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Abstract: Implantable flexible neural interfaces (IfNIs) are capable of directly modulating signals of
the central and peripheral nervous system by stimulating or recording the action potential. Despite
outstanding results in acute experiments on animals and humans, their long-term biocompatibility
is hampered by the effects of foreign body reactions that worsen electrical performance and cause
tissue damage. We report on the fabrication of a polysaccharide nanostructured thin film as a coating
of polyimide (PI)-based IfNIs. The layer-by-layer technique was used to coat the PI surface due to
its versatility and ease of manufacturing. Two different LbL deposition techniques were tested and
compared: dip coating and spin coating. Morphological and physiochemical characterization showed
the presence of a very smooth and nanostructured thin film coating on the PI surface that remarkably
enhanced surface hydrophilicity with respect to the bare PI surface for both the deposition techniques.
However, spin coating offered more control over the fabrication properties, with the possibility to tune
the coating’s physiochemical and morphological properties. Overall, the proposed coating strategies
allowed the deposition of a biocompatible nanostructured film onto the PI surface and could represent a
valid tool to enhance long-term IfNI biocompatibility by improving tissue/electrode integration.

Keywords: nanostructured coating; layer-by-layer; neural interface; long-term biocompatibility;
bioelectronic medicine; electrode–tissue interface

1. Introduction

Neurological disorders and traumatic events to the nervous system represent a signifi-
cant burden for the worldwide population and imply the loss or compromise of cognitive
or sensory/motor functionality [1,2].

In the framework of the peripheral nervous system, a partial or total interruption
of nerve continuity prevents the transmission of the action potential to the muscle fibers
downstream of the injury, thus reducing the joint mobility of the patient’s limbs. Moreover,
sensory perception is also profoundly damaged, with negative repercussions on motor
control and the ability to interact with the surrounding environment [3]. In the last decades,
with the aid of micromachining technologies, multiple solutions have been developed
to restore lost sensorimotor functions and to improve patients’ lives. In this context,
implantable neural interfaces are devices able to record and modulate axon potentials by
establishing a bidirectional electrical connection at the interface between the tissue and
the device [4]. Among them, intraneural electrodes enable lower charge injection and
higher signal-to-noise ratio for stimulation and recording, respectively, in comparison to
extraneural electrodes [5]. These effects are due to the possibility of directly interfacing
with a single nerve fascicle, thus allowing excellent recording/stimulation selectivity.
These electrodes have recently been used in bidirectional closed-loop neuromodulation
applications to restore tactile perception, improve walking speed, and reduce phantom-limb
pain in patients with mechatronic prosthesis [6,7].
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Several designs, materials, and fabrication procedures have been presented to facilitate
the development of personalized neuroprosthesis [8]. Implantable flexible neural interfaces
(IfNIs) have recently gained much attention in the framework of neuromodulation devices,
due to their reduced rigidity in comparison to stiffer silicon-based devices [9–11]. In
this regard, the use of polyimide (PI) as an insulating substrate has become extremely
popular due to its excellent dielectric properties, low water uptake, mechanical strength,
and resistance to harsh environments. Interesting examples of PI-based devices are TIME
and LIFE electrodes, respectively transversally and longitudinally inserted IfNIs [12–14].

Unfortunately, notwithstanding the remarkable neural signal modulation performance
on animal and human acute experiments, the long-term application of such devices remains
the main bottleneck of implantable device technology [15]. Although tissue penetration is
required to interface with nerve fascicles to obtain a high level of selectivity, this procedure
inevitably damages nerve integrity, thus triggering a defense mechanism called foreign
body reaction (FBR). FBR is a cascade of events characterized by a first phase of blood
plasma protein (fibronectin, albumin, fibrinogen, and complement factors) absorption onto
the surface of the device [16]. This process leads to an inflammatory phase unleashed by
monocytes and neutrophils, followed by a fibrotic phase triggered by fibroblast recruitment
that modulates the coagulation cascade with subsequent formation of a fibrotic capsule that
surrounds the surface of the implant. This process is sustained by monocyte differentiation
to macrophages and pro-inflammatory cytokine (TNF-α, IL-1, IL-6, IL-8) release at the site
of the implant. The formation of a connective tissue layer around the device implies a drop
in its electronic performance, with a consequent increase in the stimulation threshold and
decrease in the quality of the recorded signal that limit the long-term usage of IfNIs [17,18].
Moreover, due to the different physiochemical properties and the substantial mechanical
mismatch between PI (EPI = 2.5 GPa) and the nerve (Enerve = 500 kPa), FBR effects are
chronically sustained with consequent tissue damage and the need for a second invasive
surgery to remove the implant after few months.

In the literature, several examples and technologies have been reported to improve IfNI
biocompatibility [19]. In this context, the study and development of a proper coating to
enhance the long-term biocompatibility of IfNIs represent a primary objective to envision
chronic stable implants. The aim of a coating material is to interpose a buffer layer between
the tissue and the surface of the device to reduce the mechanical mismatch, to improve the
tissue/electrode interface, to functionalize the device’s surface with biomolecules or drugs to
aid neural cell attachment, to reduce scar tissue formation, and to attenuate the FBR effects
over time [20]. In addition, it is possible to modify the surface of PI with proteins or peptides to
facilitate Schwann cell and neuron adhesion [21–23]. Lots of research has also been conducted
on the hydrogel surface coating of IfNIs. Hydrogels are 3D structures made by synthetic,
natural, conductive, or bioactive materials that mimic the physiochemical properties of the
extracellular matrix (ECM), whose aim is to improve device tissue integration, thus enhancing
long-term biocompatibility [24]. In this regard, Shen and colleagues reported a remarkable
example of a Matrigel®/collagen ECM-like coating for intracortical electrodes to enhance
chronic integration of a device implanted in the brain [25]. Furthermore, a drug-loaded hydro-
gel was also reported with the fabrication of a poly(ethylene glycol) (PEG) hydrogel containing
poly(lactic-co-glycolic) acid (PLGA) microspheres loaded with an anti-inflammatory drug, to
reduce long-term FBR effects [26]. Another interesting example illustrating a polyacrylamide
and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive hy-
drogel to improve the biocompatibility and electrochemical performance of an elastomeric
IfNIs was recently described [27]. Hydrogel IfNIs coatings have also successfully been used as
cell-repellent materials, exploiting the anti-fouling properties of highly hydrophilic surfaces to
reduce scar tissue formation on the electrode surface [28–30].

The aim of this work was to present a nanostructured coating made from natural
polysaccharides to improve the biocompatibility of PI-based IfNIs. A layer-by-layer (LbL)
technique was used to fabricate this coating upon PI surface modification by oxygen plasma.
LbL assembly consists of the sequential electrostatic adsorption of polyelectrolytes, in order
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to fabricate multilayered coatings [31,32]. It was chosen in this framework due to its low-
cost implementation and excellent versatility to tune structural and surface properties, such
as thickness, elastic modulus, wettability, swelling, and surface roughness, and thanks to
the possibility to incorporate biomolecules and nanostructures within the multilayer assem-
bly [33–39]. Polysaccharides such as sodium alginate and chitosan were selected to coat the
PI surface by means of LbL assembly due to their remarkable biocompatibility and similar
physiochemical properties to tissue ECM. Sodium alginate derived from brown algae is a
widely used example of a polyanionic polysaccharide for cell encapsulation and drug deliv-
ery applications [40]. Chitosan, derived from the deacetylation of chitin, is extracted from
crustacean shells and has been widely used in neural engineering as a promising natural
material for peripheral nerve regeneration, due to its good cytocompatibility with neurons
and Schwann cells [41–44]. Furthermore, polysaccharides have already been reported to
possess anti-fouling properties thanks to their high hydrophilicity, which decreases surface
protein adsorption [45–48]. Morphological and physiochemical analysis of the nanostruc-
tured coating was carried out to characterize the structural parameters of the coating, such
as thickness, wettability, and surface roughness. Two different LbL deposition methods
(dip coating and spin coating) were used and compared to investigate surface property
modifications with the deposition technique. To the best of our knowledge, this is the first
example showing the use of the LbL technique to fabricate a biocompatible nanostructured
coating for PI-based neural interfaces. This coating strategy could represent a very versatile,
low-cost, and easy-to-implement method to improve the long-term application of IfNIs.

2. Materials and Methods
2.1. Materials

Polyimide resin PI 2610 was purchased from DuPont MicroSystems GmbH. Sodium
alginate (MW = 80–100 kDa), chitosan (MW = 310–375 kDa, deacetylation degree > 75%)
and all the other chemicals were purchased from Sigma Aldrich.

Silicon wafers (400 µm thick, p-type, boron doped, 〈100〉, Si-Mat Silicon Materials,
Kaufering, Germany), used as substrates for PI film deposition, were cut (3 cm × 3 cm) and
dipped in an acetone/isopropanol solution for 15 min, washed with deionized (DI) water
(18 MΩ cm) and dried with filtered compressed air to remove dust and impurities. All the
fabrication steps regarding PI deposition, plasma treatment, and subsequent LbL coating
were performed in a class 10,000 clean room to avoid contamination.

All PI and LbL coating fabrication steps are illustrated in Scheme 1.
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2.2. Methods
2.2.1. Polyimide Film Deposition and Plasma Treatment

PI was spin-coated onto a silicon substrate using a two-step program (500 rpm, 10 s
and 4500 rpm, 30 s). After the spinning procedure, the samples were treated at 65 ◦C and
130 ◦C for 3 min on a hot plate (soft-bake) and subsequently cured at 350 ◦C in a nitrogen
atmosphere for 60 min (hard-bake) to obtain a homogeneous thin film. After spinning
deposition, PI substrates were treated with oxygen plasma (Colibrì, Gambetti, Binasco,
Italy) at 40 W for 120 s at 0.6 mbar to increase surface hydrophilicity and to allow better
anchorage of the polysaccharides. Two different oxygen gas percentages of 20% (PI_plasma
20%) and of 50% (PI_plasma 50%) were used during the treatment to assess differences in PI
surface roughness and wettability prior to proceeding with LbL polysaccharide deposition.

2.2.2. LbL Thin Film Deposition by Dip Coating

After plasma treatment, PI substrates were immediately coated with alternated dip-
ping in polysaccharide solutions to fabricate LbL-coated PI. We refer to PI samples coated
with dip coating LbL deposition as “LbL_nbilayers_dip”. Briefly, PI substrate was dipped
into a chitosan solution (10 mg/mL, 1% v/v CH3COOH in DI water), then rinsed by
immersion in DI water and then dipped in sodium alginate solution (10 mg/mL in DI
water), followed by another rinsing procedure in DI water. All the dipping steps were
conducted for 15 min at room temperature. This procedure was used to deposit one chi-
tosan/alginate bilayer onto the surface of PI and was repeated for each the 10 bilayers
sequentially adsorbed onto the substrate surface.

2.2.3. LbL Thin Film Deposition by Spin Coating

Spin-assisted LbL deposition was also used, in comparison with dip coating, to verify
the modification of the surface properties with the coating technique. We refer to PI samples
coated with spin-assisted LbL deposition as “LbL_nbilayers_spin”. Briefly, after plasma
treatment, 500 µL of chitosan solution (2 mg/mL, 1% v/v CH3COOH in DI water) was
deposited onto the PI substrate and spin-coated at 4500 rpm for 35 s. After this procedure,
the wafer was rinsed twice with a drop of 500 µL of DI water spin-coated with the same
parameters. Then a drop of 500 µL of sodium alginate solution (2 mg/mL in DI water) was
deposited and spin-coated at 4500 rpm for 35 s, followed by the same rinsing method with
DI water mentioned before. As for dip coating, this procedure was used to deposit one
chitosan/alginate bilayer onto the surface of PI and was repeated for each of the 10 bilayers
sequentially adsorbed onto the substrate surface.

2.2.4. PI and LbL Thin Film Characterization

Substrate thickness was measured with a P6 surface profiler (KLA-Tencor, Milpitas
CA, USA). In particular, to measure PI samples, a little scratch onto their surface was made
using metallic tweezers and the height profile across the scratch was recorded. For LbL
thickness measurements, the same scratch was made using a sharp plastic tip, in order to
delaminate the LbL thin film from the surface of the PI without damaging the underlying PI
substrate. Sample thickness was measured at 5 arbitrary points in each sample to calculate
mean and standard deviation (SD). For LbL-coated samples, thickness was measured after
deposition of 4, 7, and 10 bilayers.

Substrate wettability was analyzed using the sessile drop method by means of an
Attension Theta optical tensiometer (Biolin Scientific). A tiny droplet of 2 µL of DI water
was deposited onto the surface of the sample and the spreading of the droplet was imaged
at 14 frames/sec for a total range of 15 sec. The angles were measured at 5 different and
arbitrary points for each sample to calculate mean and SD. For LbL-coated samples, contact
angle (CA) was measured after deposition of 4, 7, and 10 bilayers.

Atomic force microscopy (AFM) was used to investigate surface topography with an
Innova SPM (Bruker, Billerica, CA, USA) operating in tapping mode using gold-coated
n-type silicon probes (NSC01, f0 = 87 − 230 kHz, k = 1.45 − 15.1 Nm−1, NT-MDT, Moscow,
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Russia). All scans were performed at room temperature, on samples supported on the
silicon substrates, scanning 5 µm × 5 µm areas at a scan rate of 0.5 Hz on 5 different and
arbitrary zones to calculate mean and SD. All AFM data were elaborated using the Gwyd-
dion SPM analysis tool (http://gwyddion.net (accessed on 14 January 2022)). Samples’
average surface roughness (Ra) was measured after deposition of 4, 7, and 10 bilayers. Ra
was calculated using the following equation:

Ra =
1
L

∫ L

0
|Zi|dx (1)

where L is the sampling length and Zi is the current Z value.
Infrared spectra of samples were taken in transmittance mode (T%) using an IRPrestige-

21 IRAfinity-1 FTIR-8400S (Shimadzu, Japan). Measurements were taken with a spectral
range of 500–4000 cm−1 by accumulation of 16 scans and a resolution of 4 cm−1. Omni
Spectra software was used to analyze the IR spectra of LbL-coated PI and compare these
with the untreated PI, chitosan, and alginate peak bands, which were used as reference
controls. For each specimen 3 measurements were performed, each one in a different and
arbitrary position within the total area. Results of FTIR characterization are reported in the
Supplementary Materials Section.

2.2.5. Statistical Analysis

Data were statistically analyzed using the commercial software GraphPad Prism 8
(San Diego, CA, USA). One-Way ANOVA (Tukey’s multiple comparison test) or two-tailed
unpaired t-test were used to evaluate the statistical significance between the samples in
each group. All data are reported as mean ± SD. In all experiments, statistical significance
refers to results where p < 0.05 was obtained. In particular, statistical significance thresholds
were set as follows: * = p < 0.05; ** = p < 0.01; *** = p < 0.0005, and **** = p < 0.0001.

3. Results
3.1. Spin Coating Deposition and Plasma Treatment of PI Substrates

Spin coating of PI and further LbL coating were performed onto square-shaped silicon
substrates to facilitate the handling, fabrication, and characterization procedures. Soft- and
hard-bake steps on spin-coated PI led to the fabrication of a highly homogeneous, tight,
and smooth surface on the silicon substrate.

Figure 1a shows the average thickness of PI substrates after curing and plasma treat-
ment. Oxygen plasma significantly reduced the average PI thickness due to the erosive
attack of free oxygen species on the polymeric surface for both the oxygen percentages used.
The reported average thicknesses of PI substrates were 1523 ± 15.3 nm, 1381 ± 19.86 nm,
and 1384 ± 49.89 nm for untreated PI, PI_plasma20%, and PI_plasma50%, respectively.

Air plasma treatment induces PI depolymerization and formation of low molecular
weight oxidized material (LMWOM) [49,50]. Figure 1b shows CA data for PI substrates
upon plasma treatment and a marked increase in surface hydrophilicity was reported
after oxygen plasma exposure. In particular, untreated PI CA of 60.01 ± 7.02◦ was mea-
sured and a statistically different wettability increase was described after 20% oxygen
plasma (CA = 10.37 ± 3.2◦, p < 0.0001) and after 50% oxygen plasma (CA = 7.02 ± 2.19◦,
p < 0.0001). This effect was due to the increase in oxygen content of the treated surface,
with the formation of hydroperoxides, carbonyls, carboxylic acids, peracids, etc., which
remarkably increase surface wettability with respect to untreated PI [51]. Statistically signif-
icant differences were not reported by increasing the oxygen content from 20% to 50% both
for PI substrate thickness and CA. In addition to the thickness reduction and wettability
increase of PI upon plasma treatment, significant modification of the surface roughness
was reported thanks to AFM analysis (Figure 2).

http://gwyddion.net
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AFM analysis reports modification of PI surface topography with nanometric features after
plasma treatment with respect to untreated PI, due to the erosive behavior of oxygen plasma
(Figure 2d,e). In detail, a statistically significant roughness increase was described either after
plasma treatment with 20% oxygen (Ra PI = 0.2± 0.07 nm; Ra PI_plasma20% = 0.8± 0.31 nm,
p < 0.05) or after treatment with 50% (Ra PI_plasma50% = 1.8 ± 0.56 nm, p < 0.0005). In this
case, statistical significance was also reported within the two treatments (p < 0.05).
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In summary, plasma treatment of spin-coated PI substrates generates a thickness re-
duction and a consistent increase in surface hydrophilicity and roughness due to LMWOM
generation and to the formation of charged chemical groups. Treatment with a 50% oxygen
percentage was selected for further LbL deposition due to its significant roughness increase
with respect to the treatment with 20% oxygen. The reason for this choice lies in the fact
that a greater surface roughness increases the contact area between the PI and the polymer
solutions used for the coating fabrication and could therefore lead to better surface adhesion
of the polysaccharide multilayer.

3.2. LbL Polysaccharide Deposition by Dip Coating

After plasma treatment, PI substrates were alternatively dipped, with intermediate
washing steps, in the polyelectrolyte solutions for 15 min in order to create the LbL as-
sembly by dip coating. Polymer adsorption onto plasma-treated PI was possible thanks to
electrostatic interactions between charged species on PI surfaces and between oppositely
charged polysaccharide chains [39].

Surface profilometry confirmed the presence of a multilayer assembly on the surface of
the PI (Figure 3c) with an average thickness of around 40 nm after the deposition of 10 bilayers.
However, no statistical differences were reported after subsequent deposition of 4 and higher
numbers of bilayers (thickness: LbL4_dip = 37.88 ± 2.54 nm; LbL7_dip = 40.15 ± 4.08 nm;
LbL10_dip = 35.68 ± 5.90 nm), whose average heights did not follow an increasing trend with
the number of dipping cycles (Figure 1a). CA analysis reports similar evidence regarding
surface wettability after LbL dip-coating deposition (Figure 3b). No statistical difference
was reported after the deposition of an increasing number of bilayers onto the PI surface
(CA: LbL4_dip = 28.52 ± 3.46◦; LbL7_dip = 32 ± 7.23◦; LbL10_dip = 34 ± 5.90◦).
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Figure 3. LbL assembly by dip coating. Thickness data (a) and CA values (b) of LbL assembly onto
PI surface after the deposition of 4 (LbL4_dip), 7 (LbL7_dip), and 10 (LbL10_dip) polysaccharide
bilayers. (c) 3D reconstruction of a 100 µm × 100 µm surface profilometry referred to a LbL10_dip
sample and plot of surface roughness profile relative to the red line across the scratch showing the
presence of an LbL multilayer coating on the surface of the PI.

AFM analysis after dip-coating LbL deposition showed no statistical differences in
surface roughness value after subsequent deposition of a higher number of bilayers, even
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though significant topographical differences were evidenced as the number of bilayers
deposited onto the PI surface increased (Figure 4).
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dip-coated LbL substrates relative to the white line drawn in each AFM scan. Scale bars are 1 µm.

These results evidence the presence of a polysaccharide coating on the surface of the
PI assembled by the dip-coating LbL technique, with nanometric thickness and roughness
and a hydrophilic surface.

3.3. LbL Polysaccharide Deposition by Spin Coating

The spin-assisted LbL method [52] was also used to assemble the polysaccharide
coating onto the plasma-treated PI surface, to assess whether there were differences in
coating physiochemical and topographical properties with respect to dip-coating LbL
deposition.

The thickness analysis reports the presence of a polysaccharide multilayer thin film
on the surface of the PI after alternate spin-coating deposition of chitosan and sodium
alginate solutions. LbL assembly by spin coating shows a smoother and more homogeneous
profile (Figure 5c) with respect to the same multilayer coating deposited by dip coating
(Figures 3 and 4). This effect is due to the huge shear stresses during the spin-coating
process, which contribute to aligning the polymer chains in the direction of the centrifugal
force [53]. The presence of a multilayer assembly on the PI surface is also confirmed by
FT-IR analysis (see Figure S1).
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Figure 5. LbL assembly by spin coating. Thickness data (a) and CA values (b) of LbL assembly onto
PI surface after the deposition of 4 (LbL4_spin), 7 (LbL7_spin), and 10 (LbL10_spin) polysaccharide
bilayers. (c) 3D reconstruction of a 100 µm × 100 µm surface profilometry referred to a LbL10_spin
sample and plot of surface roughness profile relative to the red line across the scratch showing the
presence of an LbL multilayer coating on the surface of the PI.

Unlike dip-coating deposition, spin-coated LbL multilayers reported a statistically
significant increasing trend of the average thickness as the number of pairs of polyelec-
trolytes that are deposited on the surface of the PI increased. Average thickness values of
19.83 ± 1.91 nm, 59.11 ± 13.68 nm, and of 73.66 ± 4.30 nm were reported for LbL4_spin,
LbL7_spin, and LbL10_spin samples, respectively (Figure 5a). Conversely, a decrease
in average CA values was reported as the numbers of spin-coated bilayers increased
(Figure 5b), consistent with previous reports in the literature regarding polysaccharide thin
film coating [47,54]. A CA decrease as the film thickness increases can also be explained
with the progressively lower influence of the PI surface on the overall wettability, as the
thickness of the hydrophilic polysaccharide layer increases with multiple spin-coating
deposition steps.

AFM analysis also reveals in this case the presence of a nanometric surface roughness
for the LbL assembly deposited by spin coating onto the surface of the PI. The topography
of spin-coated LbL samples appears to be very smooth due to the huge shear stresses that
characterize the spin-assisted LbL method (Figure 6a–c), with average roughness values less
than 1 nm for each number of bilayers sequentially deposited (Ra LbL4_spin = 0.5 ± 0.14 nm;
Ra LbL7_spin = 0.37± 0.04 nm; Ra LbL10_spin = 0.3± 0.14). However, no statistical differences
were reported between the average roughness values of the spin-coated LbL coating by
increasing the number of bilayers deposited on the PI surface (Figure 6d).
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Figure 6. AFM topographical analysis of LbL assembly by spin coating. AFM scan of LbL surface after
the deposition of 4 (a), 7 (b), and 10 (c) bilayers. (d) Average surface roughness of LbL multilayers
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of spin-coated LbL substrates relative to the white line drawn in each AFM scan. Scale bars are 1 µm.

Results for the spin-coated LbL assembly show the presence of very smooth and highly
hydrophilic (CA < 10◦ for LbL10_spin) polysaccharide multilayers on the PI surface, with
an extremely low surface roughness (Ra < 1 nm for each number of bilayers deposited).
Profilometry and CA measurements demonstrated the robustness of the implemented spin-
coated recipe with respect to the dip-coating one, since statistically significant differences
in average thickness and CA were reported as the number of deposited bilayers increased
(p < 0.05 for increasing number of bilayers deposited for both thickness and CA values
reported).

3.4. Comparison between PI Surface Properties and the Two LbL Deposition Techniques

Both the LbL assembly methods used in this work reported successful polysaccharide
thin film anchorage onto the PI surface (Figures 3 and 5). However, substantial differences
can be evidenced when comparing the physiochemical properties of untreated PI and LbL
surfaces after the deposition of 10 bilayers (Figure 7).

As it is possible to notice from Figure 7a, LbL polysaccharide coating of PI led to a
marked increase in surface hydrophilicity (p < 0.0001) for both the deposition methods
tested. In detail, LbL coating was able to reduce CA values to 34.03 ± 5.9◦ and to 6.5 ± 1.1◦

for dip-coated and spin-coated samples, respectively, demonstrating a remarkable increase
in surface wettability with respect to untreated PI (CAuntreated PI = 60.01 ± 7.02◦). This
behavior was also illustrated by water-drop spreading after LbL deposition (Figure 7a) and
is due to the presence of polar and highly hydrophilic groups (hydroxyl, carboxyl, and
amino groups) in the polysaccharide chains. Moreover, LbL deposition led to consistent
topographical changes with respect to the PI surface (Figure 7b). AFM analysis reported en-
hanced average surface roughness upon LbL dip-coating deposition (Ra PI = 0.3 ± 0.07 nm,
Ra LbL10_dip = 2.32 ± 0.32, p < 0.0001). This effect was due to the high polymer chain
interpenetration typical of LbL dip-coating assembly, which led to a roughness increase
with respect to untreated PI [55,56]. Conversely, untreated PI and spin-coated LbL display
very similar roughness values (Ra PI = 0.2 ± 0.07 nm, Ra LbL10_spin = 0.3 ± 0.13 nm) in
line with previous reports regarding PI and spin-assisted polysaccharide LbL [21,35]. Fur-
thermore, marked discrepancies in topography and CA values were also reported between
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different LbL deposition methods. In this regard, a higher wettability and smoother surface
were evidenced for spin-coated substrates with respect to dip-coated ones (p < 0.0001),
consistent with previous literature reports [53,57,58]. This effect is due to the different
environmental conditions of the two LbL assembly methods, which remarkably affect
surface properties: huge shear stresses during the spin-coating procedure create a much
smoother surface with respect to dip coating, with enhanced surface wettability due to
lower surface roughness [59,60].
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Figure 7. Physiochemical properties of the two LbL assembly methods compared with the PI surface.
(a) CA values of the two LbL techniques compared with PI. At the bottom of the box are shown
representative images of water-drop spreading for each sample typology, evidencing differences in
surface wettability. (b) Summary of AFM analysis reporting variations in average surface roughness
for each sample in the histogram and 3D reconstruction of 5 µm × 5 µm surface topography of PI,
LbL10_dip, and LbL10_spin. At the bottom of the box plot of surface roughness, the profile relative
to the white line drawn in each AFM scan is shown.

In summary, LbL assembly allowed the successful deposition of a nanostructured thin
polysaccharide coating on plasma-treated PI with both the LbL techniques chosen (Table 1).
Remarkably, increased surface hydrophilicity and a very smooth and homogeneous surface
were demonstrated for spin-coated LbL, whereas a less hydrophilic and more irregular
surface was reported for dip-coated LbL. Finally, both the LbL coating methods allowed
significant enhancement of surface wettability with respect to the PI surface thanks to the
polysaccharide chemical structure. Interestingly, spin-coated polysaccharide LbL surfaces
display marked increases in hydrophilicity with unaltered roughness with respect to
untreated PI.

Table 1. Summary of physiochemical properties of untreated and LbL-coated PI.

Sample Type Contact Angle (◦) Ra (nm)

PI 60.01 ± 7.02 0.2 ± 0.07
LbL10_dip 34.03 ± 5.9 2.32 ± 0.32
LbL10_spin 6.5 ± 1.1 0.3 ± 0.13
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4. Discussion

This study described a novel method to coat PI-based IfNIs employing a nanostruc-
tured polysaccharide coating with the aim to enhance their biocompatibility and long-term
usage. Two marine polysaccharides, chitosan and sodium alginate, were selected due
to their interesting physiochemical properties, such as high hydrophilicity and similar
mechanical properties to ECM components [61–64]. Moreover, these polysaccharides have
already been reported to possess remarkable cytocompatibility with neural cells such as
primary hippocampal neurons [65], cortical neurons [66] and Schwann cells [67,68].

Both the studied LbL techniques allowed the deposition of a nanostructured thin
film coating onto the surface of PI (thickness LbL10_dip = 35.68 ± 5.90 nm, thickness
LbL10_spin = 73.66 ± 4.30 nm), but spin-coating assembly guaranteed higher control over
the fabrication parameters, enabling the possibility to tune some important characteristics
of the polysaccharide assembly, such as thickness, surface roughness, and wettability
(Figures 5 and 6). Conversely, the dip-coating technique used in this work, although
reported to successfully coat the PI surface with a nanostructured thin film assembly
with increased hydrophilicity with respect to untreated PI, did not allow us to control the
morphological characteristics of the coating with the manufacturing parameters. However,
this technique can be improved by implementing better control on the ionization of the
polysaccharide chains, by tuning the ionic strength and the pH of the polyelectrolyte
solutions [69–71].

Overall, the studied LbL coating strategy allowed PI surface modification with polysac-
charide thin films characterized by extremely high surface hydrophilicity (CA < 10◦ for
the spin-coated LbL coating), nanostructured thickness (<100 nm for both the techniques),
and a remarkably smooth surface (Ra < 1 nm for spin coated LbL). All these documented
features allow the envisioning of this coating strategy to provide a cell repellent and anti-
fouling barrier for IfNIs, which would reduce plasma blood protein adsorption upon
implantation and decrease FBR effects over time. Protein adsorption reduction is a key
feature for anti-fouling materials as this occurrence significantly reduces macrophages and
fibroblast incursion [48]. Several reports in the literature describe the use of PEG as an excel-
lent anti-fouling coating for devices and nanostructures thanks to the formation of a thick
hydration layer that strongly reduces protein adsorption [72–75]. Polysaccharide coatings
have also been reported to exhibit good anti-fouling properties, reducing cell and bacterial
adhesion with the same mechanism [59]. As an example, chitosan/pectin multilayers [60],
chitosan/carboxymethyl cellulose [47] and chondroitin sulfate [46] polysaccharide thin
film coatings have been reported to exhibit very low protein adsorption upon immersion
in physiological conditions when compared with untreated surfaces. Protein adsorption
kinetics on surfaces is a complex mechanism that involves intermolecular forces that gen-
erate the three-dimensional structure of the protein and its interaction with the substrate
at the liquid–solid interface [76–78]. Surface hydrophilicity and hydrogen-bond-forming
species are prerequisite for anti-fouling properties, as hydrophobic interactions may cause
irreversible protein adsorption [72]. As an example, PI and polydimethylsiloxane (PDMS)
surfaces have been reported to absorb high quantities of blood plasma proteins due to their
relative hydrophobic behavior [79,80]. Physical methods, such as oxygen plasma, have
been employed to increase surface wettability in order to reduce protein adsorption, but
their efficacy is limited, since the original wettability is restored after a certain period of
time due to a phenomenon called “hydrophobic recovery” [81,82].

Therefore, coating IfNIs surfaces with a stable nanostructured hydrophilic layer could be
a promising way to enhance their long-term performance by exploiting anti-fouling properties,
since FBR effects upon IfNIs implantation have been reported to worsen their electrical
performance over time [9]. In the literature, the PI surface has already been modified with anti-
fouling materials, employing zwitterionic hydrogel [30]. The coating demonstrated reduced
macrophage adhesion in vitro and the morphological characterization reported a coating
thickness in the micrometer range that increased by one order of magnitude upon consistent
swelling due to the marked hydrophilic behavior of zwitterionic polymers. Although the
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presence of a highly wettable layer on the PI surface is recommended to exploit its anti-
fouling properties, the use of thick and very soft coating poses several limitations over the
stability and the electronic performance of the implanted device [83]. Macroscopic hydrogel
coatings are reported to consistently swell in a water environment, increasing electrical
impedance over time and causing progressive detachment from the electrode surface during
the implantation procedure [84]. This process could reduce the recording capability of the
device, since the huge coating swelling would increase the distance between the tissue and
the active conductive sites [25,85–87]. In this view, LbL coating would provide a smart way to
coat a neural interface with a nanostructured and highly hydrophilic multilayer with reduced
thickness with respect to macroscopic coating. Previous reports describing polysaccharide
LbL assembly showed moderate swelling (Thickness < 100 nm) in a water environment due
to the nanostructured feature of spin-assisted LbL multilayers [39]. Moreover, LbL techniques
offer several advantages over other described coating strategies, such as the possibility to
be chemically functionalized with peptides to enhance tissue integration and to incorporate
drugs and nanostructures within the polymeric matrix, thus providing multiple functionalities
to the nanostructured coating [87].

In summary, the described LbL coating strategy was demonstrated to successfully
functionalize the PI electrode surface with a nanostructured, highly hydrophilic, and very
smooth surface that could enhance the long-term biocompatibility of IfNIs. Furthermore,
thanks to the ease of fabrication inherent in the LbL method, this technique could be
easily implemented in the current IfNIs manufacturing processes based on micromachining
technology, allowing quick translational applicability. Further in vivo tests will be needed
to characterize its behavior in chronic animal experiments of neuromodulation.

5. Conclusions

This work described a novel method to fabricate a biocompatible coating for PI-
based IfNIs. The LbL assembly technique was chosen to fabricate the coating due to its
well-documented versatility and ease of manufacturing. Two different LbL methods (dip
coating and spin coating LbL assembly) were implemented and compared to assess the
physiochemical and topographical properties of the coating with respect to the PI surface
properties. The results of the study show the possibility to provide a nanostructured,
highly hydrophilic, and ultra-smooth polysaccharide multilayer over the surface of the PI,
with increased wettability and comparable surface smoothness with respect to untreated
PI. Moreover, spin-coating deposition offered more robustness during the fabrication
procedure, allowing fine-tuning of the coating physiochemical properties by increasing
the number of bilayers deposited. Future in vivo experiments will be needed to assess the
functionality of the proposed coating strategy.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/mi13050692/s1, Figure S1: FT-IR analysis. Transmission spectra
of PI and LbL coated samples and of the two polysaccharides used for LbL assembly (in the inset).
The red arrow and ellipse evidence the characteristics polysaccharide peaks, while black arrows are
relative to PI peaks.
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