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Abstract
Objectives To evaluate the performance of a deep convolutional neural network (DCNN) in detecting and classifying distal
radius fractures, metal, and cast on radiographs using labels based on radiology reports. The secondary aim was to evaluate the
effect of the training set size on the algorithm’s performance.
Methods A total of 15,775 frontal and lateral radiographs, corresponding radiology reports, and a ResNet18 DCNN were used.
Fracture detection and classification models were developed per view and merged. Incrementally sized subsets served to evaluate
effects of the training set size. Twomusculoskeletal radiologists set the standard of reference on radiographs (test set A). A subset
(B) was rated by three radiology residents. For a per-study-based comparison with the radiology residents, the results of the best
models were merged. Statistics used were ROC and AUC, Youden’s J statistic (J), and Spearman’s correlation coefficient (ρ).
Results Themodels’AUC/J on (A) for metal and cast were 0.99/0.98 and 1.0/1.0. Themodels’ and residents’AUC/J on (B) were
similar on fracture (0.98/0.91; 0.98/0.92) and multiple fragments (0.85/0.58; 0.91/0.70). Training set size and AUC correlated on
metal (ρ = 0.740), cast (ρ = 0.722), fracture (frontal ρ = 0.947, lateral ρ = 0.946), multiple fragments (frontal ρ = 0.856), and
fragment displacement (frontal ρ = 0.595).
Conclusions The models trained on a DCNN with report-based labels to detect distal radius fractures on radiographs are suitable
to aid as a secondary reading tool; models for fracture classification are not ready for clinical use. Bigger training sets lead to
better models in all categories except joint affection.
Key Points
• Detection of metal and cast on radiographs is excellent using AI and labels extracted from radiology reports.
• Automatic detection of distal radius fractures on radiographs is feasible and the performance approximates radiology
residents.

• Automatic classification of the type of distal radius fracture varies in accuracy and is inferior for joint involvement and
fragment displacement.
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Abbreviations
AI Artificial intelligence

AUC Area under the receiver operating characteristic
curve

CI Confidence interval
DCNN Deep convolutional neural networks
DL Deep learning
J Youden’s J statistic
SGD Stochastic gradient descent
κ Fleiss’ kappa statistics
ρ Spearman‘s correlation coefficient
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Introduction

Acute distal radius fractures are common traumatic injuries
and comprise 17% of all fractures in western societies [1].
Distal radius fractures can be diagnosed confidently on wrist
radiographs [2]. These radiographs are often seen by non-
specialized physicians. If radiographs and clinical symptoms
are ambiguous to the emergency or family doctor, an inaccu-
rate diagnosis or treatment delay may occur. Automated frac-
ture detection and reporting may reduce diagnostic uncertain-
ty and aid in flagging radiographs for referral to a specialist
and support the workflow by providing a preliminary radiol-
ogy report. The number of publications using deep learning
(DL), a computationally demanding subcategory of artificial
intelligence (AI), has steeply increased in recent years. The
rapid evolvement of DL has only been possible due to widely
available graphic processor units that meet the needs of DL. A
category of DL is known as deep convolutional neural net-
works (DCNN), which addresses the underlying architecture.
DCNNs are well suited for pattern detection on images. They
have successfully been used for fracture detection and locali-
zation on radiographs [3–12]. Training data for automated
fracture detection have been heterogeneously labeled by or-
thopedic surgeons [5], orthopedic specialists [6], radiology
[10, 11, 13, 14] or orthopedic [15] residents and general radi-
ologists [4] or specialized musculoskeletal radiologists [7, 8].
Cheng et al [8] used registry data to label hip fractures on
radiographs and only Olczak et al [12] used key phrases of
radiology reports to label radiographs for the training set.
While the potential of laborious expert-based data labeling is
well described, the potential of labels extracted by a key
phrase search is unclear. To date, five studies have evaluated
the automated detection of distal radius fractures on radio-
graphs with promising sensitivities and specificities of 81–
98% and 73–100%, respectively [4–6, 12, 13]. In order to
generate a useful radiology report, an algorithm for fracture
classification beyond fracture detection and localization is re-
quired.Moreover, the ideal number of radiographs to train and
test an algorithm for peripheral fracture detection is unclear
and studies utilized varying numbers ranging from 524 to
65,264 radiographs [12, 13].

The main purpose of this study was to evaluate the perfor-
mance of a DCNN in detecting and classifying distal radius
fractures, metal, and cast on wrist radiographs using labels
based on unstructured radiology reports. The secondary aim
was to evaluate the effect of the training set size on the algo-
rithm’s performance.

Materials and methods

Institutional review board approval was waived for this retro-
spective study.

Study population

A retrospective search of our radiology information sys-
tem using a custom-written PACS-crawler was performed
to select radiology reports of wrist radiographs between
April 2010 and December 2019. They were searched for
the key phrase “distal radius fracture” with a total of
9,818 detected reports (Fig. 1). These were sorted into
three categories: distal radius fracture detection and clas-
sification (category 1); metal detection (category 2); cast
detection (category 3). Category 1 included only reports
from the emergency department and their reports with the
keywords “osteosynthesis,” “plate,” “cast,” and/or “fol-
low-up” were excluded as well as additional radiographic
views, such as of the scaphoid, hand, or forearm. Studies
with one single view were included in the training set, but
manually excluded from the test set. Category 2 consisted
of reports from all referring departments with the key-
words “osteosynthesis” and/or “plate.” Category 3 includ-
ed reports with the keyword “cast” from the same selec-
tion. A total of 7,326 reports with 15,775 radiographs
were included.

Training and test sets

The included reports were split into a training and a test set for
each of the three investigated categories (Fig. 1). The training
sets included studies from April 2010 to December 2018, and
the test sets studies from July 2019 to December 2019.

Radiographs of the fracture detection and classification cat-
egory were sorted by the view. For the fracture detection
training set, the labels “fracture” or “no fracture” were
assigned to all radiographs depending on key phrases indicat-
ing presence or absence of distal radius fracture in the report.
For the fracture classification training sets, only radiographs
with the label “fracture” were eligible. The classification la-
bels were distributed according to key phrases, including “dis-
placement,” “ulnar,” “radial,” “dorsal,” “volar/palmar,”
“intraarticular,” “extraarticular,” and “multifragmented” as
proposed by the AO/OTA classification [16]. Reports that
did not match either of the keywords were not classified and
were referred to as simple fractures.

The label “metal” was applied to radiographs in the metal
category. The label “no metal” was applied to all radiographs
from the fracture detection and classification category. The
procedure for the cast category was equal. For both categories,
the views were used indistinctively.

To assess the suitability of labels based on key phrases
extracted from radiology reports as input for DCNN training,
standardized training subsets were randomly generated with
predefined subset sizes ranging from 500 to a maximum of
9,000 radiographs (Fig. 2), leading to a total of 62 subsets.
Only the metal and cast detection training sets contained more
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than 9,000 images and no improvement was expected from
training set sizes beyond that number. For the training sets in

the fracture detection and classification category, all available
radiographs were allocated to the largest subset, which did not

Fig. 1 Flowchart demonstrates the selection of training and test sets for
wrist radiographs. Exclusion criteria marked with an asterisk (*) are only
applicable for the test sets. One radiograph was eligible for multiple
fracture classification labels. Test set A was rated by two

musculoskeletal radiology experts and reflects the standard of reference.
Test set B is a subset of A and used to compare three radiology residents
to the algorithms

Fig. 2 Flowchart shows the training and test architecture. Top—Set-up of
training subsets and their sizes. All subsets were in accordance with the
predefined sizes, except the biggest subset, which contained all
radiographs available for each category. Middle—Set-up to develop
artificial intelligence (AI) algorithms. Performance was evaluated with
area under the receiver operating characteristics curve (AUC),
Youden’s J statistic (J), and accuracy. Bottom—Set-up to determine the

radiology resident`s performance and performance evaluation on test set
A (AI only) and B (AI and radiology residents). *Metal and cast detection
training sets were limited to 9,000 images and included both views
simultaneously; therefore, the model was used directly, avoiding the
splitting and averaging of predictions steps (see middle set-up). DCNN
= deep convolutional neural network
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reach the predefined size. In each randomly generated subset,
the original ratio between positive and negative labels was
maintained (Fig. 1). Each subset was split into 90% training
and 10% validation.

Artificial intelligence algorithms

The selected DCNN architecture was ResNet 18, pre-trained
on ImageNet using the DL framework Pytorch (version 1.2,
https://pytorch.org). Trainings and tests were run on a
NVIDIA GTX 2080TI (NVIDIA) with 11GB of RAM. The
batch size was set to 24. An optimizer stochastic gradient
descent (SGD) was used with an initial learning rate of 0.
001 and a momentum of 0.9. The learning rate was reduced
by 0.1 every seven epochs. Data was augmented with a hori-
zontal flip and, with a probability of 50%, application of an
affine transformation with up to five degrees and scaling be-
tween 90 and 110%. Training was performed in 15 epochs.
For training and tests, the images were center cropped to a size
of 1024 × 1024 pixels and resized to 224 × 224 pixels with a
subsequent normalization of pixel values according to the
ImageNet mean and standard deviation.

Two models trained with one set can perform substantially
different (Fig. 3). To receive a good estimate on the maximal
potential of a training subset size, ten models were trained on
each subset, leading to a total of 620 models.

Test set A

For fracture detection and classification, the standard of refer-
ence was set by two musculoskeletal senior radiologists with
14 (B.K.) and 15 (A.H.) years of experience. They labeled 582
wrist radiographs in consensus and blinded to clinical

information viewing them in pairs on Nora (Nora Medical
Imaging Platform Project) as follows: presence or absence of
distal radius fracture, fragment displacement, joint involve-
ment, and multiple fragments. Ground truth labels were
assigned to each radiograph separately. For metal and cast
detection, one reader (P.T.) labeled a total of 671 wrist
radiographs.

Test set B

From the test set A, 326 radiographs were systematically se-
lected to create test set B. Goals were to exclude metal and
cast, and reduce the amount of fracture negatives. Three radi-
ology residents (2nd year (R.S.), 3rd year (V.H.), and 4th year
(F.P.)) analyzed test set B independently and blinded to clin-
ical information on Nora with a simultaneous display of both
views, as follows: presence or absence of distal radius frac-
ture, fracture displacement, joint involvement, and multiple
fragments. Radiology residents’ answers were registered for
each pair of radiographs. Prior to that, all three readers re-
ceived a tutorial introduction on the use of Nora and the ap-
plied criteria on wrist radiographs not included in the test set
B.

Statistical analysis

Area under the receiver operating characteristic curve (AUC)
and Youden’s J statistic (J) was determined for the averaged
results of the radiology residents, and for all models and algo-
rithms (Fig. 2). To determine correlation between training
subset size and model performance, Spearman‘s correlation
coefficient (ρ) was used for an all-models per training subset

Fig. 3 Artificial intelligencemodels performance for distal radius fracture
detection, classification, and cast and metal detection on test set A. The
performance was measured with the area under the receiver operating
characteristics curve (AUC). The graph shows the effect of an

incrementally increased training subset size between 500 (subset 1) and
9,000 (subset 12) radiographs on model performance, and the possible
performance variation per training subset
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and also for a best-model per training subset analysis. The
best model was determined by AUC.

To simulate the human interdependent evaluation in frac-
ture detection and classification on radiographs, only the
models with the highest AUC in each test set were used for
the respective analysis. First, predictions, which were calcu-
lated for each view separately, were averaged on a per-study
base. If only one view was rated positive for a finding, this
single view was assessed with the algorithm and the other
view was assigned zero. This average of the two best models
is referred to as algorithm. In addition to AUC and J, the
accuracy on test set A was calculated.

Results of the three radiology resident readers (2nd to 4th
year of residency) were averaged (Fig. 2). The wrongly clas-
sified radiographs were manually reviewed.

Chi-square test was used to compare the frequency of
fractures and classes between the test set A and training
set. Interobserver agreement between the standard of refer-
ence, radiology resident analysis, and AI algorithms and
models was assessed using Fleiss’ kappa statistics (κ).
According to Landis and Koch, a kappa value of 0–0.20
indicates slight agreement; 0.21–0.40, fair agreement; 0.41–
0.60, moderate agreement; 0.61–0.80, substantial agreement;
and 0.81–1, almost perfect agreement [17]. A p value of <
0.05 was considered statistically significant. For all analyses,
Python 3 (Python Software Foundation) and SPSS 26 (IBM
SPSS Statistics for Windows) were used.

Results

Study population

Training and test set A did not differ for the frequency of
fracture presence on the lateral view (43%/42%; p = 0.67)
and joint involvement on both views (frontal, 50%/58%; p =
0.09; lateral, 44%/36%; p = 0.09; Fig. 1). However, they dif-
fered for the presence of a fracture on the frontal view (48%/
41%; p = 0.02), multiple fragments (frontal, 39%/71%; p <
0.001; lateral, 36%/70%; p < 0.001), and fragment displace-
ment (frontal, 61%/27%; p < 0.001; lateral, 65%/81%; p <
0.001) on both views.

Training subset size and AI performance

Table 1 and Fig. 3 display correlations of the training
subset sizes and the performance of models measured by
AUC. Regarding the total 620 models, a statistically sig-
nificant positive correlation was evident on both views for
fracture detection (frontal, ρ = 0.947, p < 0.001; lateral, ρ
= 0.946, p < 0.001), and classification of multiple frag-
ment (frontal, ρ = 0.856, p < 0.001; lateral, ρ = 0.489, p =
0.0013), as well as on the frontal view for fragment

displacement (ρ = 0.595, p < 0.001). The correlation
was equally traceable for detection of metal (ρ = 0.740,
p < 0.001) and cast (ρ = 0.722, p < 0.001).

The correlation was similar when calculated for only
the best 62 models. Of these, all but multiple fragments
classification on the lateral view (ρ = 0.800, p=0.2)
reached statistical significance. The correlation for metal
(ρ = 0.522, p = 0.07) and cast (ρ = 0.305, p=0.34)
detection was lower, due to an already very good per-
formance using small numbers (Fig. 3).

The performance of models for fracture detection, devel-
oped with training sets between 500 and 2,000 radiographs
and measured by AUC, was 0.82–0.96 (frontal), and 0.80–
0.94 (lateral). Only three of the classification tasks showed
statistically significant correlation: multiple fragments 0.51–
0.78 (lateral) and 0.51–0.82 (frontal) as well as fragment dis-
placement 0.50–0.67 (frontal).

Radiology resident analysis compared to AI

Table 2 and Fig. 4 depict the performance of AI compared
to the radiology resident image analysis. The algorithm and
radiology residents did not show a significant difference
for fracture detection (AUC 0.981/0.983, J 0.907/0.918; p
= 0.864) and classification of multiple fragments (AUC
0.851/0.905, J 0.577/0.704; p = 0.112). However, their
performance significantly differed for classification of
fragment displacement (AUC 0.736/0.916, J 0.410/0.759;
p = 0.002) and joint involvement (AUC 0.654/0.898, J
0.341/0.688; p < 0.001). The residents rated nine images
as false negatives. The algorithm produced three false pos-
itive and four false negative images. Two of the false

Table 1 Spearman’s correlation coefficient (ρ) between training subset
size and model performance measured by area under the receiver operat-
ing characteristics curve (AUC) with two separate analyses.

All models Best models

View ρ p ρ p

Fracture Frontal 0.947 < 0.001 1.000 < 0.001

Lateral 0.946 < 0.001 0.964 < 0.001

Fragment displacement Frontal 0.595 < 0.001 1.000 < 0.001

Lateral −0.119 0.464 0.000 1.000

Joint involvement Frontal 0.046 0.780 −0.800 0.200

Lateral 0.200 0.215 −0.400 0.600

Multiple fragments Frontal 0.856 < 0.001 1.000 < 0.001

Lateral 0.489 0.001 0.800 0.200

Metal Both 0.740 < 0.001 0.522 0.067

Cast Both 0.722 < 0.001 0.305 0.335

Best models per training subset measured AUC. A p value < 0.05 was
considered statistically significant (indicated in bold)
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positives included bony superimposition appearing as cor-
tical irregularity and the other showed radioscaphoid oste-
oarthritis secondary to calcium pyrophosphate deposition
with scapholunate advanced collapse. The false negatives
were all minute fractures.

Interobserver agreement

Agreement between the standard of reference, radiology resi-
dent analysis, and AI models was almost perfect for fracture
detection (κ 0.83–0.88; Table 3). For fracture classification,
overall agreement varied from fair to substantial (κ 0.21–
0.69). Agreement between each of the three radiology resi-
dents and standard of reference was almost perfect for fracture
detection (κ 0.85–0.9) and ranged from fair to moderate (κ
0.31–0.63) for fracture classification.

Discussion

This study evaluated the potential of a ResNet18 DCNN to
develop models which detect cast, metal, and distal radius
fractures on wrist radiographs, and classified fractures, utiliz-
ing labels based on radiology reports.

For the detection of metal and cast, the models achieved
excellent AUCs of 0.99 and 1.00, respectively. Automated
detection of metal from radiographs in a certain body region
may be used to flag the patient’s chart and is of importance
when further radiological examinations are planned, such as
computed tomography or magnetic resonance imaging, to ap-
point a dedicated scanner with a metal artefact reduction pro-
tocol [18].

The best fracture detection algorithm (AUC 0.98, accuracy
0.94) performed similar to the radiology residents (AUC
0.98). Five studies on distal radius fracture detection using
different DCNN models reported a similar performance

(AUCs of 0.93–0.98) using the traditional labeling approach
[4–6, 12, 13]. However, their ground truth for data labeling
varied and included orthopedic surgeons [5], orthopedic spe-
cialists [6], radiology residents [13, 14], and general radiolo-
gists [4]. Lindsey et al [6] stated that only expert-given labels
ensureminimal noise in the training set, and assumed that only
an algorithm trained with high-quality labels can be trusted.
Using manually identified key phrases on radiology reports,
the models of Olczak et al [12] reached a lower accuracy of
0.83 for fracture detection on wrist, hand, and ankle radio-
graphs. To determine their standard of reference and compar-
ison, single radiographs cropped and resized to 256 × 256
pixels were used, which artificially restrained the humans. In
this study, radiographs were viewed in a realistic setting for
ground truth and comparison. Therefore, the results can be
expected to be reproducible in clinical practice. The consid-
ered studies suggested superiority of labels given by muscu-
loskeletal experts, which was not confirmed by our results.
High-quality labels are not expected to significantly improve
the models’ performance. The models failed primarily on dif-
ferent radiographs than the radiology residents do; therefore,
clinical testing of the best fracture detection models is
indicated.

The algorithm performance on multiple fragments classifi-
cation (AUC 0.85, accuracy 0.78) reached comparable results
to the radiology residents. In contrast, algorithms for fragment
displacement (AUC 0.74, accuracy 0.60) and joint involve-
ment (AUC 0.65, accuracy 0.64) performed significantly in-
ferior to the radiology residents.

Automated fracture classification is an essential step to-
wards automated radiology reporting and has not been avail-
able for the wrist to date. Chung et al [9] developed an algo-
rithm to classify proximal humeral fractures on frontal radio-
graphs cropped to the region of interest. Their classification
considered only displaced fragments and the anatomical re-
gion. Their algorithms performed similar to experts and

Table 2 Performance of best artificial intelligence (AI) algorithms and standard of reference (test set A) and of AI and radiology residents (test set B)

Test set A Test set B

AI AI Radiology residents

AUC 95% CI Accuracy AUC 95% CI AUC 95% CI p

Fracture 0.975 0.957–0.992 0.938 0.981 0.963–0.998 0.983 0.965–1.000 0.864

Fragment displacement 0.589 0.463–0.715 0.597 0.736 0.624–0.847 0.916 0.871–0.961 0.002

Joint involvement 0.618 0.516–0.720 0.637 0.654 0.549–0.760 0.898 0.841–0.956 < 0.001

Multiple fragments 0.842 0.774–0.911 0.782 0.851 0.780–0.922 0.905 0.853–0.956 0.112

Metal* 0.989 0.982–0.996 0.976

Cast* 1.000 1.000–1.000 1.000

Data of algorithms display per-study average analysis results. AUC area under the receiver operating characteristics curve, CI confidence interval. Test
set B: A p value < 0.05 was considered statistically significant (indicated in bold). *Values of the best model are given, views were not considered in
these categories
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achieved better results (AUC 0.90–0.98, J 0.71–0.90) than
ours (AUC 0.65–0.85, J 0.34–0.58). However, the results
are not directly comparable since the AO/OTA classification

evaluates joint affection and multiple fragments independent
from fragment displacement. Therefore, further research on
fracture classification is needed.

Fig. 4 Area under the receiver operating characteristics curve (AUC) of the per-study average of the best artificial intelligence (AI) algorithms and
radiology resident analysis. J = Youden’s J statistic

6822 Eur Radiol  (2021) 31:6816–6824



Models were developed on training sets in predefined and
incremental sizes to better understand the potential of labels
based on key phrases for pattern detection on wrist radiographs.
The range of AUC achieved by models using training sets from
500 to 2’000 radiographs were used to rank the difficulty of
pattern detection tasks. It was shown that automated detection
of cast (AUC, 0.99–1.00), metal (0.96–0.98), and fracture
(frontal, 0.82–0.96) were easily feasible. Automated classifica-
tion of multiple fragments was rather difficult (frontal, 0.51–
0.82; lateral, 0.51–0.78), classification of fragment displace-
ment difficult on the frontal (0.50–0.67) and not feasible on
the lateral view. Classification of joint affectionwas not feasible
on either view. The degree of correlation between training set
size and performance may be used to assess the quality of
labels. We found that the interobserver agreement between res-
idents and standard of reference was associated with the corre-
lation between training set size and performance, if joint in-
volvement was excluded from the comparison. The interob-
server agreement in this study is in line with the literature on
reproducibility of the AO/OTA classification [19, 20].
Therefore, we conclude that a keyword-based search can only
generate accurate labels for itemswith high interobserver agree-
ment. Joint involvement may have been inconsistently reported
in our unstructured radiology reports.

Several limitations apply to this study. First, our radiology
reports were written by radiology residents and radiologists
with varying expertise in musculoskeletal imaging and are not
structured, which may have influenced the label quality.
Second, we did not use an advanced dual-input model or en-
semble learning which prevented us from finding the best
combination of models. As described by Pan et al [21] when
building an ensemble, the best combination is obtained from
models which contrast each other ideally, however may not be
the best individual models and may include more than two
models. Third, as we only included images of one institute,

the total number of radiographs was limited after applying all
exclusion criteria to 15,775 images. A bigger training set
would increase the robustness of the models and alter the
performance according to the observed tendencies.

The models trained on a DCNN with report-based labels to
detect distal radius fractures on radiographs are suitable to aid
as a secondary reading tool; models for fracture classification
are not ready for clinical use. Bigger training sets lead to better
models in all categories except joint affection.
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