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Abstract

Since the early 1990s, several strains of genetically modified mice have been developed as models for experimental
atherosclerosis. Among the available models, the apolipoprotein E-deficient (apoE-/-) mouse is of particular
relevance because of its propensity to spontaneously develop hypercholesterolemia and atherosclerotic lesions that
are similar to those found in humans, even when the mice are fed a chow diet. The main purpose of this review is
to highlight the key achievements that have contributed to elucidating the mechanisms pertaining to vascular
dysfunction in the apoE-/- mouse. First, we summarize lipoproteins and atherosclerosis phenotypes in the apoE-/-

mouse, and then we briefly discuss controversial evidence relative to the influence of gender on the development
of atherosclerosis in this murine model. Second, we discuss the main mechanisms underlying the endothelial
dysfunction of conducting vessels and resistance vessels and examine how this vascular defect can be influenced
by diet, aging and gender in the apoE-/- mouse.
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Background
Because mice are easily bred, have a short generation
time and because of the availability of inbred strains,
many of which have interesting heritable phenotypes,
they are ideal models for the study of genetic contribu-
tions to disease [1]. The major disadvantage of the
mouse model is its small size, which makes it relatively
difficult to perform neural and hemodynamic measure-
ments; however, in our and other laboratories the lim-
itations of the mouse have been overcome through
advances in surgical techniques (e.g., vascular catheteri-
zation and nerve recording) and in diagnostic imaging
methods.
Due to the progressive advancement of molecular

biology techniques, it is possible to knockout and
restore endogenous genes or to add exogenous genes
into the mouse allowing the development of mouse
models for human diseases [2-8]. In this brief review, we
focus on the apolipoprotein E-deficient (apoE-/-) mouse,

which is considered the best available model for human
lipoprotein disorders and atherosclerosis [9,10]. Specifi-
cally, we discuss the main mechanisms underlying
endothelial dysfunction in the apoE-/- mouse and exam-
ine how this vascular defect can be influenced by diet,
aging and gender.

Lipoproteins and Atherosclerosis Phenotypes
Murine plasma lipid profiles
The lipid profiles of mice and humans differ greatly.
Humans carry approximately 75% of their total plasma
cholesterol (PC) on the atherogenic low-density lipopro-
tein (LDL). Mice naturally carry most of their PC on the
antiatherogenic high-density lipoprotein (HDL, ~70 mg/
dL) [1,3,11,12]. Normal mice have total PC levels of
approximately 80 mg/dL and are highly resistant to
atherosclerotic lesions. An exception is the C57BL/6J
(C57) mouse strain when it is challenged with a special
atherogenic diet [3,13,14]. Interestingly, in this mouse
strain, males and females that are fed a diet of normal
chow do not differ in their HDL-lipid levels, but females
demonstrate a drop (~50%) in their HDL levels when
fed an atherogenic diet. Males appear to maintain high

* Correspondence: evasquez@pq.cnpq.br
1Departament of Physiological Sciences, Health Sciences Center, Federal
University of Espirito Santo, Vitoria, ES, Brazil
Full list of author information is available at the end of the article

Meyrelles et al. Lipids in Health and Disease 2011, 10:211
http://www.lipidworld.com/content/10/1/211

© 2011 Meyrelles et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:evasquez@pq.cnpq.br
http://creativecommons.org/licenses/by/2.0


HDL levels due to their secretion of testosterone [14].
Thus, for the analysis of lipid metabolism and athero-
sclerosis in mouse models, diet and gender should be
taken into account.

Plasma lipid profiles and atherosclerosis in the
apolipoprotein E-deficient mouse
In 1992, two different groups simultaneously created the
first gene-targeted murine model of atherosclerosis by
disrupting the antiatherogenic apolipoprotein E (apoE)
gene that is involved in cholesterol metabolism [2,3].
The inactivation of the apoE gene is achieved by homo-
logous recombination in mouse embryonic stem cells,
usually in a C57 genetic background, to produce apoli-
poprotein E-deficient (apoE-/-) or knockout (apoE KO)
mouse. The apoE-/- mouse is the most widely used of
the available murine models, and it was the first model
to develop vascular lesions that are similar to those
observed in humans. ApoE is a glycoprotein with a
molecular weight of approximately 34 kDa, which is
synthesized in the liver, brain and in macrophages and
it is a constituent of chylomicrons and their remnants,
very-low-density lipoproteins (VLDL), intermediate-den-
sity lipoproteins (IDL) and HDL. ApoE plays a major
physiological role in lipoprotein metabolism, and it
mediates the high-affinity binding of apoE-containing
lipoproteins to the cell-surface LDL receptor and the
chylomicron-remnant receptor; therefore, it is an impor-
tant mediator of the transport and hepatic metabolic
clearance of circulating cholesterol [1,3,11,15]. In C57
mice fed a chow diet, values of PC, triglycerides (TG),
VLDL+IDL, LDL and HDL levels are approximately 60,
65, 20, 10 and 50 mg/dL, respectively [3,11,16,17]. In
the homozygous apoE mutant mouse that is fed a chow
diet, there is a shift in plasma lipoproteins from HDL to
predominantly VLDL and chylomicron remnant frac-
tions, i.e., most of the PC is in atherogenic lipoprotein
fractions. Thus, on a chow diet, apoE-/- mice have
increased total PC (~8-fold), TG (1.7-fold), VLDL+IDL
(18-fold) and LDL (14-fold), but similar or decreased
HDL at all ages [3,11,16-21]. When fed a Western-type
diet, a dramatic increase in the proportions of these
lipids is observed in total PC (~14-fold) and particularly
in the VLDL+IDL lipoprotein fraction (~30-fold)
[3,19,20,22-24]. When fed a normal diet apoE-/- mice
exhibit monocyte attachment to endothelial cells and a
disruption of the subendothelial elastic lamina at 6-8
weeks of age, lesions containing foam cells and smooth
muscle cells are seen at 8-10 weeks of age, and fibrous
plaques appear at 15-20 weeks of age [3,25]. At ~70
weeks-old, apoE-/- mice exhibit over 90% occlusion of
the aortic lumen, and a similar percentage of occlusion
is observed at 32 weeks when the animals are fed a
Western-type diet [26]. Sites of predilection include the

aortic root, aortic arch, common carotid, superior
mesenteric, renal and pulmonary arteries [25,27]. Thus,
similar to humans, apoE-/- mice display increased levels
of total PC and extensive lipid deposition in the major
large arteries, which is accelerated and aggravated when
they are fed a Western-type diet, suggesting a similarity
with humans.

The influence of gender on atherosclerosis
The influence of gender on atherosclerosis and the protec-
tive effect of estrogen are controversial. The majority of
studies show that during their reproductive years, women
are less prone to developing cardiovascular diseases and
atherosclerosis than men, but men and post-menopausal
women at comparable ages are at an equal risk for devel-
oping the disease as, as recently reviewed [28]. Conse-
quently, cardiovascular diseases in women develop, on
average, 10 years later than they do in men. In mice, large
number of studies using apoE-/- or LDL receptor-knockout
mice have demonstrated an atheroprotective role for
endogenous estrogen and estrogen replacement in females
(reviewed 5 years ago [29]). However, after that time,
emerged convincing evidence suggests that atherosclerotic
lesions in apoE-/- mice are greater in females than in
males, and the reasons for this discrepancy are not clear.
Therefore, the influence of gender on atherosclerosis in
the apoE-/- mouse is still under debate. For example, Tan-
girala et al. [30] showed that in LDL receptor-deficient
mice, the incidence of atherosclerotic lesions in the aorta
was significantly higher in males than in females. However,
in apoE-/- mice (mixed C57 × 129ola genetic background)
fed a Western-type diet for 6 months (starting at 5-6
months old), they observed only a trend towards increased
lesions in males compared to females (not significant).
Similarly, Coleman et al. [26] did not encounter clear-cut
gender differences in the histopathology of aortic arch
atherosclerosis in 6- to 80-week-old apoE-/- mice (C57
genetic background) fed a standard chow diet. In addition,
Elhage et al. [31] showed that although the total PC was
higher in males than in females in apoE-/- mice (C57 ×
129/B6 genetic background) fed a chow diet, there was no
statistical significance in the fatty streak areas between
genders. In contrast, a recent study by Chiba et al. [32]
showed that in apoE-/- mice (C57 genetic background) fed
an atherogenic diet for 16 weeks, starting at 10 weeks of
age, there were significant less atherosclerotic lesions in
females than in males and greater in ovariectomized than
in sham animals, without differences in serum lipoproteins
between genders. The protective influence of female hor-
mones against atherosclerosis in the apoE-/- mouse is cor-
roborated by the findings that estrogen administered to
apoE-/- mice (C57 × 129ola genetic background) prevented
fatty streak formation in female and male mice fed a chow
diet [31] and reduced atherosclerotic lesion development
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in mice fed a Western-type diet [33]. In contrast, there is a
growing body of convincing evidence against the athero-
protective effects of estrogen. For example, tamoxifen,
which exhibits tissue-specific estrogen receptor agonist/
antagonist activities and has been shown to act as a cardi-
oprotective agent in postmenopausal women [34],
decreased cholesterol levels by 7-fold and abolished lipid
lesion development in apoE-/- mice that received this ther-
apy repeatedly [35]. In agreement with these observations,
Caligiuri et al. [36] observed that in apoE-/- mice (C57
genetic background) fed a normal chow diet, young female
mice developed larger and more advanced atherosclerotic
lesions compared with young male mice. The data from
this latter study suggest that differences in atherosclerotic
lesions between genders may be related to differences in
the cellular immune responses to the atherosclerotic-
related autoantigen, oxidized LDL (oxLDL), in the differ-
ent sexes [36]. The presence of apoA in the HDL may also
be a sex-related determinant for receptor interactions and
this may be of pathophysiological importance in athero-
sclerosis. Indeed, compared to male apoE-/- mice, female
apoE-/- mice have lower plasma levels of apoA-I and
apoA-II [21]. Moreover, it has been reported that in
female mice, HDL and apoA-I are negatively associated
with aortic atherosclerotic lesions, while the association
with apoA-II was positive. In contrast, in males no signifi-
cant associations were observed [21], indicating that
changes in HDL and apoA are important determinants of
atherosclerosis in females but not in males. Accordingly,
in apoE-/- mice, fed a standard chow diet [21,36] or a Wes-
tern-type diet [5,24], females exhibit areas of larger vascu-
lar atherosclerotic lesions than males (see Figure 1). In a
study it was also demonstrated that the elevated produc-
tion of thromboxane (TXA2) and the reduced production
of prostacyclin (PGI2) observed in female apoE-/- mice
(Figure 2) are gender-related proatherogenic risk factors in
these animals [24]. Caligiuri et al. [36] showed that vascu-
lar atherosclerotic lesions were larger and more advanced
in young (16-week-old) female apoE-/- mice compared to
male apoE-/- mice, but in aged (48-week-old) animals,
when the blood levels of estrogen decreased in females,
there was no longer a sex difference in lesion size [36].
These data suggest that age- and sex-dependent variations
of cell-mediated immune responses modulate the onset
and progression of atherosclerosis. In support of these
findings, a recent study showed that in apoE-/- mice, ather-
osclerosis was reduced following ovariectomy and was
aggravated following treatment with 17-b-estradiol at
doses that were similar to physiological levels of the hor-
mone [37]. In view of these findings, the apoE-/- mouse
model allows the investigation of the detrimental effects of
17-b-estradiol on atherosclerosis and contributes to clini-
cal studies that reveal the unfavorable effects of hormone
replacement therapy in postmenopausal women. Although

the influence of female gender on atherosclerosis is still
controversial and more research is needed to understand
fully the role played by estrogens in atherosclerotic lesion
in the apoE-/- mouse, there is convincing evidence that at
a young age and on a normal chow diet, females develop
greater atherosclerotic lesions than males. Indeed, the
above study reporting greater atherosclerotic lesions in
males than in females, the animals were 26-week-old and
fed an atherogenic diet [32], whereas in the study report-
ing the opposite observation, the animals were younger
and fed a regular chow diet and significant differences
between the genders in the older animals were not
observed [36]. In agreement with these observations,
Maeda et al. [38] showed that atherosclerotic lesions at the
aortic roots of apoE-/- mice (C57 genetic background) fed
a regular chow diet developed plaques earlier in the
females than in the males. Taken together, the above stu-
dies highlight the importance of considering sex in the
analysis of atherosclerosis and lipid metabolism in the
apoE-/- mouse model, and they fuel the debate on the
effects of estrogen on atherosclerosis in murine models.
Therefore, the deletion of the single apoE gene, which

results in severe hypercholesterolemia, is sufficient to

Figure 1 Effect of gender on atherosclerotic lesions in the
aortic root of 8- to 10-week-old apoE-/- mice fed for 3 months
with a high-fat diet. Average aorta thickness is significantly higher
in females than males (A). Hematoxylin-eosin stained cross sections
at the root of the aorta show remarkable differences in the
atherosclerotic lesion between the female and the male mouse (B).
Reproduced from Smith et al. [24] with permission.
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convert the mouse from a species that is highly resistant
to atherosclerosis to one that is highly susceptible to the
disease [2,3,11]. The characterization of the morphology,
histology, pathology and mechanisms (but not gender)
involved in the development of vascular atherosclerotic
lesions in this murine model of atherosclerosis has been
broadly studied for two decades and has been previously
reviewed [1,9,10]. However, the vascular endothelial dys-
function in the apoE-/- mouse has not been fully eluci-
dated, and the main purpose of this brief review is to
summarize and discuss the mechanisms underlying this
vascular defect and to address the influence of diet,
aging and gender.

Endothelial Function in Physiological Conditions
Assessment of endothelial function and the role of nitric
oxide (NO)
The general aspects of endothelial function and athero-
sclerosis have been reviewed previously [39-41], and are
summarized here. The vascular endothelium regulates
vascular tone and structure in conductance and resis-
tance vessels through a continuous release of a variety
of autocrine and paracrine vasoactive mediators such as
nitric oxide (NO), reactive oxygen species (ROS),
endothelin-1 (ET-1), angiotensin (Ang) II, endothelium-
derived hyperpolarizing factor (EDHF), prostacyclin
(PGI2) and epoxyeicosatrienoic acids (EET). Importantly,
the position of the endothelium in the vessel wall makes
it a primary target for injuries. As shown in the sche-
matic representation in Figure 3, shear stress and acetyl-
choline (ACh), which is commonly used to asses
endothelial function, and receptor-specific agonists, such

as bradykinin, thrombin and serotonin, causes increase
in intracellular Ca++ levels. This increase in Ca++ acti-
vates endothelial NO synthase (eNOS), which acts on L-
arginine (L-arg) resulting in the production of NO. This
reaction requires the participation of cofactors, such as
tetrahydrobiopterin (BH4) and NADPH, which are criti-
cal for coupling the reduction of molecular oxygen (O2)
and the oxidation of L-arg, resulting in the production
of NO and L-citrulline [42-45]. NO diffuses to the
underlying vascular smooth muscle cells (VSMC), where
it activates soluble guanylyl cyclase (sGC) to produce
cyclic guanosine monophosphate (cGMP) from guano-
sine triphosphate (GTP), and induces a decrease in Ca++

followed by VSMC relaxation.

Endothelial generation of reactive oxygen species (ROS)
and other vasoactive mediators
As illustrated in Figure 3, this reaction of the endothelial
cell involving the L-arg-eNOS system also generates
ROS, including the free radicals (unpaired electrons)
superoxide anions (•O2

-), peroxynitrite (•ONOO-), and
hydroxyl radicals (OH•O) and non-radicals, such as
hydrogen peroxide (H2O2), that are involved in diverse
cardiovascular diseases [46-50]. Briefly, •O2

- reacts
extremely rapid with NO generating •ONOO-. Superox-
ide anions are also rapidly scavenged by the antioxidant
enzyme SOD, thus protecting NO and generating H2O2.
Under physiological conditions, this interaction is mini-
mized by endogenous antioxidant defenses, such as
SOD, and the low levels of ROS act as signals to modu-
late proliferation, apoptosis and gene expression through
the activation of transcription factors. ROSs are pro-
duced by all vascular cell types, and have been impli-
cated in the regulation of vascular tone by modulating
vasodilation directly or indirectly by decreasing NO
bioavailability through quenching by •O2

- to form
•ONOO-, which is a short-lived species that impairs
endothelial function. In contrast, high concentrations
and/or the inadequate removal of ROS, especially •O2

-,
results in oxidative stress, which has been implicated in
the pathogenesis of many cardiovascular diseases includ-
ing hypercholesterolemia and atherosclerosis.
Endothelium releases other potent vasodilator sub-

stances, such as PGI2, an eicosanoid of the cyclooxy-
genases pathway. The activities of PGI2 include the
activation of adenylate cyclase (AC) in VSMCs, which
results in the generation of 3’-5’-cyclic adenosine mono-
phosphate (cAMP), causing a relaxation of the VSMC in
most blood vessels. An additional relaxant pathway acts
through the release of EDHF that diffuses to and acti-
vates VSMC potassium channels, causing hyperpolariza-
tion [47]. Reliable data [47-49], indicate that H2O2

derived from the dismutation of •O2
- may act as an

EDHF because it elicits hyperpolarization and
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Figure 2 Effect of gender on the levels of 2,3-dinor-6-keto
prostaglandin F1a and 11-dehydro thromboxane B2 in 24-hour
urine samples of ApoE-/- female and male mice after a 3-month
high fat diet regimen. The data presented are as mean ± SEM. * p
< 0.05, when compared to males. Reproduced from Smith et al. [24]
with permission.
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vasodilation by activating VSMC potassium channels. In
large vessels, H2O2-induced relaxation can be endothe-
lium-independent and endothelium-dependent, as indi-
cated by the observation that the eNOS inhibitor L-

nitroarginine methylester (L-NAME) abolishes this effect
[51,52]. The vasodilator activity of H2O2 also affects
mesenteric and coronary arteries, and in coronary
arteries, it has been shown to involve COX-1 and the
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VSMC potassium channel [53,54]. Therefore, there are
substantial data indicating that the four main mediators of
endothelial vasodilator function, NO, H2O2, PGI2 and
EDHF, interact in a coordinated manner to maintain nor-
mal endothelial function [55,56]. In terms of relative
importance, studies [51,52,54] show that NO is the predo-
minant endothelium-derived vasodilator in large arteries,
whereas in resistance vessels of the microcirculation
EDHF predominates over other agents. The impairment of
vascular function, which is associated with several cardio-
vascular events and atherosclerosis, has typically been
characterized by one or more of the following responses:
decreased endothelium-dependent vascular relaxations,
decreased endothelium-independent vascular relaxations,
and/or increased vasoconstrictions [57-60].

Endothelial Function and Dysfunction in the
ApoE-/- Mouse
The influence of diet, age and gender on endothelial
function of large arteries
One hallmark of atherosclerosis is vascular dysfunction,
which is observed mainly in large vessels and has gener-
ally been defined by a decreased in endothelium-depen-
dent vasodilation that is generally considered to precede
the development of atherosclerosis and to predispose
humans to the development of structural vascular
changes [61]. However, this general concept is not fully
supported by studies in the murine model of spontaneous
hypercholesterolemia and atherosclerosis. Indeed, aortic
rings isolated from young (6-18-week-old) male and
female apoE-/- mice fed a standard chow diet (hypercho-
lesterolemia only) exhibit a preserved endothelial NO-
dependent relaxation response to ACh when compared
with wild-type control mice [12,62,63]. Similar results
have been observed in aortas from adult (20-35-week-
old) male [64] and female [4,65] apoE-/- mice. In contrast,
in aged apoE-/- mice (50-70-week-old) that exhibit both
hypercholesterolemia and established atherosclerosis, an
endothelial dysfunction, as demonstrated by a signifi-
cantly blunted aorta relaxation response to ACh, has
been observed [62,66,67]. When apoE-/- mice are fed a
Western-type diet to accelerate and aggravate hypercho-
lesterolemia and atherosclerosis, the vasodilation
response to ACh in the aortas [23,64,65] and carotid
arteries [23] of ~20-30-week-old males is normal; how-
ever, studies have shown a significant impairment of the
vasodilation response to ACh in 14-15-week-old male
[22,65,68-76] and female [4,19,77] mice. Crauwels et al.
[66] demonstrated that in aged (72-week-old) apoE-/-

mice, the aortic endothelial dysfunction is a focal and not
a systemic hypercholesterolemia-dependent defect, i.e., it
is strictly associated with plaque formation. Overall, the
above findings (see diagram in Figure 4) suggest that
endothelial function in the aortas of apoE-/- mice is

normal at the early stages of the pathology and the
impairment of endothelial NO-mediated dilation occurs
at a later stage, mainly in aged animals and when mice
are fed an atherogenic Western-type diet, which aggra-
vates hypercholesterolemia and atherosclerosis.
Recent evidence suggests that gender plays an impor-

tant role in endothelial dysfunction in the large vessels
of apoE-/- mice. Indeed, atherosclerosis in apoE-/- mice
was reduced and the endothelial dysfunction of aortic
rings was attenuated following ovariectomy and was
aggravated by treatment with 17-b-estradiol at doses
that were near physiological levels [37]. Hence, the
apoE-/- mouse, in addition to being a model for human
atherosclerosis, appears to be a suitable experimental
model for studying the detrimental effects of 17-b-estra-
diol on endothelial dysfunction [37]. Despite a growing
body of evidence suggesting that gender influences
atherosclerosis in apoE-/- mice [30-38], few studies have
investigated the differences in endothelial function
between males and females. More interesting is that a
large number of publications have not revealed the gen-
der of the mice used in the studies.
In humans, there is a general concept that endothelial

dysfunction precedes the development of atherosclerosis
[41]. Moreover, there is evidence that the impaired
endothelial NO-dependent relaxation response to ACh
in apoE-/- mice is not determined by hypercholesterole-
mia alone. The hypothesis that endothelial dysfunction
in large vessels of apoE-/- mice is dependent on plaque
formation was tested by Bonthu et al. [12] using a dif-
ferent experimental design. They examined the endothe-
lium-dependent relaxation of aortic rings from 19-week-
old apoE-/- mice and apoE-/-/LDL receptor-deficient
(double knockout) mice fed a standard chow diet and
compared them with wild-type C57mice. Relaxation in
response to ACh of the proximal and distal segments of
thoracic aortas from apoE-/- mice (atherosclerotic
lesions were minimal or absent) was normal; however,
the relaxation response was greatly impaired in the
proximal segments of thoracic aortas (containing athero-
sclerotic lesions) from the double knockout mice but
not in distal segments that had minimal or no athero-
sclerotic lesions. Similarly, others have observed a
decrease in NO-dependent vasodilation in atherosclero-
sis-prone regions, whereas it was preserved in regions
that are less prone to atherosclerosis in the descending
thoracic aorta of female apoE-/- mice fed a high-choles-
terol diet [77]. These findings indicate that aortic
endothelial dysfunction in mice is a focal (plaque-
related) and not a systemic hypercholesterolemia-depen-
dent defect [66]. Supporting this observation, is the
report that human apoAI transgenesis, which is known
to raise HDL, attenuates atherogenesis and improves
aortic vasomotor responses to ACh in apoE-/- mice [4]
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in vessel segments that exhibit large lesions but not
those with smaller lesions [66]. This observation
explains the association of high plasma HDL levels with
the normal endothelium-dependent vasorelaxation that
is observed in humans [78]. However, this conclusion
may have limitations when considering conductance
arteries other than the aorta. For example, young (~15
weeks old) [79] or adult (~30 weeks old) [80] apoE-/-

mice demonstrate impaired endothelial-dependent
relaxation in the common carotid arteries despite the
fact that no morphological changes were observed in
these vessels at that age (illustrated in Figure 5). These
observations suggest that in contrast to the aorta,
endothelial dysfunction can occur in other non-athero-
sclerotic arteries and that the apoE-/- mouse carotid
artery is a valuable experimental model for endothelial
dysfunction in conditions of hypercholesterolemia alone.

The role of endothelial NO bioavailability and endothelin
in endothelial dysfunction of large arteries
The endothelial dysfunction of large vessels in hyperch-
olesterolemia and other cardiovascular diseases has been

attributed to the following: (a) a decrease in NO pro-
duction or eNOS synthesis/activity; (b) excessive pro-
duction of vascular ROS, where •O2

- reacts with NO,
resulting in the formation of •ONOO- and a decreased
in the bioavailability of NO; (c) the local oxidation of
circulating lipoproteins and/or (d) a decreased antioxi-
dant capacity (see scheme in Figure 6). There is evi-
dence that the chemical inactivation and reduced
biosynthesis of NO are the key mechanisms responsible
for endothelial dysfunction in the aortas of atherosclero-
tic apoE-/- mice [12,69]. Vascular relaxation responses to
ACh are attenuated by the inhibition of NOS by L-NNA
in aortas from normal mice and in segments of aortas
that have no intimal thickening in apoE-/- mice [12].
Similarly, aortas from young apoE-/- mice fed a regular
chow diet exhibit normal eNOS expression and normal
dilation responses to ACh [63,64]. However, transfer of
the eNOS gene into apoE-/- mice carotid arteries in vivo
results in increased eNOS expression levels and normal-
ized relaxation responses to ACh [72]. Interestingly,
apoE-/- mice fed a Western-type diet exhibit increased
vascular ET-1 production, reduced endothelial NO

Effect of Diet and Aging on Aorta Responsiveness in the apoE-/- Mouse
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release, and impaired endothelium-dependent relaxation,
which are all normalized by chronic blockage of the
ETA receptor [68]. These data suggest that a key
mechanism underlying the endothelial dysfunction in
atherosclerotic large vessels in apoE-/- mice is a decreas-
ing bioavailability of NO, which appears to be associated
with the activation of the ET-1 system. From a clinical
viewpoint, the current data demonstrate that the block-
age of the ETA receptor may have therapeutic potential
in patients suffering from endothelial dysfunction [81].

The role of reactive oxygen species (ROS) and
angiotensin in endothelial dysfunction of large arteries
Reduced endothelial NO bioavailability has also been
attributed to a deficiency in substrates or cofactors or to
the enhanced formation of •O2

-, which reacts with NO in
apoE-/- mice [7,69] and in other experimental and clinical
studies of cardiovascular pathophysiologies [58,59]. In
hypercholesterolemia, when lipids can be incorporated
into the endothelium, eNOS becomes uncoupled leading
to the generation of ROS (including •O2

-, H2O2, OH•O,
and the strong oxidant •ONOO-) instead of NO. Taking
into consideration that BH4 is highly susceptible to oxida-
tive degradation by •O2

- or •ONOO-, the initial degrada-
tion of BH4 by ROS derived from another source induces
eNOS uncoupling and the amplification of oxidative stress
in conditions of hypercholesterolemia and atherosclerosis
in human [82] and in apoE-/- mice [83]. Indeed, endothe-
lial dysfunction is abolished by BH4 supplementation in
hypercholesterolemic patients [82]. Thus, depletion of BH4

(e.g., oxidized by •ONOO-) may have an impact on turn-
ing eNOS into an •O2

- generating enzyme and thereby

may lead to endothelial dysfunction. In apoE-/- mice
endothelial dysfunction is associated with increased •O2

-

and decreased eNOS activity [7,69]. NADPH oxidase,
which transfers electrons from NADH or NADPH to
molecular oxygen to produce •O2

-, is necessary for the
normal progression of atherogenic lesions in apoE-/- mice
[84,85]. In the conducting vessels of hypercholesterolemic
mice, it has been reported that NADPH oxidase contri-
butes markedly to the impairment of endothelium-depen-
dent vasodilatation by inactivating NO and increasing
oxidative stress [85,86]. Accordingly, the inhibition of
NADPH oxidase by apocynin improves ACh-induced
relaxation in the superior mesenteric artery [86]. Similarly,
an SOD mimetic was shown to reverse aortic endothelial
dysfunction in apoE-/- mice by decreasing the levels of
NADPH oxidase-dependent •O2

- [87]. In support of these
findings, it was shown that antianginal and anti-ischemic
ivabradine reduced vascular NADPH oxidase activity,
improved aorta endothelial function and reduced athero-
sclerotic plaque in young apoE-/- mice fed a Western-type
diet [74]. Moreover, apoE-/- mice that are genetically defi-
cient in NADPH oxidase show retarded development of
atherosclerosis in the aorta [84]. Angiotensin also plays an
important role in this process, as demonstrated by Daugh-
erty et al. [88] in LDL receptor-deficient and Ang AT1A

receptor-deficient mice. In addition to the augmented sys-
temic renin-angiotensin system, locally formed Ang II
appears to play an important role in the mechanism that
affects NO bioavailability, as indicated by the discovery
that hypercholesterolemia may trigger the upregulation of
vascular chymase, which may be involved in intimal lipid
deposition, and may facilitate the development of athero-
sclerosis [89]. In apoE-/- mice, Ang II also contributes to
increased NADPH-dependent vascular •O2

- production
and is implicated in the pathogenesis of atherosclerosis
and endothelial dysfunction in this model [7,90-93]. This
concept is supported by the finding that the inhibition of
Ang II normalizes vascular •O2

- and NADPH oxidase
activity and improves endothelial dysfunction in young
atherosclerotic animals [94]. This observation suggests a
crucial role for Ang II-mediated •O2

- production in the
early stages of atherosclerosis. Contrarily, some fragments
of the renin angiotensin system can counteract the deleter-
ious actions of ROS, as indicated by the finding that the
treatment of apoE-/- mice with Ang IV [75] or Ang 1-7
[76] improved aortic endothelial function, which was asso-
ciated with decreased •O2

- levels and increased eNOS
expression, i.e. increased NO bioavailability [75,76]. There-
fore, the uncoupling of eNOS in the endothelium may lead
to oxidative stress and endothelial dysfunction via (a) the
diminished enzymatic production of NO, (b) the increased
production of •O2

- contributing to oxidative stress, and (c)
the simultaneous production of NO and •O2

-, generating
•ONOO-.

Acetylcholine (-log mol/L)

Washout9 8 7 6 5 4

C lControl

U46619 10-7 mol/L

50μm
ApoE

4 minU46619 10-7 mol/L

Figure 5 A tracing illustrating the reduced acetylcholine-
induced vasorelaxation of a common carotid artery ring that
was precontracted using the thromboxane analog U46619 in a
male apolipoprotein E-deficient (ApoE) mouse compared with
a wild-type C57BL/6J (control) mouse. Both animals were fed a
lipid-rich Western-type diet for 26 weeks. Reproduced with
permission from d’Uscio et al. [80].
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The role of endothelial antioxidant enzymes and smooth
muscle cell cGMP and cAMP
Impairment of endothelial dysfunction in large vessels may
also be related to the abnormal degradation and/or inacti-
vation of NO by •O2

- because of the incorporation of lipids
within the endothelium [12]. Thus, the functional integrity

of antioxidant enzymes e.g., SOD, glutathione peroxidase,
heme and oxygenase, is important for protection against
oxidative stress and endothelial dysfunction. Accordingly,
aortas from apoE-/- mice fed a Western-type diet showed
an impaired dilation response to ACh and a decreased
SOD activity compared to apoE-/- mice fed a normal chow
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Figure 6 Hypothetical scheme illustrating the possible mechanisms that lead to endothelial nitric oxide synthase (eNOS) uncoupling
(thick lines/arrows), which results in a reduction of nitric oxide (NO) release and an exacerbation of superoxide anion (•O2

-)
production, generating peroxynitrite (•ONOO-) and thus, leading to impaired vasodilation. The main causes of the generation of excessive
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diet [65]. Although reports show that SOD protein expres-
sion is unaltered in aorta that are exposed to hypercholes-
terolemia [69], SOD mimetics reduced •O2

- production
and partially normalized relaxation in response to ACh in
aortic and carotid arteries from apoE-/- mice [69,80,87].
Moreover, increased •O2

- levels and impaired relaxation in
response to ACh were observed in the carotid arteries of
aged (~65-week-old) apoE-/- mice that are heterozygous
for the mitochondrial isoform of SOD2 (apoE-/-/SOD2+/-)
compared with mice that are homozygous for the gene
(apoE-/-/SOD2+/+), although PC levels and intimal areas
were similar [8]. Thus, during the last three decades, accu-
mulating evidence suggests that the main mechanism
involved in endothelial dysfunction in hypercholesterole-
mic mice is the decrease in the bioavailability of endothelial
NO due to a reduction in eNOS activity and/or a break-
down of NO by •O2

-. Because of these new insights into
the mechanisms of endothelial dysfunction, it is anticipated
that specific therapies will be developed to prevent and
treat the endothelial dysfunction that is observed in
hypercholesterolemia and atherosclerosis.
Some studies have examined the hypothesis that the

vascular dysfunction may be dependent not only on the
reduced bioavailability of NO but also on the altered
responsiveness of VSMCs to NO. Therefore, the func-
tional integrity of the VSMC has been tested to deter-
mine the contribution of this vascular layer to the
vascular dysfunction. Interestingly, cGMP levels were sig-
nificantly reduced in the atherosclerotic aortas [69] but
not in the carotid arteries without morphological changes
[80] from male apoE-/- mice fed a Western-type diet,
indicating that a selective loss of cGMP-dependent vas-
cular function is associated with atherosclerosis in this
animal model. Others have shown that in apoE-/- mice
exhibiting normal [4,12,16] or impaired [4,6,7,62,71,
73,80,85] endothelial NO-dependent relaxations, the
endothelium-independent vasorelaxation in response to
an NO donor, i.e., sodium nitroprusside (SNP), was not
affected, indicating that the responsiveness of the VSMC
to NO is preserved. However, an attenuated endothe-
lium-independent response was observed in atherosclero-
tic aortas from apoE-/- mice fed a lipid-rich Western-type
diet [69] but it was not observed in non-atherosclerotic
carotid arteries [80]. Thus, despite some controversies,
there is evidence that the apoE-/- mouse, in addition to
its endothelial dysfunction, exhibits decreased VSMC
responsiveness to NO in conducting arteries that have
atherosclerotic lesions but not in conducting arteries that
do not have atherosclerotic lesions.

Promising approaches for the treatment of vascular wall
oxidative stress and endothelial dysfunction
The incorporation of lipids within the endothelium, an
early manifestation of atherosclerosis, and the associated

oxidative processes may contribute to the degradation of
NO [12]. The assumption that oxLDL plays a pivotal
role in the pathogenesis of endothelial NO dysfunction
is based on the findings of Jiang et al. [22], who demon-
strated that the in vitro treatment of aorta with oxLDL
mimicked the endothelial NO dysfunction that was
observed in apoE-/- mice. Moreover, adenovirus-
mediated gene transfer of the human paraoxonase 1
(PON1), an HDL-associated enzyme that destroys lipid
peroxides, into aged apoE-/- mice with advanced athero-
sclerosis, decreased the oxLDL content of the plaques
and restored endothelial function in plaque-bearing but
not in plaque-free segments of the thoracic aorta [67].
In addition, macro and microvascular function in
apoE-/- mice was restored by treatment with large empty
phospholipid vesicles, which accelerates the reverse
pathway of lipid transport from peripheral tissues to the
liver [95]. These data show that oxLDL plays an impor-
tant role in the pathogenesis of endothelial NO dysfunc-
tion in apoE mice and points to additional promising
approaches for the treatment of vascular wall oxidative
stress and endothelial dysfunction in atherogenic hyper-
lipidemia. As reviewed elsewhere [39,60], several studies
of the therapeutic effect of lipid-lowering statins on
endothelial dysfunction have resulted in an improve-
ment of the endothelium-dependent dilation of coronary
and peripheral arteries in patients, independent of its
PC-lowering effects. In hypercholesterolemic apoE-/-

mice, it has been shown that statin treatment promotes
eNOS function in aortic extracts [96]. In apoE-/- mice
suffering from hypercholesterolemia and atherosclerosis,
statin therapy prevents the deficit in the bioavailability
of NO in carotid arteries [23]. Interestingly, statins pre-
vent the enhanced vasoconstrictor response to ET-1 of
aortas in apoE-/- mice, independent of their lipid-lower-
ing properties [97]. The potential of statins for the pre-
vention and treatment of endothelial dysfunction in the
apoE-/- mouse is currently under intense investigation.
Other therapies have also been tested, including the sys-
temic administration of rapamycin-eluting stents, which
have been used for percutaneous coronary interventions
and are associated with high eNOS and protection
against atherosclerosis. Although rapamycin treatment
can protect against atherosclerosis in carotid arteries
[98], studies from our laboratory show that this agent
does not affect vascular responsiveness in the resistance
mesenteric arteries of apoE-/- mice [99]. The effect of
non-pharmacological therapies on vascular dysfunction
in hypercholesterolemic mice has also been tested. For
example, physical exercise has been shown to prevent
the progression of atherosclerotic lesions and the
endothelial NO-dependent dysfunction of thoracic aor-
tas from apoE-/- mice [73,85]. This effect is likely a
result of improving the sensitivity of vasorelaxations
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induced by vasodilating agents and shear stress and by
improving the efficiency of signaling events that lead to
an increase in NO bioactivity [19,73]. The above data
also provide a rationale for further studies aimed at test-
ing new preventive and corrective therapies for endothe-
lial dysfunction in atherosclerotic disease. In this
context, there is an urgent need for the development of
sensitive and specific biomarkers to assess the oxidant
status of patients with endothelial dysfunction.

The endothelial dysfunction in resistance vessels
Because the vascular morphology function of the micro-
circulation and large vessels differ, the conclusions
based on data obtained from large arteries cannot be
generalized and applied to microcirculation. However, in
contrast to large arteries, much less is known about the
effects of hypercholesterolemia on resistance vessels,
which are of physiological importance in the control of
blood flow and organ perfusion. Hypercholesterolemia
also impairs the endothelium NO-dependent function in
the resistance arteries of patients [100], despite the fact
that the resistance vessels rarely exhibit atherosclerosis.
Studies have shown that young (6-19-week-old) male
apoE-/- mice fed a standard chow diet (hypercholestero-
lemia only) have a preserved endothelial NO-dependent
relaxation response to ACh in cutaneous vessels [101]
and in the mesenteric vascular bed [102,103]. A similar
phenotype has been reported in the mesenteric arteries
[20,99] and skeletal muscle resistance arterioles [16,104]
in adult male (20-40-week-old) mice. Interestingly, the
coronary resistance vessels from this murine model fed
a regular chow diet do not exhibit impaired vasodilator
responses to ACh (or to PGE2 mimetics), but they do
exhibit impaired vasodilator response to bradykinin
[105,106]. Nevertheless, when apoE-/- mice are fed a
Western-type diet, the ACh-induced relaxation
responses in coronary arterioles and in segments of

mesenteric arteries are attenuated and increased levels
of ET-1 are observed [20,106,107]. As outlined for large
vessels, gender can also be an important factor that
influences endothelial dysfunction in resistance vessels.
Indeed, as shown in Figure 7, an impaired relaxation
response to ACh in resistance mesenteric arteries was
reported in female [108], but not in male [102] apoE-/-

mice fed a standard chow diet. Reduced responses to
ACh were also reported in cerebral arterioles from
female apoE-/- mice fed either normal or high-fat diets
despite the absence of atherosclerotic lesions in those
vessels [109]. In the same study, the authors also noted
that although female apoE-/- mice on high-fat diet had
higher total PC levels and more extensive atherosclerotic
lesions in the aorta than either the control or apoE-/-

mice on a normal diet, the impairment of the responses
to ACh was similar in on both normal and high-fat diet
apoE-/- mice. Hypercholesterolemia, even without mor-
phological changes in resistance vessels, is associated
with endothelial dysfunction in females but is not con-
sistently observed in males. Therefore, one must be cau-
tious when interpreting these results because female
apoE-/- mice may be more susceptible to developing
endothelial dysfunction, as suggested by evidence show-
ing that females are more prone to developing athero-
sclerosis than males [5,21,24,36].

The role of NO, ROS and endothelin in endothelial
dysfunction of resistance vessels
It has been proposed that in resistance vessels in mice,
the predominant agonist-induced endothelium-depen-
dent vasodilation is not mediated by NO, PGI2 or sGC
but by H2O2 or an EDHF-like principle agent [54,110].
Accordingly, in the cerebral arterioles of hypercholester-
olemic female mice, endothelium-dependent dilator
responses are improved by treatment with the cell
permeable SOD mimetic tempol, a superoxide

Figure 7 Graphs showing impaired endothelium-dependent relaxation in response to acetylcholine (ACh) in mesenteric resistance
arteries of female but not male apoE-/- mice fed a regular chow diet. The values are means ± SEM. **p < 0.01 compared with wild-type
(C57) mice. Reproduced with permission from Arruda et al. [102] (right panel) and from Cola et al. [108] (left panel).
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scavenger, and apocynin, an inhibitor of NADPH oxi-
dase [109], suggesting that hypercholesterolemia may
modulate cerebral arteriolar dysfunction, at least in part,
via NADPH oxidase-derived •O2

-. Likewise, coronary
resistance vessels from apoE-/- mice demonstrate a pre-
served function of the PGI2 system; however, NADPH
induced •O2

- formation was enhanced in cardiac
extracts from hearts, and the vasodilator response to
bradykinin was practically abolished by an SOD mimetic
[105] indicating that the endothelial dysfunction in these
vessels is likely mediated by the inactivation of bioavail-
able NO by •O2

-. Moreover, others have shown that in
apoE-/- mice fed a Western-type diet, the impairment of
the vasodilator response of coronary arterioles to ACh
was partially restored by the NADPH oxidase inhibitor
apocynin [107]. These findings indicate that the
endothelial dysfunction in coronary resistance vessels is
not due to a reduced eNOS expression, but is most
likely a result of the inactivation of bioavailable NO by
•O2

-. However, in mesenteric arteries from male apoE-/-

mice, the impaired relaxation response to ACh was par-
tially inhibited by L-NAME but the remaining portion
of the response was not attenuated further by indo-
methacin. However, treatment with the ET antagonist
darusentan restored normal endothelial function [20],
suggesting that endothelial NO, but not endothelium-
derived prostanoids, mediates a portion of the relaxation
response to ACh and this observation highlights the
contribution of ET-1 to endothelial dysfunction. Thus,
in the apoE-/- mouse, the major contribution to the

endothelial dysfunction in resistance vessels appears to
be from the increase in NADPH oxidase-derived •O2

-

and ET-1.

The balance between vasoconstrictor and vasodilator
responsiveness in conducting and resistance vessels
Local vascular control depends on the balance between
dilators and constrictors; thus vascular dysfunction, a
term that is most often used to describe the impairment
of endothelium NO-dependent vasodilatation, also
involves changes in the vasoconstrictor response to
endogenous and exogenous agents (see diagram in Fig-
ure 8). For local vascular control, the major opposition
to vasodilator substances is ET-1 and this is in addition
to Ang II from the renin-angiotensin system, which
exists in the vascular endothelium [57]. In other species,
hyperlipidemia has been associated with altered vaso-
constrictor responsiveness in large arteries [111,112].
These studies demonstrated that vasoconstrictor
responses to NE are increased in hypercholesterolemic
rabbits and monkeys prior to their development of
atherosclerosis. Arruda et al. [102] and Pereira et al.
[103] showed that in mesenteric resistance arteries from
male apoE-/- mice fed a normal chow diet, vasoconstric-
tion in response to norepinephrine was exacerbated
despite a preserved vasodilation response to ACh, which
could be attributed to increased oxidative stress, as indi-
cated by the finding that apocynin (a NADPH oxidase
inhibitor) normalizes the increased vasoconstriction
induced by the a1-adrenoceptor agonist phenylephrine

Effect of Diet and Gender on Resistance Vessel Responsiveness in the apoE-/- Mouse
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(PE) in hypercholesterolemic mice [86]. On the one
hand, when fed a standard diet, apoE-/- mice lesion-free
thoracic aortas, which exhibit normal ACh-induced
relaxations, exhibit an exacerbated sensitivity to PE,
which is attributable to an attenuated basal bioavailabil-
ity of NO [63]. On the other hand, young apoE-/- mice
fed a Western-type diet exhibit a normal aorta contrac-
tile response to PE but an augmented vasoconstrictor
response to ET-1 [97]. However, when apoE-/- mice
were fed a Western-type diet, which resulted in attenua-
tion of the ACh-induced relaxation response in seg-
ments of the mesenteric arteries, increased levels of ET-
1 and enhanced contractions in response to ET-1 and
serotonin were observed [20]. In addition, the authors
showed that treatment with the ET antagonist darusen-
tan normalized the endothelium-dependent relaxation
responses. Thus, the vascular dysfunction characterized
by hyperresponsiveness of conducting and resistance
vessels to a1-adrenoceptor agonists appears to be due to
increased oxidative stress. The studies outlined above
also suggest a remarkable contribution of the endogen-
ous ET-1 peptide to endothelial dysfunction, primarily
in resistance arteries.

The association of DNA damage with endothelial
dysfunction and its treatment with new therapies
A number of studies support the concept that there is a
link between the ROS-induced oxidative damage to
DNA in atherosclerosis and the overexpression of poly
(ADP-ribose) polymerase (PARP) [113-116]. However,
studies of the effects of acute and chronic PARP inhibi-
tion on the ability of the aorta to relax in response to
ACh in apoE-/- mice have produced conflicting conclu-
sions. Pacher et al. [70] reported that the activation of
PARP is associated with hypertension and aging, but not
with atherosclerosis. In contrast, others [71,113] have
shown that functional alterations in the endothelium, at
least in the apoE-/- mouse, are dependent on the activa-
tion of PARP in endothelial cells. Excessive oxidative
stress and DNA damage have also been associated with
vascular senescence, which was originally described as
the limited ability of a cell to divide, and this could con-
tribute to the pathogenesis of age-associated vascular
disorders [117,118]. However, recent studies in our
laboratory showed that, at least in the aorta, vascular
senescence is present in atherosclerotic aged apoE-/-

mice but not in non-atherosclerotic aged wild-type
C57mice [119], indicating that the occurrence of vascu-
lar senescence in aging needs to be associated with a
vascular disease. The findings that vascular endothelial
cells with senescence-associated phenotypes are present
in human atherosclerotic lesions [120] and in athero-
sclerotic aged apoE-/- mice [119] leads us to hypothesize
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Flk-1

CD133CD133
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apoE KO apoE KO-MNCapoE KO apoE KO MNC
Figure 9 Representative photomicrographs showing the effect
of mononuclear cell (MNC) therapy on (A) lipid deposition (Oil-
Red-O staining), (B) homing of endothelial progenitor cells
(stained with markers Flk-1 for vascular endothelial growth
factor receptor and CD133 for hematopoietic stem cell
antigen), (C) superoxide anion production (dihydroethidium
staining), and (D) eNOS production (DAB staining) in the aortas
of female apoE KO mice. Bar: 100 μm (A) and 50 μm (B, C and D).
Reproduced with permission from Porto et al. [124].
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that the senescence of vascular endothelial cells may be
involved in endothelial dysfunction. The first evidence
of this arises from the observation that the induction of
senescence in human aortic endothelial cells by inhibit-
ing telomere function results in decrease in eNOS activ-
ity [120,121]. Thus, the apoE-/- mouse model offers an
opportunity to examine and understand the interaction
of vascular endothelial dysfunction and senescence that
is associated with the pathogenesis of atherosclerosis.
However, there is consistent evidence [122], that the
atherosclerotic process initiated by endothelial death in
specific areas results in their subsequent replacement by
endothelial progenitor cells and that cellular repair by
progenitor cells of ongoing vascular injury may be
important for vascular integrity and function. Indeed,
treatment with spleen-derived mononuclear cells
increases vascular NOS activity and restores endothe-
lium-dependent relaxation in the aorta of apoE-/- mice
[123]. This effect could be explained by our recent
observation [124] that mononuclear cell therapy in
apoE-/- mice results in the homing of endothelial pro-
genitor cells, a decrease in oxidative stress and an upre-
gulation of eNOS expression (Figure 9). Therefore, cell

therapy is a promising tool for the restoration of
endothelial function and prevention of atherosclerosis
development. Interestingly, a recent report [125] shows
that sildenafil, a PDE5 inhibitor that increase NO-driven
cGMP levels (see scheme in Figure 3), increases the
number of bone marrow-derived endothelial progenitor
cells and improves ischemia-induced neovascularization
in hypercholesterolemic apoE-/- mice. The results of this
pharmacological therapy [125] and other cell therapy
[123,124] studies in the apoE-/- mouse supports ongoing
studies in our laboratory, in which both therapies are
associated with the purpose to obtain a better improve-
ment of endothelial function in this murine model of
hypercholesterolemia and atherosclerosis.

Conclusion
Since its creation two decades ago, the apoE-/- mouse,
which spontaneously develops hypercholesterolemia and
vascular atherosclerotic lesions even when fed a regular
chow diet, has provided us with excellent opportunities
for investigating the role of apoE in lipid metabolism
and to the disease process of atherosclerosis. In this
review, we show that the influence of gender on the
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development of atherosclerotic lesions is controversial,
but evidence of the detrimental effects of estrogen on
atherosclerosis has emerged during the last decade. Thus,
the influence of female gender, associated with age and
type of diet, on atherosclerotic lesions and endothelial
dysfunction in the apoE-/- mouse are expected to be sub-
ject of intense research. Several studies provide unques-
tionable evidence of endothelial dysfunction in
conducting and resistance vessels in the apoE-/- mouse.
Most of these studies show that at the early stages of the
disease, aortas retain their normal endothelial function
but at the later stages of the disease and when mice are
fed a Western-type diet, conducting vessels exhibit focal
(plaque related) impairment of endothelial NO-mediated
dilation. The dysfunction of the large vessels in this mur-
ine model is mainly a result of the reduced bioavailability
of NO due to decreased eNOS activity and/or the chemi-
cal inactivation of NO by •O2

-, and the activation of the
ET-1 system. In resistance vessels, the major contribution
to the endothelial dysfunction appears to be an increase
in NADPH oxidase-derived •O2

-, EDHF and ET-1.
Despite the lack of studies focusing specifically on the
influence of gender on endothelial dysfunction in apoE-/-

mice, there is some evidence that endothelial dysfunction
in both conducting and resistance vessels is influenced by
gender, aging and a Western-type diet. Scheme in Figure
10 summarizes the main lipid abnormalities and their
consequence to atherosclerosis and to abnormal vascular
responsiveness mediated through a NO/ROS imbalance
in the apoE-/- mouse. From a clinical perspective, as the
mechanisms involved in the vascular reduction in NO
bioavailability and the excessive production of ROS
become clear, more specific therapies to prevent this
defect will be developed that will ultimately lead to the
correction of endothelial dysfunction. In particular, stu-
dies investigating the use of cell therapy to restore vascu-
lar function constitute a promising avenue of research.
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