

glycerol, and ceramide in skeletal muscle, reportedly increases stored 
fat mass on consumption of high fat diet, resulting in impairment of 
insulin signaling pathway and glucose transfer system1. Over-intake 
of a high fat diet leads to metabolic syndrome, and excessive eating of 
carbohydrates and proteins also affects insulin resistance2,3. Insulin re-
sistance induced by a high fat diet involves decreased protein levels of 
insulin signaling pathway factors, such as insulin receptor (IR), phos-
phoinositide 3-kinase (PI3K), and Akt4,5.

Dietary overindulgence activates mTORC1 that is stimulated by 
mTOR, inhibits the activity of PI3K through phosphorylation of ri-
bosomal S6 protein kinase 1 (S6K1) to decompose amino acid6, and 
results in preventing phosphorylation of tyrosine and suppression of in-
sulin receptor substrate 1 (IRS-1)7-9. Inhibition of IRS-1 through reduc-
tion of tyrosine phosphorylation and S6K1 phosphorylation also results 
in the activation of mTORC110,11. Therefore, mTORC1 activation in the 
skeletal muscle could induce insulin resistance. However, the role of 
mTORC2 associated with insulin signaling is currently unknown. 

Endurance training and regular exercise have positive effects on 
insulin action and mTOR signaling. A serine-threonine protein kinase 
(AKT) is activated by PI3K pathway through exercise in the form of 
external stimulation of the cell12, and regulates cellular organization 
and hypertrophy13,14. However, the effect of exercise and/or dietary 
change on the metabolic pathways associated with continuous high fat 
diet-induced obesity is currently unclear. In addition, the precise mech-
anisms by which exercise and/or dietary change affect upstream and 
downstream mTOR signaling pathway related in insulin resistance is 
currently unknown. 

Therefore, the objective of this study was to investigate the effect 
of exercise and dietary change on obesity and insulin resistance and 
mTOR signaling protein levels in skeletal muscle of obese rats induced 
by high fat diet for 15 weeks.
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[Purpose] The purpose of this study was to 
investigate the effect of exercise and dietary 
change on obesity and insulin resistance and 
mTOR signaling protein levels in skeletal 
muscles of obese rats.    

[Methods] Sixty male Sprague-Dawley rats 
were divided into CO (Normal diet) and HF 
(High Fat diet) groups in order to induce obe-
sity for 15 weeks. The rats were then subdi-
vided into CO, COT (CO + Training), HF, HFT 
(HF + Training), HFND (Dietary change), and 
HFNDT (HFND + Training) groups (10 rats / 
group). The training groups underwent mod-
erate-intensity treadmill exercise for 8 weeks, 
after which soleus muscles were excised and 
analyzed. Data was statistically analyzed by 
independent t-test and One-way ANOVA tests 
with a 0.05 significance level.

[Results] Fasting blood glucose, plasma 
insulin, and HOMA-IR in the HF group were 
significantly higher, as compared with other 
groups (p <.05). Protein levels of insulin re-
ceptor subunit-1 (IRS-1), IRS-2, and p-Akt 
were significantly higher in the HFT, HFND, 
and HFNDT groups, as compared with HF 
group. In addition, the protein levels of the 
mammalian target of rapamycin complex 1 
(mTORC1) and ribosomal S6 protein kinase 1 
were significantly decreased by exercise and 
dietary change (p <.05). However, mTORC2 
and phosphoinositide 3-kinase were signifi-
cantly increased (p <.05).

[Conclusion] In summary, despite the neg-
ative impact of continuous high fat intake, 
regular exercise and dietary change showed 
a positive effect on insulin resistance and 
mTOR signaling protein levels. 
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METHODS 
Experimental animals and treatments

Sixty male Sprague Dawley (SD, 4 weeks old) rats 
were housed in cages and fed freely with standard rat chow 
and water (Daehan Biolink, Korea). Three or 4 rats were 
housed in each cage, and maintained under standardized 
conditions in an animal facility (Laboratory of animals, 
College of Medicine, Dong-A University), with a room 
temperature of 22 ± 1.5°C, 50 ~ 60 % relative humidity, 
and a 12 hour light/dark cycle. All rats were cared for 
during the entire period of experimentation in accordance 
with the Guidelines of Animal Experiments recommended 
by the Institutional Animal Care and Use Committee. After 
1 week of adaptation maintenance, rats were randomly di-
vided into two groups to induce obesity by high fat diet for 
15 weeks: a normal diet (CO) group (12 % fat; Donga SF, 
Korea, n = 20), and a high fat diet (HF) group (40 % fat; 
AIN-76A; Jungang Lab Animal, Inc, Korea, n = 40). Body 
weight was measured every week during the entire experi-
mental period.

Exercise program
After inducing obesity, rats were randomly subdivided 

into the CO, COT (CO + training), HF, HFT (HF + train-
ing), HFND (dietary change to normal diet), and HFNDT 
(HFND + training) groups (10 rats per group). Rats in the 
exercise training groups were put on a treadmill for 40 min 
once a day, 5 times a week, for 8 weeks. Exercise intensity 
consisted of 5 m/min (5 min), 12 m/min (5 min), and 18m/
min (20 min) at 0% slope for weeks 1 to 4 (low intensity). 
During weeks 5 to 8, exercise intensity was increased to 10 
m/min (5 min), 16 m/min (5 min), and 22 m/min (30 min) 
at the same slope (moderate intensity)15.

Blood and tissue samplings
To exclude the temporary effects of treadmill exercise, 

sacrifice was conducted after 48 hours from the last exer-
cise session. After complete anesthesia (ethyl ether), blood 
samples (5 ml) from the abdominal vena cava were ob-
tained in syringes. Plasma was collected by centrifugation 
of heparinized blood at 3000 rpm for 15 min. Soleus mus-
cle were removed and stored at -70°C until analysis. 

Lipid profiles
Plasma total cholesterol (TC) and triglyceride (TG) 

levels were analyzed with rat TC and TG kits (Asan Phar-
maceutical, Korea). High density lipoprotein cholesterol 
(HDL-c) level was analyzed with HDL-c kits (Shinyang 
Diagnostics, Korea) and Low density lipoprotein choles-
terol (LDL-c) was calculated with the following equation: 
LDL-c = TC - (HDL-c + TG/5)16. Plasma insulin level was 
analyzed with a rat insulin ELISA kit (Shibayagi Co. Ltd, 
Japan) according to the manufacturer’s instructions. Blood 
glucose level was estimated using a GlucoDr glucometer 
(Allmedicus, Korea). Insulin resistance index (IRI) was 
assessed by homeostasis model assessment estimate of in-
sulin resistance (HOMA-IR) as follows:

IRI = Fasting insulin (µIU/mL) X Fasting glucose (mg/
dL) / 405

Western blot
To extract protein from the soleus muscle, tissues were 

homogenized after adding a solution containing 150 mM 
NaCl, 5 mM EDTA, 50 mM Tri-HCl (pH 8.0), 1 %-NP 40, 
1 mM aprotinin, 0.1 mM leupeptin, and 1 mM pepstatin. 
The solution was centrifuged for 30 minutes at 13,000 
rpm. Supernatants were collected and assayed for protein 
content prior to storage at -70°C. Protein samples were 
mixed with Laemmli sample buffer (LSB) and placed in 
a boiling water bath for 5 min. Proteins were resolved by 
10, 12 or 15 % SDS-polyacrylamide gel electrophoresis 
(SDS-PAGE; each loaded with same μg of total protein 
per lane), and transferred to nitrocellulose membranes. 
Proteins on the membranes were blocked in 5 % skim milk 
in phosphate – buffered saline (PBS) (NaCl 8 g, KCl 0.2 
g, Na2HPO4 1.44 g, KH2PO4 0.24 g, pH 7.4). Thereafter, 
protein membranes were incubated with the following pri-
mary antibodies: IRS-1, 2 (#2382, #4502, Cell Signaling), 
Akt (#9272, Cell Signaling), p-Akt (#4060, Cell Signal-
ing), mTOR (#2972, Cell Signaling), mTORC1 (#2280, 
Cell Signaling), mTORC2 (#2114, Cell Signaling), PI3K 
(#4255, Cell Signaling), S6K1 (#9202, Cell Signaling) for 
one hour, and washed thrice (15 min each) in a PBS solu-
tion containing 0.1 % tween 20. Washed membrane was 
then treated with secondary antibody (goat anti mouse or 
rabbit IgG) conjugated with horseradish peroxidase (HRP). 
Immune-reactive bands were developed on Kodak film. 
The relative strengths of bands were quantitated by densi-
tometry (Sci – Scan, UUSB).

Data analysis 
The change in body weight induced by high fat diet 

was analyzed by independent t-test and ANOVA. One-way 
ANOVA and Duncan’s post-hoc analysis were performed 
for any intergroup difference observed. All data were test-
ed for normal distribution using the Shapiro-Wilk test. All 
data were analyzed using SPSS Software Version 21.0 for 
Windows (SPSS Inc. Chicago. IL). Data were expressed 
as mean ± standard error (SE). Statistical significance was 
defined as a p value < 0.05.

RESULTS
After 15 weeks of a high fat diet, body weight in HF 

group was significantly higher, as compared to the CO 
group (p <.05) (Figure 1-A). After 8 weeks of exercise and 
dietary change, body weight in the HFT, HFND, and HF-
NDT groups was significantly lower than in the HF group (p 
<.05) (Fig. 1-B).  

TC was significantly higher in the HF group than in 
the COT, HFT, HFND, and HFNDT groups (p <.05). TG 
was higher in the HF group, as compared with all other 
groups (p <.05). HDL-c level was significantly lower in 
the HF group than in the COT and HFNDT groups (p <.05). 
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   TC(mg/dl) 191.55 167.01* 201.35 163.80* 167.32* 165.05* 
 ±2.85 ±5.91 ±11.16 ±15.92 ±5.23 ±7.81 

   TG(mg/dl) 76.25* 73.16* 115.52 68.09* 74.37* 80.36* 
 ±3.89 ±4.57 ±14.20 ±7.82 ±8.67 ±11.58 

   HDL-c(mg/dl) 33.37 36.84* 26.93 33.26 29.95 35.81* 
 ±1.63 ±2.30 ±2.05 ±2.54 ±1.92 ±2.21  

   LDL-c(mg/dl) 142.93 115.54 151.42 116.93 122.50 113.17*  
 ±3.43 ±6.58 ±11.24 ±18.02 ±5.65 ±8.78 

   Glucose(mg/dl) 139.00* 135.38* 170.00 147.27 149.08 138.75* 
 ±3.09 ±2.34 ±10.80 ±6.43 ±8.55 ±3.62

   Insulin(uIU/ml) 31.04* 18.93* 69.97 40.42* 39.88* 24.03* 
 ±6.38 ±2.65 ±14.57 ±8.30 ±9.10 ±3.75 

   HOMA-IR 10.70* 6.31* 28.39 14.66* 14.80* 8.26* 
 ±2.30 ±0.85 ±5.12 ±2.95 ±3.47 ±1.34 

LDL-c level was significantly higher in the HF group than 
in the HFNDT group (p <.05). Glucose level was signifi-
cantly higher in the HF group than in the CO, COT, and 
HFNDT groups (p <.05). Insulin and HOMA-IR levels 
were significantly higher in the HF group, as compared 
with all other groups (p <.05) (Table 1).

After 8 weeks of exercise and dietary change, muscle 
protein level of IRS-1, IRS-2, p-Akt, and mTOR in the HF 

group were significantly lower, as compared with all other 
groups (p <.05). Also, muscle protein level of IRS-2, p-Akt 
and mTOR in the CO group were significantly higher, as 
compared with the COT group (p <.05). However, Akt pro-
tein level was not significantly different, as compared with 
all other groups (Fig. 2).

The mTORC1 protein level was significantly higher 
in the HF group than in all other groups (p <.05). In ad-

Table 1. Change of lipid profiles after 8 weeks treatment

 variable CO COT HF HFT HFND HFNDT

mean±SE, *vs HF p<0.05. TC; total cholesterol, TG; triglycerides, HDL-c; high density lipoprotein cholesterol, LDL-c; low density lipoprotein cholesterol, HOMA-IR; 
homeostatic model assessment insulin resistance.

Figure 1. mean±SE, (A) Changes of body weight after 15 
weeks of high-fat diet, (B) Changes of body weight after exer-
cise and dietary change for 8 weeks. *p<0.05 vs HF. CO; nor-
mal diet group, COT; normal diet + training group, HF; high fat 
diet group, HFT; high fat diet + training group, HFND; dietary 
change group, HFNDT; dietary change + training group.

Figure 2. mean±SE, *p<0.05 vs HF, #p<0.05 vs CO. CO; nor-
mal diet group, COT; normal diet + training group, HF; high fat 
diet group, HFT; high fat diet + training group, HFND; dietary 
change group, HFNDT; dietary change + training group.
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dition, mTORC1 protein level were significantly lower 
in the HFND and HFNDT groups, as compared with the 
HFT group (p <.05). mTORC2 protein levels of were sig-
nificantly higher in the CO, COT, and HFNDT groups, as 
compared with the HF group (p <.05). The PI3K protein 
level was significantly lower in the HF group, as compared 
with all other groups (p <.05). In addition, the HFND and 
HFNDT groups showed significantly higher levels of PI3K 
compared with the HFT group (p <.05). S6K1 protein level 
was significantly higher in the HF group, as compared with 
all other groups (p <.05). In addition, the HFND and HF-
NDT groups showed significantly lower levels of S6K1, as 
compared with the HFT group (p <.05) (Fig. 3).

DISCUSSION
Regular exercise and dietary change can be effective for 

regulation of body weight and insulin resistance. Previous 
studies have reported that regular exercise has positive 
effects on insulin resistance in skeletal muscle via mTOR 
signaling pathway. We aimed to determine the effect of 
exercise and dietary change on biochemical changes of 
mTOR signaling pathway, in case of obesity induced by 
continuous consumption of high fat diet. Therefore, we 
evaluated the insulin resistance and mTOR signaling pro-
tein levels in skeletal muscle of high fat diet induced obese 
rats after 8 weeks of regular exercise and dietary change. 

Excessive intake of carbohydrates, proteins, and fats 
negatively affects insulin action in skeletal muscle17,18, 
partly via glucose metabolism1. High fat diet induced 
obesity reportedly causes insulin resistance and leptin re-
sistance in peripheral tissues19,20. A member of the mTOR 
signaling pathway, mTORC1, is known to negatively con-
trol insulin levels through inhibition of IRS-19. Although 
mTORC2 prevents the activation of S6K121, the effect of 
mTORC2 on insulin activity is currently unclear. However, 
mTORC2 controls the activation and phosphorylation of 
Akt, and reduced mTORC2 in skeletal muscle leads to de-
creased glucose uptake via insulin induction22. Therefore, 
mTORC2 and Akt may play important roles in the activa-
tion of insulin that is essential for glucose homeostasis. In 
this study, we confirmed that protein levels of mTORC2, 
PI3K, and p-Akt were significantly decreased by high fat 
diet. In addition, high fat diet induced obese rats had high 
protein levels of mTORC1 and S6K1, but low protein lev-
els of IRS-1 and IRS-2. Therefore, high fat diet-induced 
metabolic pathway showed a negative effect on insulin 
action in skeletal muscle. 

Exercise increases metabolism in skeletal muscle by im-
proving insulin action and glucose uptake23,24, is suggested 
as the most effective method for the treatment of insulin 
resistance in skeletal muscle25. A previous study reported 
that exercise has a positive effect on insulin resistance19 
and leptin resistance20 that is mediated by improvements 
in glucose metabolism. Exercise-induced mTOR complex 
activity suggests that phosphatidic acid is stabilized by 
the formation of mTOR complexes, therefore regulating 
mTORC1 in response to metabolic stimulation by nutri-
ents and growth factors26,27. A previous study reported 
that acute exercise increases activation of mTOR for a 
few hours28. In addition, both aerobic exercise through the 
various muscle contractions29 and high-intensity resistance 
exercise30 activate mTOR. Previously, a report indicated 
that regular exercise regulates the insulin signaling path-
way via PI3K activation31. Chibalin et al., demonstrated 
that swimming exercise changes the level of IR in Wistar 
rats32; however, this is unlikely to be the sole explanation 
for the increased metabolic response to insulin, because in-
sulin stimulates glucose transport activity, as evidenced by 
a dramatic increase in GLUT4 protein expression after just 
one day of exercise. Another study showed that 6 weeks 
exercise improved skeletal muscle insulin resistance with-
out reduced mTOR/S6K1 signaling pathway33. However, 
the  body weight of rats showed no increase in response to 
59% high-fat diet for 6 weeks, and exercise for 6 weeks33. 
The discrepancy in results of previous study as compared 
to the present study, is possibly due to insufficient exercise 
duration, and differences in fat composition.

Dietary intervention is another effective method for the 
treatment of insulin resistance. Many studies report that 
caloric restriction increases insulin sensitivity34,35, and this 
result might be due to the reduced body weight and fat 
mass36. In addition, previous studies conducted a combina-
tion of exercise and/or dietary restriction to analyze chang-
es in glucose metabolism37,38. Ross et al., reported physical 

Figure 3. mean±SE, *p<0.05 vs HF, αp<0.05 vs HFT. CO; nor-
mal diet group, COT; normal diet + training group, HF; high fat 
diet group, HFT; high fat diet + training group, HFND; dietary 
change group, HFNDT; dietary change + training group.
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activity without caloric restriction increased weight loss, 
and substantially reduces insulin resistance37; and Lar-
son-Meyer et al., reported caloric restriction alone or with 
exercise ameliorated insulin resistance36. In this study, 
we confirmed that regular exercise and/or dietary change 
reduces the level of mTORC1 but activates mTORC2, sug-
gesting that mTORC1 and mTORC2 may act to ameliorate 
obesity and insulin resistance.

In the present study, we show a negative effect of the 
mTOR signaling pathway in obese rats induced by high fat 
diet. However, regular exercise and dietary change directly 
brought about improvements of glucose metabolism and 
insulin level. In addition, our study demonstrated that reg-
ular exercise decreases mTORC1 levels, and the exercise, 
dietary change, and combination of treatments ameliorate 
obesity and insulin resistance in skeletal muscle via in-
creasing mTORC2 and p-Akt protein levels.

In summary, regular exercise and/or dietary change 
ameliorates obesity and insulin resistance via regulating 
mTORC1 and mTORC2 protein. Therefore, despite the 
negative impact of continuous high fat diet intake, regular 
exercise and dietary change results in a positive effect on 
insulin resistance and mTOR signaling protein levels.
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