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Abstract

Different neuronal types within brain motor areas contribute to the generation of complex

motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized

as fundamental in shaping the precise timing characteristics of birdsong. This is based,

among other evidence, on the stretching and the “breaking” of song structure when HVC is

cooled. However, little is known about the temperature effects that take place in its neurons.

To address this, we investigated the dynamics of HVC both experimentally and computa-

tionally. We developed a technique where simultaneous electrophysiological recordings

were performed during temperature manipulation of HVC. We recorded spontaneous activ-

ity and found three effects: widening of the spike shape, decrease of the firing rate and

change in the interspike interval distribution. All these effects could be explained with a

detailed conductance based model of all the neurons present in HVC. Temperature depen-

dence of the ionic channel time constants explained the first effect, while the second was

based in the changes of the maximal conductance using single synaptic excitatory inputs.

The last phenomenon, only emerged after introducing a more realistic synaptic input to the

inhibitory interneurons. Two timescales were present in the interspike distributions. The

behavior of one timescale was reproduced with different input balances received form the

excitatory neurons, whereas the other, which disappears with cooling, could not be found

assuming poissonian synaptic inputs. Furthermore, the computational model shows that the

bursting of the excitatory neurons arises naturally at normal brain temperature and that they

have an intrinsic delay at low temperatures. The same effect occurs at single synapses,

which may explain song stretching. These findings shed light on the temperature depen-

dence of neuronal dynamics and present a comprehensive framework to study neuronal

connectivity. This study, which is based on intrinsic neuronal characteristics, may help to

understand emergent behavioral changes.
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Author summary

The study of the neuronal mechanisms that give rise to the complex behavior of singing in

birds has been hotly debated lately. Many models have been tested and novel tools have

been developed to try to understand the role of a key brain nucleus in the song pathway:

HVC. It is believed that it is highly responsible for generating the precise timing of songs,

and this has been tested by manipulating it with temperature. Results showed that cooling

can stretch, but that it can also restructure or “break” the song syllables. However, single

neuronal mechanisms are not yet described. To better understand this, we cooled HVC

in canaries and measured spontaneous activity electrophysiologically. We found three

effects: spike shape widening, spike rate reduction and changes in inter-spike-interval

(ISI) distributions. To explain them, we built a computational model with a detailed

description of ion channel conductances and temperature dependency. We could explain

the first effect with a single neuron model. The second, could be explained adding single

synapses. Finally, we showed similar ISI modifications of one of the timescales present by

means of multiple stochastic inputs. In addition, we found that excitatory neurons show

natural bursting behavior at normal brain temperatures and that synaptic delays are the

main candidates to explain song stretching at low temperatures.

Introduction

Coordinated motor behaviors require a delicate sequence of gestures. Their precise timing

depends on instructions coming from motor control areas in the brain. Differentiated regions

or nuclei are interconnected forming a motor pathway. However, little is known about how

the detailed motor program arises from the dynamics of individual neurons. A widely used

model to study complex behavior is birdsong, which consists of a succession of highly stereo-

typed vocal gestures. Like humans with their speech, oscine birds that account for approxi-

mately forty percent of the known species, need to learn their vocalizations from a tutor [1–5].

The well characterized set of forebrain nuclei in charge of this task is called the “song system”

[6–8]. It has proven to be a valuable model to study the network properties necessary to gener-

ate the precise motor patterns of song [9–12].

Motor nucleus HVC (proper name) appears to have a key role in song production. Impor-

tant aspects such as the structure and sequence of the different syllables that compose songs

are represented in the activity of its neurons [13]. The representation of time and of important

events in motor gestures have been described in this nucleus [14–17], as well as a proposed

role in sensorimotor integration [12, 18, 19]. Continuous temporal encoding of vocal features

was proposed as a key role of HVC [16, 20]. However, this view has been open to debate

recently with the proposition that activity in this nucleus only encodes relevant instances of

song [17, 21–23], and by a complementary proposition [24, 25] in which song timescales

appear from the interaction of the HVC with the rest of the motor pathway. These have broad-

ened the discussion regarding the possible motor coding of song in HVC, leading to the prop-

osition of recurrent networks for song timing generation [23, 26–29]. In addition, recently, it

has been shown that HVC projecting neurons fire densely during singing behavior [30–32],

and that another nucleus in the song pathway, the subthalamic nucleus Uva, has a significant

contribution to song timing [33, 34]. It remains an open and exciting field for further research

since it is still lacking a definitive consensus for the precise role of HVC on the timing of

birdsong.
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At a smaller scale, how individual neurons in HVC contribute to generate the song

sequence is also not fully understood. They project both to the forebrain nucleus RA (robust

nucleus of the arcopallium) and to a basal ganglia nucleus, area X, which is essential for song

learning and belongs to the anterior forebrain pathway [35]. For some time, the vocal motor

pathway was believed to have a top-down architecture, initiating activity in HVC, projecting

to RA which in turn projects to the respiratory center (RAm and PAm, nucleus retroambi-

gualis and parambigualis) and to the motor nucleus innervating the vocal organ (nXIIts).

However, experiments show that there is also a bottom-up architecture that goes from the

brainstem back to HVC that influences the activity of HVC neurons [27, 34, 36–38].

A novel technique that has been developed recently to manipulate activity within HVC is

local temperature control [16, 24, 25, 33, 39–41]. It was shown for zebra finches (Taeniogypia

guttata) that cooling HVC leads to a stretching of the song tempo without major changes in

the acoustic structure of song [16, 39], and for canaries (Serinus canaria) an initial stretching

and a restructuring of song, or “syllable breaking” for colder temperatures [24], and the possi-

bility of controlling syllable transitions [25, 40]. The working hypothesis for these experiments

is that a timescale represented in HVC is being manipulated with temperature, somehow mak-

ing it slower at colder temperatures. Recent work in zebra finches also cooled Uva to show that

song timing control is distributed in a recurrent network [33]. The individual neuronal mecha-

nisms that take part in these physiological observations within HVC will be studied in this

work.

Previous in vivo studies of the relationship of neuronal functionality and temperature were

mostly done in poikilothermal animals, which are cold blooded and cannot regulate efficiently

their temperature. The focus on those studies is in understanding how function can be robust

and resilient to large temperature fluctuations of the brain [42, 43]. However, many neuronal

properties studied in these animals provide evidence of widespread mechanisms. The main

findings point to timing changes with temperature decrease: period and burst interval decrease

in acoustic [44] and electric [45] communication in fish. Acoustic perception seems to be dete-

riorated at lower temperatures in locust [46, 47], as spiking variability increases with lower

rates, the same effect that is present in the fly vision system [48]. Another widely studied

model is the crab stomatogastric system, in which a central pattern generator, although

increasing burst period and inner frequency, is able to compensate its phase over a wide range

of temperatures [49, 50]. Also compensation is found in the bullfrog respiratory rhythm,

whereas some neurons paradoxically increase firing at lower temperatures [51].

Few studies were done in homeothermal animals apart from the recent birdsong focal cool-

ing. These divide into ones that monitor the temperature of the brain and others that use slices

and modify the temperature of the bath of the recording solution. Brain temperature can fluc-

tuate up to 2˚C when animals do exercise [52], when they are presented a female [53–55] and

when they are given cocaine [56]. Temperature correlates with neuronal properties like latency

after electrical stimulation and dynamics of EPSPs, as was shown in rat hippocampus [52] or

song tempo, as shown in HVC in zebra finches [55]. Also resting membrane voltage change

is usually reported as it is believed that it can put the neuron closer or further to the spiking

threshold. Although many report an increase in this value at low temperatures (4mV in hippo-

campus [57], 15 mV in rat visual cortex [58] with a 10˚C change), others report decreases

(10mV in one type of hippocampus interneurons [59]). Finally, cooling has also been used as a

tool to change perception of interval timing in rat prefrontal cortex [60]. In all these studies,

there is also emphasis in the reversibility of these effects when temperature is returned to

normal.

The studies mentioned above highlight the increase in timescales and decrease of level of

activity present in neuronal behavior with temperature decrease, and that these come from
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changes in rate and conductance constants. In the other hand detailed modeling of tempera-

ture effects has not been explored extensively. The work done in the stomatogastric ganglion

of the crab is the most comprehensive, showing a full exploration of the parameter space of

extrapolation constants for each ionic rate and conductance [43, 61]. Just above 5% of the hun-

dreds of thousands of models explored showed bursting activity, and only 0.5% showed the

robust behavior measured experimentally, although being more than 500 different possible

parameter combinations.

In our case of study, there are three classes of neuronal populations in HVC: excitatory neu-

rons projecting to nucleus RA and X (HVCRA and HVCX respectively), and inhibitory inter-

neurons (HVCINT) [62, 63]. Intracellular recordings in vitro and in vivo helped to reveal

neuronal and circuit mechanisms, and physiological properties of these neurons [63–67], and

the connectivity between them was studied by means of paired intracellular recordings and

antidromic stimulation in slices or by means of retrograde labeling [28, 64]. The recent work

by Daou et al. has described extensively the ionic currents present in each neuronal type with

an exquisite match between electrophysiological measurements and computational single

compartment models using different stimulation protocols in brain slices [67]. Recent single

cell modeling in HVC is based in these findings for excitatory neurons [68], and also was

upgraded to two compartments for HVCRA [69]. Network models have also being explored,

but less is known about the specific connectivity within HVC [66, 70, 71].

In this work we study electrophysiologically the neuronal in vivo mechanisms that manifest

in HVC neurons of canaries when the nucleus temperature is decreased locally. We took

advantage of the very precise neuronal models developed by intracellular studies in vitro.

Although intrinsic parameters were obtained at room temperature, we could extrapolate them

to the in vivo temperatures used in this work. We found that the three most characteristic

changes with temperature of the experimental neuronal dynamics can be explained with the

computational model. We also make predictions about connectivity and possible experimental

implementations.

Materials and methods

Ethics statement

All experiments were approved by the Institutional Animal Care and Use Committee of the

University of Buenos Aires.

Surgery

Adult canaries were acquired from a local breeder. The experiment was performed on 11 male

canaries (Serinus canaria) either on the left HVC (N = 6) or the right HVC (N = 5). The morn-

ing of the experiment, birds were deprived from food and water 45 minutes prior to surgery.

They were given injections in the pectoral muscle with 20% urethane (90–120μl total; Sigma,

St. Louis, MO), administered in three 30–40μl doses at 30 minutes intervals. Immobilization of

the bird was done with a stereotactic device. After topical application of xylocaine, the skull of

the birds was exposed by sculp retraction. A craniotomy of 2mm x 1mm was made over

the corresponding left or right HVC which was located stereotactically and the dura over the

recording site was removed. Body temperature was maintained with an electric blanket.

Temperature manipulation

Two custom built cooling devices were used, one for placing over the left and the other over

the right HVC. Their capabilities are based on a Peltier module, which provides a constant
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temperature decrease on one side while the other is kept at a constant temperature. Previously,

a 2A current supply was used for obtaining a temperature decrease of 10˚C [16, 24]. Such high

currents circulating continuously near the recording site interfere with the electrophysiological

signal about a minute after onset. To avoid this we increased the Peltier size four times and

performed a pulsed current protocol with a period of 6 seconds (S1 Fig). To avoid neuronal

damage due to abrupt temperature changes, currents were modified in steps of 0.25A and the

temperature was allowed to stabilize for at least 3 minutes. We achieved almost constant fluc-

tuating temperatures with a maximum decrease of approximately ΔT = −9˚C and a maximum

amplitude of fluctuation of less than 0.5˚C. Calibrations of the devices were made on two sup-

plementary animals not used for the electrophysiological recordings (S1 Fig).

We obtained between 4 and 10 different temperatures for 33 different recording sites with

an average of 8.7 temperatures (30 sites with 7 or more temperatures). To rule out the possibil-

ity of permanent effects due to cooling, we made half the measurements increasing the current

and then half going back to 0A. A metal part was designed to allow the most efficient heat

transfer between HVC and the cooling device (S1 Fig). It has a pad of 1mm x 2mm surface and

1mm thickness that is placed on the surface of the brain right above HVC with a 0.5 mm diam-

eter hole made in its center. Through that orifice we lowered the measuring electrode.

Electrophysiology

Extracellular recordings of spontaneous neural activity in HVC were performed using tung-

sten microelectrodes (Parylene-C-insulated, 0.8-1.2MO, MicroProbes). The electrodes were

lowered between 200 and 800 μm beneath the surface of the brain, because HVC is approxi-

mately 1mm thick and is located superficially. Electrode entrance in HVC was identified by

its neuron’s characteristic spontaneous bursting patterns. Signals were preamplified 10X near

the electrode via a custom built, low power, low noise and battery powered instrumental

amplifier [72]. Then this signal was fed into an Instrumentation Amplifier And Signal Condi-

tioner (Brownlee Precision Model 440), where it was further amplified 100X, bandpass filtered

between 300 Hz and 3 kHz and digitized at 20 kHz. The final output was partitioned in 5 to 10

contiguous files and stored on a computer through a data acquisition device (National Instru-

ments M Series). Total recording times for each site range from 2 to 8 minutes (4.8 min in

average, 31 sites above 4 min).

Data analysis

Spike sorting. Raw signal files were concatenated using custom programmed software in

C and adequated for spike sorting with the Wave_clus software, which runs in MATLAB [73].

Spike detection was made with the signal crossing a threshold of 5 median absolute deviations

(MAD) from the mean. Sixty-four-point (3.2ms) spike waveforms and their corresponding

times were used for unsupervised clustering. The software makes a 10 coefficient wavelet

decomposition analysis of the waveforms and then clusters them using super-paramagnetic

clustering (SPC), with minimal violations to a 1ms refractory period. We could obtain between

1 and 3 clusters for each recording site, with one of them clearly being a multiunit. We kept

only two clusters per site adding up to 55. We could identify 30 different single units and 25

multiunits. In all cases, clusters remained across temperatures and were easily identified by

their spike shape.

Waveform quantification. To account for waveform features changing with temperature

we used the mean trace at each cluster temperature and then smoothed with a zero phase digi-

tal filtering for high frequency noise from the cooling setup (*4kHz). We determined the

width of the spike as the time between its minimum and its maximum (p2p width) for
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waveform classification, and we used the full width for quantifying widening effects. This was

determined from the first down crossing at 10% of the minimum peak value to the last down

crossing at 10% after the maximum peak value. The full width was better suited for this study

because of its lower relative error (dt/p2p> dt/full) and because it captures all the dynamics

coming from the ionic currents of the cells. Finally, since extracellular single unit waveforms

depend strongly on the relative position of the electrode tip and the neuron [74], we made the

analyses, both with the amplitude and width, with and without normalization to normal tem-

perature. We made waveform shape quantifications with only single units, keeping 60 data

samples that account for 3ms. The minimum was aligned to sample 20.

Computational modeling

We implemented single-compartment conductance-based biophysical models of neurons

from the HVC following the ones developed by Daou et al. [67]. Simulations were performed

in C using a Runge Kutta 4 algorithm for integration with 0.01ms steps, and the analysis of the

model output was made in MATLAB. Models are of Hodgkin-Huxley-type with additional

currents. The membrane potential of the neuron obeys the following equation:

Cm
dV
dt
¼ � IL � IK � INa � ICa� L � ICa� T � IA � ISK � IKNa � Ih � INap � Isyn þ Iapp þ Inoise ð1Þ

where Cm is the membrane capacitance, IK and INa are spike-producing currents, ICa−L and

ICa−T are Ca2+ high-threshold L-type, and low threshold T-type currents, ISK is a small-conduc-

tance Ca2+-activated K+ current, INap is a persistent Na+ current, IKNa is a Na+-dependent K+

current, IA is an A-type K+ current, Ih is a hyperpolarization-activated cation current, and IL is

a leak current. All these ionic currents were found experimentally in slice electrophysiology

experiments at room temperature in all three HVC neuronal types and detailed equations and

parameters can be found in Daou et al. [67]. Here we briefly comment on the different cur-

rents whose relative weight change across neuron types, shaping their characteristic behavior

at room temperature: HVCX neurons show spike adaptation due to large ISK and IKNa currents

and have a sag due to Ih current. They show rebound firing or depolarization due to large ICa−T
current. HVCRA neurons show lack of excitability in response to depolarizing pulses due to

large ISK, IKNa and IA currents, and a delay to spiking due to large IA current. HVCINT neurons

show high firing frequency with no adaptation even to small pulses due to reduced ISK, IKNa

and IA, a prominent sag and hence a rebound firing due to large Ih current and also fire sponta-

neously with variety of patterns in slice preparations. Sodium INa and potassium IK also vary

among neuron types. The most interesting and novel observation in this description is the role

that ISK may play in the bursting behavior of HVCRA and HVCX in vivo, having a slow current

dependent on the dynamics of the free intracellular Ca2+ concentration. Although bursting did

not appear at room temperature, experiments in vivo where the temperature is around 40˚C
show clearly their bursting behavior [66].

A typical current is as follows:

Ic ¼ gcxðV � VcÞ ð2Þ

where Ic is any of the currents described before, gc its maximal conductance, Vc its reversal

potential and x is a gating variable whose kinetics are governed by:

dx
dt
¼

x1ðVÞ � x
tx

ð3Þ

where x1(V) is a defined function of voltage and τx is the time constant, with 1/τx a factor that
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multiplies the rate constants (usually called k values) of opening and closing of the ion channel

which for some currents has a membrane potential dependency τ(V).

For different simulations we used artificially applied external currents Iapp, synaptic cur-

rents Isyn and some degree of current noise Inoise. The first is just a current clamp: constant

input with a finite duration. The second needs to have a presynaptic neuron releasing neuro-

transmitter T. Equations used read as follows [75, 76]:

TðtÞ ¼
Tmax

1þ exp
� ðVpre � yÞ

s

ð4Þ

ds
dt
¼ aTðtÞð1 � sÞ � bs ð5Þ

Isyn ¼ gsynsðV � VrevÞ ð6Þ

where a T(t) approximates a Heaviside function that turns on with the voltage of the presynap-

tic neuron Vpre. Parameters θX = −10mV, θRA = −20mV and σX = 7mV σRA = 5mV were selected

after evaluating the amplitude and maximum voltage achieved by HVCX and HVCRA simula-

tions in order to have neurotransmitter release at approximately the top 10% of the simulated

presynaptic spikes. The rate constants of the gating variable s, α = 2.2mM/ms and β = 0.381/

ms, and the maximal neurotransmitter concentration Tmax = 1.5mM were selected as in Gibb

et al. [70]. Typical values for Vrev are 0mv for excitatory synapses and -80mV to -100mV for

inhibitory synapses, and here we modeled only excitatory synapses. gsyn = 3.0nS and 2.5nS for

HVCX and HVCRA were selected to have slightly less than 100% effectiveness in eliciting a spik-

ing response in an interneuron when noise is present and to be able to reproduce the in vivo

recorded firing pattern at a single excitatory synapse as recorded by Kosche et al. [28].

We added to some simulations standard Gaussian white noise:

Inoise ¼ nIamp ð7Þ

where n is a random number drawn at each time step from a normal distribution and its

amplitude Iamp = 400pA. It was changed in 0.1ms steps.

Temperature control in the model was made by modifying the electrical properties most

strongly affected by temperature: the maximal conductances and the rates of channel opening

and closing [77]. To add these effects to the model we changed conductances gc and time con-

stants τx, using the usual Q10 based formalism:

p ¼ pref Q ð8Þ

Q ¼ QðT� Tref Þ=10

10
ð9Þ

where the parameter p is a conductance g or a rate constant 1/τ, Tref is the temperature where

the parameters were originally fitted with the model from measurements, Q is the scaling fac-

tor, T is the temperature and Q10 describes temperature sensitivity. Typical values for Q10 are

Qk
10
¼ 3 for rate constants and Qg

10 between 1.5 and 3 for conductances [49, 50, 61, 77]. Explo-

ration was made in these parameters with steps of 0.1 from 1.1 to 3.2 to obtain the best match

between experimental and computational spike traces of each HVC neuron. We assumed a

value of Tref = 20˚C which is mentioned by Daou et al. [67] as “room temperature”, however

values up to 25˚C do not modify our results. Temperature exploration with parameter T was
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made between 40˚C and 20˚C, with the former being the designated “normal” temperature of

the bird’s brain. Other explorations were made in the range 40 − 30˚C, the latter being almost

the lowest temperature obtained experimentally. We also changed temperature in ICa−L that

has an explicit T dependence in Kelvin units.

Results

The goal of this work is to understand the temperature effects on the dynamics of HVC neu-

rons. We performed extracellular measurements on 11 male adult canaries (5 on the right

HVC and 6 on the left HVC) having 33 different recording sites, and we were able to isolate 30

single spiking units (SU) and 25 multiunits (MU). We looked for high spontaneous activity,

corresponding to HVCINT reported activity for zebra finches of 12.0 ± 4.3 Hz, whereas HVCX

and HVCRA have 1.5 ± 0.4 Hz and 0.6 ± 0.4 Hz [63]. Reports from canaries show a lower rate

of 6.2 ± 1.4 for HVCINT [78]. We looked for individual spike feature changes, such as spike

width and inter-spike-intervals. We found a remarkable reduction of activity when decreasing

the temperature and that the ISI distributions change non trivially with cooling. We comple-

mented these studies with computational models of the neurons that helped to interpret the

results. We added realistic synaptic inputs, also modulated by temperature, to account for the

effects found.

Temperature induced changes: Spike shape widening, spike rate

reduction and inter-spike-interval modification

We first classified the SUs by their waveform shape. In Fig 1A we can see all the mean wave-

forms normalized and aligned to their lowest value. We could separate them into two groups

by the mean of their peak to peak width. Widths that were less than 0.5ms were classified as

Fast Spikers (FS) and the longer ones as Regular Spikers (RS). Usually these shapes are related

to the neuronal type, with the former classified usually as interneurons, while the latter are

usually designated as excitatory neurons (Fig 1B). The first easily visualized effect found in all

neurons, was the spike shape widening of the extracellular potential (Fig 1C) as temperature

decreased from normal at 40˚C down to almost 31˚C. Single units were isolated at each mea-

surement site by means of spike detection and clustering techniques (See Methods). Mean

waveforms were obtained after aligning all the events to the minimum voltage, and spike times

were used to quantify activity and inter-spike-interval (ISI) distribution characteristics. In Fig

1C we can appreciate five widening examples, three FS and two RS. The widening effect

reached up to almost a 2-fold increase from the original shape for FS. To properly assess the

effect for the regular spikers, we pulled out from the 18 cell measured the 5 highest firing

(RShf) and the five lowest firing (RSlf) in an attempt to represent HVCX and HVCRA respec-

tively. The rationale for this is the following. Since the wave shapes obtained from extracellular

recordings of both types of cells are indistinguishable, we took advantage of the differences in

their spike rate activity. Assuming that the probability of measuring any of both cells is equally

probable, taking the lowest 5 and 5 highest firing cells gives a value p< 0.05 (p = 0.048) of not

having selected all from the same type. This is given by the binomial cumulative density func-

tion at a value of 5 with 18 samples. This selection will prove to be appropriate after the delicate

match with the model that we show below. The widening effect was lower in RS units than in

FS units, and it was more pronounced in RShf compared to RSlf, as we can see in Fig 1C. The

increase was of 40% and 20% respectively (Fig 1D, S2A Fig shows not normalized values).

In addition to the widening effect, we could see that the activity decreased substantially in

all cases with temperature with no significant difference between cell types (Fig 1E, not nor-

malized values in S2B Fig). However, the way that the activity changed differed for each firing
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pattern. In six of the FS units, most of the activity above an ISI of 10ms gradually disappeared

with lower temperatures, retaining many occurrences below 10ms, as we can see in first col-

umn of Fig 1F (neuron FS 1). Other behavior observed in two FS units is depicted in the

second column of Fig 1F (neuron FS 2). These neurons do not present bursts at normal

Fig 1. Effects of temperature on HVC neurons. (A) Two different types of single units were recognized in terms of their spike

shape. 12 Fast Spikers (FS, orange) and 18 Regular Spikers (RS, blue) (B) Classifications were made based on peak to peak wave

width (p2p width). FS (orange circles) have a more variable and higher spike rate than RS (blue triangles are the five with the highest

rates, and the blue rectangles the five with the lowest rates, the eight blue circles are intermediate rates cells). (C) Widening of the

spike shape of normalized waveforms across temperatures for three example FS (top) and two RS (bottom). We see that RShf units

show a bigger width change than RSlf. Color scale shows temperature. (D) Normalized full width increase of the spike shape across

temperatures. FS almost doubles the spike width, while RShf and RSlf only increase *40% and *20% respectively at the lowest

temperature. Points are mean ± s.e.m. (p* < 0.05, p** < 0.02 values for two tailed t-test made at each temperature) (E) Normalized

spike rate decrease across temperature, where we also include Multiunits (MU). We do not observe significant differences between

them (two tailed t-test p> 0.1). Points are mean ± s.e.m. (F) Patterns of inter-spike-interval (ISI) activity across temperature for the

single units shown in (C), left to right corresponding to top to bottom. Three different types of histogram appear for all measured FS,

where ISIs change non trivially (not only a distributional shift). The first one belongs to a FS with firing rate of 5.9Hz, measured over 8

minutes. ISI depletes at intervals higher than 20ms, but retain its lower than 10ms peak at lower temperatures. Second column is a

neuron with a firing rate of 3.3 Hz measured for 4.8 min. This neuron shows no bursting behavior and the ISI shifts to the right and

depletes. Third column is a neuron with firing rate of 2.4Hz measured for 6.4 min, where no changes are evident across

temperatures. It lacks the second timescale from around 20ms. Last two columns show the behavior of the two RS, firing at 2.4Hz

and 0.7Hz measured for 4 min. We see the evolution of a clear shift to the right of the distribution over the first temperatures, until they

get depleted at lower temperatures. (G) Cumulative distribution of the ISI of the three types of fast spiking neurons. The only

distributions that change significantly with respect to the one at normal temperature are FS 1 and FS 2, which have the second

timescale (p* < 0.0005 Kolmogorov Smirnov test, ns: not significant, alpha value is strict to account for fewer counts at lower

temperatures). We can see from FS 1 that this timescale starts to disappear at 36˚C and at around 10ms of ISI. Bins are 1ms.

https://doi.org/10.1371/journal.pcbi.1005699.g001
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temperature, and have ISIs which peak at around 20ms. As temperature decreases the distribu-

tion of ISIs depletes and shifts to the right. Finally, there were four neurons that did not pres-

ent the longer timescale, and although decreasing the firing rate, they did not show changes

in the ISI distributions (Fig 1F, neuron FS 3). The existence of different firing behaviors of

HVCINT (FS) was previously shown by Daou et al. [67]. The quantification of these two time-

scales and the disappearance of the second one is made evident with the cumulative distribu-

tion functions shown in Fig 1G. Second timescale disappears in neuron FS 1 and neuron FS 2,

but not in neuron FS 3 where it was not originally present. To better quantify these timescales

we did separate analyses below and above 20ms, which showed that median values in these

ranges have different correlation with temperature, rising for above and decreasing for below

20ms (S2C and S2D Fig). This implies that although having an almost 3 fold reduction in firing

rate in the range of temperatures studied, the timescale appearing below 10ms does not disap-

pear (for the neurons that have it), and that the timescale around 20ms disappears with

decreasing temperatures. In addition, only the neurons having the intermediate timescale

showed differences with the cumulative distribution at normal temperature (S2E–S2H Fig)

revealing non trivial modifications of the ISI distributions. For the two example RS units

shown in Fig 1C, the evolution of the ISI distribution retains its structure, but loses it at times

higher than 20ms. This is clearly seen in the third row of the last column of Fig 1F (RS lf),

where the second peak in the distribution disappears. In all cases we can see that the first peak

or left end of the distribution moves slightly to the right, to a higher ISI. We did not find differ-

ences in all these effects between the left and right HVC.

In what follows, we will study with the help of a computational model of the neurons in

HVC, the possible explanations for the temperature effects in the spontaneous activity of its

neurons.

Temperature manipulation of modeled neurons

Computational modeling of HVC neurons has proven to be successful for in vitro approaches

[67]. In those studies, single compartment conductance descriptions of currents and voltages

were obtained with great detail. Further work also explored non conventional complex input

currents designed to activate most ionic channels and data assimilation procedures to better

evaluate parameters [68]. These works show astonishing match between experiment and

modeling, making them ideal to test temperature extrapolations. As mentioned above, the

works done in the crab made a full exploration of the parameter space showing that a very

small percentage of models will show the expected physiological behavior, but that they are

nevertheless hundreds of parameter combination possibilities. This emphasizes that many

models can be equivalent to explain a behavior, and that care has to be taken in restricting

constraints.

Other modeling variations of HVC neurons include two compartments, soma and den-

drites [66, 69], to better explain the absence of bursting from current injections in the soma of

HVCRA neurons in slices at 35˚C [66]. However, dynamics of bursting within a single com-

partment neuron are expected to not differ from a two compartment one apart from a small

delay coming from the electric couping constant between the two compartments (not more

than *1ms). Current injections in the soma will elicit bursting since the IK Ca dependent cur-

rent mostly responsible for it is located in the same compartment as the currents responsible

for spikes.

In our modeling we will use the parameters found by Daou et al. and a single compartment

model. Our hypothesis is that there is a parameter range were the responses of our model are

robust to changes. Therefore we selected the extrapolation parameters using constraints from
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previous in vivo studies. Our first step was then, starting from these previous results, to extrap-

olate them to in vivo brain temperatures. As is usual in most of the in vitro electrophysiological

studies, temperature is mentioned as “room temperature”. This fact has consequences, like fur-

ther studies in the field yielding results that differ from the previous ones, since they work at

another “room temperature”. For the purposes of this work we did center our interest in

dynamical regimes, rather than in absolute values, since they are expected as we showed in the

previous section in the almost 10˚C temperature range explored. Our studies focus in the global

changes manifested and not the exact temperature at which they occur. Therefore we decided

arbitrarily to assign a 20˚C value to the temperature where the computational parameters were

obtained. As explained in the Methods section, we modified the maximal conductances and

the rates of channel opening and closing based on an already successful temperature model for

neuronal activity [43, 49, 50, 61].

Search in parameter space was done with the premise that different Q10 values act on the

maximal conductances and the rate variables, and the search for the proper parameters was

done independently for the three neuronal types. We aimed at reproducing previous intracel-

lular recordings that show bursting in excitatory cells and their specific voltage evolution [63,

66]. We decided to not separate each of the specific Q10 values for gating and conductance var-

iables (7 for rates and 10 for conductances), since finding a combination that reproduces the

expected behavior should be robust under slight changes in the parameters [43]. Therefore, we

made a two dimensional parameter search with the two Q10 parameters decoupled for the

three neuronal types. Qk
10

(rate) and Qg
10 (conductance) were allowed to vary from 1.1 to 3.2

in since 1 means no effect by temperatures, and 3 is the usually biggest reported value. We

explored the temperature range from T0 = 20˚C to the normal temperature of 40˚C. We

injected 16ms length currents with 3 varying steps. Criteria for selecting parameters was capa-

bility of bursting and number of spikes and measures of voltages between resting, maxima,

minima and local minima. Finally, we assessed resemblance with voltage traces from the litera-

ture. First, criteria needed to be met at 40˚C and then we checked for robustness across other

temperatures.

The easiest search was made in HVCRA, because it presents a narrow range of parameters

where it presents bursting (Fig 2A). The selected value is (Qk
10

,Qg
10) = (3.0,1.4). Second,

HVCINT (Fig 2B–2D) presents strong spiking at all parameters, and a region with strong fir-

ing and robustness across temperature was selected. Then we looked for the difference

between minimum hyperpolarization after spike and resting membrane potential, as mini-

mum difference was found in in vivo studies [63, 66]. As a last constraint, we selected a

region were the peak to peak voltage was neither too high neither too low and about 60-80

mV. Values for the interneuron are (Qk
10

,Qg
10) = (3.0,2.5). Third, we studied the behavior of

HVCX which needed further constraints to arrive to the selected values (Fig 1E–1H). Higher

and more robust spiking across temperatures was found first and then we assessed interburst

interval to be lower than 4ms. Peak to peak voltage inside a burst was chosen to be between

40 and 60mV, because we know it spans from about half to 75% of its 80mV peak to resting

membrane amplitude. As a last measure, we evaluated the peak to peak width to be bigger

than 0.6ms, as suggested by our measurements (see S2A Fig), and to be smaller than 2ms

which is about the half of the interburst interval. Parameters chosen from the intersection of

selected zones are (Qk
10

,Qg
10) = (3.0,2,5). We did also explore other parameters as the resting

membrane potential (S3 Fig). The only neuron to show a variability bigger than 1mV across

all the parameter space and from 20 to 40˚C was HVCX. In that case, the variation in the

range of experimental temperatures studied was of almost 4mV, and it increased at low tem-

peratures. The other neuronal types also showed this increase, although it is of less than
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Fig 2. Exploration of model neurons behaviors in Q10 parameter space and across temperatures. Responses of neurons were

tested with 16ms current injections at 3 different amplitudes and 20 different temperatures and the best response from the three was

chosen, meaning the one eliciting the bigger number of spikes. Normal temperature (40˚C) was given a bigger relevance in terms of

neuronal responses. Neuronal voltage traces were also assessed for good resemblance with traces reported in vivo [63, 66]. (A)

HVCRA presents more than one spike at high Qk
10

and low Qg
10. Black ellipse shows the only region that remains stable in a wide range

of temperatures. Test currents were 480-1000-1500 nA. Selected value is (Qk
10

,Qg
10) = (3.0,1.4) (B) HVCINT fire strongly at all

parameters. Ellipse shows a region with a high number of spikes which is more robust across temperatures. (C) Difference from

minimum hyperpolarization potential after spike and resting potential of HVCINT. Selected region shows the smallest difference, as

previously reported. (D) Peak to peak Voltage for HVCINT. Selected region shows voltages around 60 mV. Superposition of regions

from B-D gave (Qk
10

,Qg
10) = (3.0,2,5). Test currents were 250-500-1000 nA. (E) HVCX higher spiking and more robust across

temperatures is marked with an ellipse. (F) Interburst interval was selected to be lower than 4ms to be compatible with previous data.

(G) Peak to peak voltage inside a burst is chosen to be between 40 and 60mV. Red zones represent spikes with no bursting, and blue

zones spikes with very small bursting fluctuation. (H) Peak to peak width should be bigger than 0.6ms (see S2A Fig) and smaller than

2ms which is about the half of the interburst interval. Intersection of zones in E-H gives (Qk
10

,Qg
10) = (3.0,2,5). Test currents were 540-

1000-1500 nA. Lowest test currents for HVCRA and HVCX were set during a second iteration to the value that provided biggest

resemblance to previously reported voltage traces.

https://doi.org/10.1371/journal.pcbi.1005699.g002
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1mV. This behavior is compatible with the measurements on hippocampal slices mentioned

above.

Temperature extrapolation makes excitatory neurons burst naturally

The obtained Qk
10
¼ 3 factor for rate constants was the same for the three neuronal types, and

the evolution of Q with temperature can be seen in Fig 3A. It represents probability of channel

opening and closing effects and is the typical value measured in the bibliography and used in

models [49]. On the contrary, the temperature sensitivity Qg
10 factor was different for each type

of neuron. This is not surprising, as it should depend on the type of channel that predominates

in each neuronal type. The evolution of the Q values are shown in Fig 3B for these parameters.

The predominant conductance IA in HVCRA is bigger compared to its Ih and the contrary hap-

pens for HVCX, so relative values coincide with conductance measurements made in the crab

[49], where values for the IA conductance are lower than 2 and near to 3 for the Ih. Because our

modeling does not discriminate between individual Qg
10, we expected the relative incidence of

these two conductances to dominate above the other less representative. The value of 2.5 for

HVCINT is similar to the in vivo relative current values of HVCX. The final selection of parame-

ters was assessed by finding the closest fit between modeled and experimental traces at in vivo

Fig 3. Effects of temperature on modeled neurons: Bursting emergence. (A) Correction parameter Q with temperature

sensitivity Qk
10
¼ 3 that multiplies every constant rate in the model. Processes are three times faster at 30˚C than at 20˚C where

parameters were obtained by experiments in slices [67]. At 40˚C rates are three times faster than at 30˚C. (B) Maximal conductances

are also changed by parameter Q. Dotted line corresponds to a Qg
10 ¼ 2:5, used for HVCX and HVCINT, and full line to Qg

10 ¼ 1:4 which

modeled HVCRA. (C) Behavior of neurons in response to an applied current of 12ms for HVCX and HVCINT and 16ms for HVCRA. At

40˚C there is a remarkable similarity with intracellular measurements in vivo, where HVCX and HVCRA have bursting behavior (Long

et al. [66]). Decreasing temperature affects the interspike interval, which widens in all cases, leading to a reduced number of spikes.

At 20˚C HVCRA fails to spike. (D) Exploration of longer (30ms) and higher current inputs show bursts that terminate solely by intrinsic

current properties at normal temperature for HVCX and HVCRA having the same duration as real neurons. The latter retains bursting

up to 30˚C and fails to spike at 20˚C. HVCX loses bursting offset before, at around 36˚C. The short pulses have the same duration as

in (A) 50ms after long pulse for HVCX and HVCINT and 100ms after for HVCRA, show a spike number reduction at this short latency

compared with (A). Bars beneath traces show duration of pulse.

https://doi.org/10.1371/journal.pcbi.1005699.g003
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temperatures (See Fig 3C). Not trivially, yet not surprisingly as was expected from the recently

described dynamics of Ca2+-dependent K+ current (ISK) in HVCRA and HVCX, we found

bursting behavior at normal bird temperatures of 40˚C for these two neuronal types. We used

external applied currents Iapp of durations close to 10ms, which is the typical burst duration

measured in vivo.

Once the temperature control variables Qk
10

and Qg
10 were set, we studied the behavior

between 30˚C and 40˚C. We found that for the same duration and strength of current stimula-

tions, the number of spikes per burst decreased and interspike-burst-time increased, and also

interspike-interval increased for HVCINT (Fig 3C). For room temperatures at which the original

studies were performed, the bursting behavior disappeared for HVCRA and changed drastically

for HVCX, showing only two spikes. Another interesting behavior shown was the delay onset for

the first spike in HVCRA bursts, that may have specific implications in explaining previous tem-

perature manipulation experiments [16, 24, 25, 33] which we will discuss in the next section.

To test if continuous spiking was just a response to applied current, we used a longer stimu-

lus of 30ms (Fig 3D). Interestingly, spiking terminated at approximately the in vivo durations

found experimentally. As it was reported by Daou et al. [67] we did not find bursting behavior

at the lowest temperature, and we were able to find a range between 30˚C and 40˚C where

HVCRA keeps its bursting offset and between 36˚C and 40˚C where HVCX does. HVCINT just

decreased their interspike times. We looked for post bursting effects and applied the short cur-

rent pulses described above after a brief time gap from the long pulse. The behavior of bursting

neurons showed a reduced number of spikes, even with increased current. To elicit bursting

we needed a 100ms refractory period for HVCRA, while only 50ms was needed for HVCX,

which is compatible with in vivo bursting recordings. On the other hand, HVCINT never

showed bursting and interspike interval was sensitive to current values, resulting in higher

spike rates at higher currents.

Single neuron model accounts for spike widening

After fixing the model parameters of temperature control, we explored single spike features of

neurons. Spike width increased with temperature decrease for the three neuronal types, as can

be seen in Fig 4. Computational traces show the intracellular voltage evolution of a spike that

increases time duration. In Fig 4A we focus on a single spike for several temperatures for the

three neuronal types for the current injected in Fig 3A. Since the computational model gener-

ates intracellular voltage evolution, to compare it correctly with the extracellular measure-

ments (S2A Fig), we selected a width value for each neuron type corresponding to the one

measured experimentally. For excitatory neurons, we searched at 40˚C peak to peak threshold

% to obtain a width of 0.6ms. This resulted in a 60% for HVCRA and a 55% for HVCX. For

HVCINT we decided to include the hyperpolarization peak which has strong influence in the

extracellular potential. We then made a threshold selection in the uprise of the spike, giving a

value of 30% to give a width at 40˚C of 0.35 ms. Results are shown in Fig 4B, where the resem-

blance of the evolution of the widths across temperature is impressive. Following, we com-

puted the relative increase in spike width compared to the one at 40˚C (Fig 4C). The increase

in spike width was more than 100% for HVCINT, 35% for HVCRA and 50% for HVCX for

the temperature range studied. At values above 31˚C they have a remarkable match with the

one that was measured in experimental extracellular traces (Fig 1D). Behavior of the model

matches the one present in our data and is sufficient to explain the waveform widening using a

single neuronal model. This means that this effect can be explained with the temperature inci-

dence in the temporal channel subunit dynamics, which increases their characteristic time

constant with the factor 1/Q (see Methods).
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Single synapses explain song stretching and spike rate reduction

On the other hand, the maximal channel conductance changes that are modified with the Q

factor may be responsible for other effects. Since the Hodgkin Huxley type of modeling used

represents an excitable system, we expect that this maximal conductance reduction will delay

the neuronal synaptic inputs to situate the postsynaptic neuron voltage above the threshold,

thus producing a spike delay. To analyze this effect, we explored the voltage evolution of neu-

rons for the current injections of Fig 3C. A detailed evolution of bursts is shown in Fig 5A,

where voltage traces are aligned to the start of the stimulus. Here it is easier to recognize that

the interspike interval within a burst increases when lowering the temperature. Also, for

HVCX and HVCINT, there is no delay in the onset of firing, which changes for HVCRA. For this

reason, we made the input current to HVCRA longer, in order to have a three spike burst across

all explored temperatures. This adds a distortion effect on the last spike at low temperatures,

but does not alter the results. We can see that there is close to a 5ms delay in the onset of firing

Fig 4. Spike widening in single neuronal model. (A) Intracellular voltage evolution of a single spike for the

three modeled neurons across temperatures shows an increase in its width with the same current input as in

Fig 3C. The time window used to plot is identical to the one used in Fig 1A and 1C for the extracellular

measurements, and the positive peak is aligned to 1ms and waveforms are shifted (less than 5mV) to match

at peak amplitude. (B-C) Width increase for the three neuronal types was computed for the first spike of the

traces in Fig 3C. Width is calculated as the spike width above a threshold of 55 and 60% for HVCX and HVCRA

and from the hyperpolarization to a uprising threshold of 30% for HVCINT. These were selected to match the

measured experimental width at 40˚C (S2A Fig). In (C) we show the same normalized to the width at 40˚C.

We see that the widening effect is of more than 100% for HVCINT and about 50 and 35% in HVCX and HVCRA

respectively for the 10˚C range explored.

https://doi.org/10.1371/journal.pcbi.1005699.g004
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Fig 5. Temperature effects from a single synaptic input produce delays. (A) Voltage traces for the three neuronal types in red,

and synaptic input in blue across different temperatures are aligned to 0ms at current injection start. Single bursts can be seen for the

excitatory types and a similar number of spikes for the inhibitory HVCINT. All neurons present interspike interval increases and HVCRA

also shows a spike onset delay with decreasing temperatures. Vertical line is a reference aligned to the peak of the first spike in each

trace. (B) Current inputs in blue from a single synaptic model fed with the voltage traces of HVCX and HVCRA. Evolution of HVCINT

voltage in red shows a single spike elicited after the third synaptic current peak. Latencies increase when lowering temperature. Time

origin and vertical line are the same as in A. (C) Delay for spike onset for the five traces in A and B relative to the timing of the first

spike at normal temperature. HVCRA and HVCINT only have slight delays for the constant applied current, while HVCRA displays an

almost 5ms delay to burst onset at 30˚C. For the synaptic model HVCINT has delays that go up to 6ms and 12ms for the two excitatory

input types. (D) Maximum absolute synaptic current elicited decreases in a similar fashion for the two excitatory inputs and decreases

more than twofold in the range of temperatures explored. The change in slope of the HVCRA to HVCINT curve at around 34˚C is due to

the slight distortion of last spike in HVCRA. (E) Spiking pattern of HVCINT at 40˚C for decreasing current at steps of -200pA shows the

characteristic sensitivity of the inhibitory interneurons to input currents. (F) Interspike interval (ISI) of HVCINT for different currents and

temperatures. We see that it is more sensitive to currents than temperatures. Inset panels show that at 1000 and 2000pA ISI changes

less than 0.3ms for different temperatures, and shows changes above 1ms only below 500pA. Currents were generated with 25ms

pulses decreasing at -100pA steps in a single simulation with 200ms intervals between pulses. ISI was computed only where there

was at least two spikes, which happened below -300pA.

https://doi.org/10.1371/journal.pcbi.1005699.g005
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for the same current applied when temperature is decreased 10˚C. These can directly affect the

firing pattern of neurons targeted in RA, which in turn innervate the brainstem nuclei (nXII

for syringeal muscles and Ram for respiratory muscles) in charge of sending output motor

activities to elicit song, or sending back further synapses through a bottom up recurrent

network. Although the type of input we are providing is not physiological, it proves that tem-

perature is capable of changing an important timing property of at least one neuronal type,

HVCRA.

For the purposes of this work we will concentrate on the HVCINT temperature changes,

since there is still much debate on the connectivity of HVC projecting neurons, as mentioned

above in the Introduction, and because it will restrict the connectivity scenarios we can use to

assess the changes in their ISI distributions, as we explain in the next section. Therefore, we

used the voltage profile of the excitatory neurons HVCRA and HVCX to provide a more realis-

tic input to HVCINT. Using a simple model of synaptic current also modified with temperature

(see Methods), we assessed the evolution of the HVCINT neurons. The parameter we had to

explore in this single synapse model was the maximal conductance gsyn (see Eq 6). To match

physiological behavior, we tried to reproduce the recently measured in vivo-like activity shown

by Kosche et al. [28] of interneurons in HVC while measuring and eliciting the excitatory

input activity in HVCRA neurons. The authors showed that reliable spiking occurs in interneu-

rons when HVCRA neurons fire three consecutive spikes at 100-300Hz, at a room temperature

of 23˚C. The single interneuron spike occurs after the third spike in the “artificially elicited

burst”, and shows a short delay.

Once the conductance parameter was fixed, we computed the evolution of an interneuron

voltage following the different excitatory inputs of Fig 5A. The full current and the voltage

evolution are shown in Fig 5B for both cases. We can notice that the interneuron spike has a

much wider delay relative to the position of the first spike in the excitatory bursts (vertical

line). This is due to the accumulation of time resulting from the widening of spikes and inter-

spike intervals, and from the effect of synaptic delays. The delays relative to the first spike in

each condition in Fig 5A and 5B are depicted in Fig 5C. Hamaguchi et al. have recently mea-

sured in HVC at 32˚C an increase in excitatory neuron delays to spiking onset of almost 2.8ms

compared to 40˚C, using presynaptic neuronal stimulations [33]. This agrees with the HVCRA

delay shown here.

Following the analysis, the maximal postsynaptic currents in this model were computed,

and in Fig 5D we can see that they decrease from the original absolute values of around 600-

700pA to close to 300pA for the two excitatory inputs on HVCINT. This remarkable change

can help us explain the decrease in spontaneous activity that we witnessed in our experiment.

For this, we explored the response capabilities of the HVCINT to different input currents at

40˚C, as we see in Fig 5E. Here we applied currents starting from -100pA down to -800pA

with steps of 100pA. We see that the modified Hodgkin-Huxley model used for this neuron is

particularly sensitive to the current applied, showing an increasing spiking frequency, and can

be classified as a class 2 excitable system, since it starts spiking at low frequencies with small

currents. To see the incidence of temperature and current in the ISI interval elicited in the

HVCINT we constructed Fig 5F. There, we explored the full temperature range, and currents

from 300pA to 2300pA. The first interesting result is that the ISI has almost no sensitivity to

temperature when high currents are applied. Only below 500pA we can see a change higher

than 1ms for the whole temperature range. It follows that temperature starts to play a role in

ISI behavior at low input currents, which happens below 36˚C, as we know from Fig 5D. For

the lower current of 300pA, the ISI can change up to 5ms. In conclusion, there are two parallel

effects acting on the synaptic model: one is the decrease in the maximal conductance with tem-

perature, and the other is the sensitivity to input current of the HVCINT. These two effects may
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act together in reducing the spiking of these neurons at lower temperatures. Nevertheless, we

cannot yet explain the different shapes in the ISI histograms of the experiment, for which we

refer to the next section.

Realistic synaptic input is needed to explain ISI distribution changes

To account for different neuronal activity characteristics shown by HVCINT, we decided to

explore realistic synaptic inputs. A priori, we cannot rule out the possibility that the HVCINT

have subpopulations with dissimilar channel conductance properties, however, the existence

of substantial diversity has not been reported in the interneurons measured previously [67].

Following this line, and to simplify our exploration, we expanded the single synaptic model to

multiple excitatory inputs on a single interneuron. We based our analyses in the synaptic con-

nectivity description of HVC microcircuitry where it is known that HVCINT only receive input

from HVCRA and HVCX [64]. We connected synaptically excitatory neurons to a single inter-

neuron whose firing pattern is under study. The hypothesis we want to test is that only with

Poissonian inputs into the interneurons we can account for the changes observed, ruling out

any connectivity structure, at least during the non-singing anaesthetized state. We fixed the

spike rate of excitatory neurons as reported previously at 0.6 Hz and 1.5 Hz for HVCRA and

HVCX respectively [63]. Each input consists of a presynaptic voltage pattern eliciting a synap-

tic current, as shown in the previous section (Fig 6A–6C). We used the patterns of Fig 5A and

made two new ones, reducing the stimulus pulse, which have a single spike or a burst with two

spikes (Fig 6A–6C, waveform shapes). These are intended to mimic real input for canaries that

reported that about 9% of a bursting cell’s activity corresponds effectively to bursts and that

they average around 2.7 spikes per burst. We therefore used for each synaptic input a fixed

ratio between number of spikes. Events with one spike ranged from 70% to 100% in 10% steps,

and the remaining were assigned 2 or 3 spikes per burst, retaining the desired overall spike

rate. Conductance parameters were the same as the ones studied in the section above, which

means that single spike events cannot elicit a spike in the interneuron. In order to be more

realistic, we added noise following Eq (9). In addition to the temperature change of all parame-

ters in the computational model, we changed the synaptic input spike rate of the excitatory

neurons following the decrease shown in Fig 1E, which is of 5.6%/˚C.

We explored at normal temperature the number of inputs necessary to keep the spike rate

of the interneurons between 2 and 8Hz (measured experimentally). It resulted with the param-

eters used that we needed 80 excitatory units. Then we allowed the number of different excit-

atory types to vary in the range to see if different input characteristics can shape the quality of

the response. In Fig 6A–6C we show an arrangement and the typical traces of intracellular

potential showed by the HVCINT and its corresponding synaptic current, for three different

arrangements (top) of input neurons at 40˚C (middle) and at 32˚C (bottom). We can see the

intracellular excitatory post synaptic events in the trace and that some events get grouped in

three and two spike “burst”. This “bursting” behavior is due to the way that we fixed the synap-

tic input in the previous section and to the intrinsic characteristics of the interneuron. Conse-

quently, when a presynaptic event is a burst, there is a higher chance that another input from

another neuron near it will elicit more spikes. This can be seen in Fig 6D where there is a

dense occurrence below 10ms. This type of pattern is reminiscent of FS 1 unit described in

Fig 1F.

On the other hand, when we take out the bursting input type, we cannot find the “burst”

arrangement in the intracellular trace (top of Fig 6B) and we recover a pattern without the first

peak in the ISI distribution, as shown in Fig 6E. In Fig 6C we show the trace and in Fig 6F the

ISI distribution of another neuron corresponding to a different balance of HVCRA and HVCX

Temperature manipulation of neuronal dynamics
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Fig 6. Changes in model ISI distributions from poisson excitable inputs. (A-C) Different input combinations (top) and evolution

of the intracellular potential for HVCINT (red) and synaptic current elicited (blue) for 40˚C (middle) and 32˚C (bottom). Many

presynaptic inputs do not elicit spikes and spiking can happen in a “burst” like manner. (A) Input of 20 HVCRA neurons and 60 HVCX

neurons. Firing rate at 40˚C is 5.6 Hz, matching FS 1 unit in Fig 1F. To achieve this behavior 30% of the input was made of bursts of 3

spikes, while the rest consisted of single spike events. (B) Input of 80 HVCX neurons produces a firing rate at 40˚C of 2.9 Hz with no

“bursting” events, matching closely FS 2 unit in Fig 1F. To achieve this behavior, 100% of the input was made of single spikes. (C)

Input of 60 HVCRA neurons and 20 HVCX neurons. Firing rate at 40˚ is 2.4 Hz, matching FS 3 from Fig 1F. 10% of the input was made

of 3 spike bursts, 20% of 2 spike bursts while the rest consisted of a single spike. (D) ISI distributions across temperatures for

connectivity in A shows a big peak at times below 10ms. (E)ISI distributions across temperatures for neuron in B shows the absence

of the peak below 10ms. (F) ISI distributions across temperatures for connectivity in C shows a big peak at times below 10ms. (G-I)
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input events. In all three cases, what determines the type of ISI distribution is not the type of

input neuron, but the balance between the number of 3-, 2- 1-spike inputs. We found that

the only possible way to avoid the grouping of events below 10ms was by preventing bursting

input to the neuron. On the other hand, once the balance was established, changing the ratio

of excitatory input neuron types only changed the spike rate, without changing qualitatively

the ISI distributions.

In Fig 6G–6I we show the quantification of the distributions by means of their cumulative

density function. In Fig 6G we see that although the structure below 10ms is retained, signifi-

cant differences exist between low temperatures and the normal temperature. This is due prob-

ably to the very deterministic nature of the bursting input imposed into the cell that makes the

interneuron interspike interval to increase as the interburst interval of the input does (S4A

Fig). More explorations using a bigger percentage of bursting events made this differences dis-

appear and the distribution under 10ms to be slightly broader. However, when studying the

firing rate decrease across temperatures for these inputs with more bursting input, it was

not possible to match the firing rate decrease found in the experiment. In Fig 6H we see a

resemblance to FS 2 type from Fig 1F in that the slope at small timescales of the distribution

decreases at lower temperatures, but in this case no significant differences were found with

respect to 40˚C at times above 20ms (S4B Fig). In Fig 6I we show a third combination of inputs

that matches FS 3 behavior. Again in this situation as in Fig 6G, significant differences are

found for smaller ISI values (S4C Fig).

Then we studied the evolution across temperature of the normalized spike rate for all the

measured temperatures and balance of neurons and spiking inputs. We can see in Fig 6J (in

S4D Fig we show not normalized values) that the decreasing tendency which better resembles

the measured data (Fig 1E) is the one corresponding to all the inputs as HVCX. We have

imposed a lower spiking rate on HVCRA relative to the one of HVCX, which in the simulations

with a higher ratio of HVCRA neurons led to a firing rate that was at the lower end of the range

of the ones measured experimentally. We conclude that for the physiological range of firing

rates we simulated, their decrease can be explained by the amount of the stochastic input

received. Then we asked if it was more important the specific type of input that a cell provides

or if it was the firing rate at which it excites the interneuron. For that purpose, we inverted the

firing rate between HVCRA and HVCX inputs and rerun the simulations. The result can be

seen in Fig 6K (S4E Fig), and we obtained an exact inversion of the original result, meaning

that it is more important the rate of the input than its detailed characteristics. The only differ-

ence was the case where all 80 inputs were HVCX, in this scenario at a low firing rate of 0.6Hz,

where the firing rate of the interneuron increases at low temperatures. This can be explained

by the fact that HVCX input was slightly less strong than the one from HVCRA and that at low

firing rates it cannot elicit spiking easily, whereas at low temperatures it shows a bigger ampli-

tude of spike and HVCINT a slightly bigger membrane resting potential (S4I Fig). Nevertheless,

firing rate of the interneuron in that case was far below any of the values measured experimen-

tally (Fig 1B). We also studied what happens if the synaptic inputs are stronger (+0.5nS for

Cumulative distribution of the ISI of the three connectivities. The distributions with the peak below 10ms change significantly with

respect to the one at normal temperature (p* < 0.0005 Kolmogorov Smirnov test, ns: not significant, alpha value is strict to account for

fewer counts at lower temperatures). This is due to the slight shift to the right of this peak at lower temperatures. (J) Evolution across

temperatures of the spike rate of the simulated neurons explored for different balances of HVCRA neurons and HVCX neurons, with a

fixed total of 80. Percentage of single spike input varied in steps of 10% from 70% and double and triple spike bursts also varied in

10% steps. (K) Evolution of spike rate, but with the input rates of the excitatory neurons inversed. (L) Evolution of spike rate, with

synaptic inputs stronger in 0.5nS. Data points are mean values and bars are s.e.m. ISI distributions are normalized for each

temperature which is color coded in ˚C. Simulations were made of a duration of 4 minutes.

https://doi.org/10.1371/journal.pcbi.1005699.g006
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each synaptic input) and found that no matter all the combinations that we explored, the inter-

neuron does not reach the rate decrease observed experimentally (Fig 1L and S4F Fig). Finally,

we took out the noise present and rerun again the simulations, and we saw that results do not

change regarding the firing rate (S4G and S4H Fig). The sole difference was that the spread of

the ISI distribution was narrower.

Discussion

In this work we studied the neuronal changes produced by the temperature manipulation of

the neurons present in HVC of canaries during spontaneous activity. The main purpose of this

was to understand the individual underlying mechanisms that take place in single HVC neu-

rons when cooling, which was shown to give rise to complex behavior such us song stretching

and “breaking”.

We could recognize from the extracellular electrophysiological recordings two different

types of single units, Regular Spikers (RS) and Fast Spikers (FS), that correspond to excitatory

HVCRA and HVCX, and inhibitory interneurons HVCINT. In order to assess separately the

behavior of the two excitatory neurons, we made two groups, RShf and RSlf for high and low

firing rates. This proved to be a good choice based on the significant differences encountered

between the two populations and the delicate match with the computational model. All these

single unit waveform shapes increased their width with temperature. However, the three

groups exhibited a distinct behavior: interneurons showed an almost 2-fold increase, while

excitatory ones increased only 20 and 40% of their length in the almost 9˚C experimental tem-

perature range. The second marked effect was an almost 3-fold decrease in the spike rate of

every measured neuron, including in this case the Multiunits (MU). Finally, we observed dis-

tinct inter-spike-interval distributions that changed across temperatures in an unexpected

way. First, FS showed three families of activity patterns: two with a marked peak at low ISIs,

from which one had also a timescale present at around 20ms, and the third with a spread dis-

tribution. All FS neurons retained the first peak while depleting the higher times. In the case of

the one only having the second spread timescale it also shifted to the right. For the RS, some

sparse patterns shifted to the right also, and depleted first at higher ISI values.

In order to understand these observations, we proceeded to build a computational model

with detailed equations and real conductance parameters. Since these were obtained at room

temperature for HVC neurons, we introduced the Q10 formalism to be able to model tempera-

ture changes. A search in the (Qk
10

,Qg
10) parameter space was done for the three HVC types

independently using constraints from previously reported in vivo measurements and values

selected displayed a robust behavior across the experimental temperatures measured. The first

result obtained from this implementation was the natural occurrence of bursting behavior for

both excitatory neuron types at normal temperatures. This may be the result of the slow effect

of the ISK current dependent on the Ca2+ intracellular concentration which is present strongly

in these neurons, but not in the inhibitory type. We then computed the evolution of the wave-

form shapes across the range of temperatures explored experimentally. The widening effect

was present in all the simulations and the three groups showed a marked difference of widen-

ing and a delicate match with our measurements. It proved sufficient to use a single neuronal

model with temperature dependence to explain this effect.

We then added artificial pulses of constant synaptic input to the three neuronal types and

found a marked delay in the onset for spiking in HVCRA neurons. Then we used the voltage

evolution of the excitatory neurons to provide realistic synaptic input for the interneurons.

Matching the experimental observation that a burst of three presynaptic spikes elicits one

spike in the postsynaptic neuron, we could see that the delay onset for spiking with respect to
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the one at normal temperature increased up to 10 ms at the lowest temperatures. We observed

that the maximum synaptic current decreased with temperature in a range from 300 to 700pA.

Interestingly, the interneurons show a strong dependence with temperature in their interspike

interval only for currents under 500pA. This can already explain the decrease in spike rate

observed in the interneurons without any assumptions on the changes of their input.

Finally, we added Poissonian synaptic inputs to see if the changes in the inter-spike-interval

distributions of the interneurons could be explained. We found that at least 80 synaptic inputs

are needed to reproduce the spontaneous spike rate of the HVCINT due to their low firing

rate (1.3Hz in average for our measured RS units). To reproduce the ISI distributions with a

marked peak below 10ms, the most important feature needed in the presynaptic neurons was

the existence of at least 10% of the input neurons having a burst of two or three spikes. In

order for this peak to be absent, 100% of the presynaptic activity had to be modeled with a sin-

gle spike. This provides an interesting tool to study the type of input that this type of neuron

might have, only by measuring its spontaneous activity. In addition, all the simulations showed

a shift of the first peak of the distribution to the right. What could not be explained with the

stochastic input proposed was a second strong timescale present in the ISI histograms, the one

which is above 15ms. This can be due to the fact that connectivity in HVC is not random, and

that its structure manifests even when its activity is spontaneous.

We also explored the relationship between the type of input and its firing rate by inter-

changing the firing rates of HVCX and HVCRA. Results showed a very similar behavior of the

interneuron activity, but now with the number of inputs inversed. This implies that at the net-

work description level the most important factor is the spiking activity, and not the detailed

intracellular dynamics. In terms of noise input, we found that it does not change rate results,

but that it has incidence in the spread of the lower peak of the ISI distribution, as expected

from a very deterministic input. Lastly, we also tested stronger synaptic inputs and found no

combination that could reproduce the amount of firing rate decrease measured at low temper-

atures. This points out the importance of the delicate choice of the synaptic strength so that it

elicits an EPSP in the interneuron just below its spiking threshold: a very fine tuned synaptic

strength is needed to reproduce our experimental findings.

In terms of cellular mechanisms, our work provides strong evidence that the bursting

behavior of excitatory neurons is an intrinsic property arising at the normal temperature of

the brain. We see the way that a lot of the research made on cellular properties of neurons has

a big reportability problem regarding temperature. The use of “room temperature” should be

avoided, since our computational exploration shows drastic changes. Nevertheless, we showed

that the Q10 formalism proves to be a very useful tool to extrapolate the parameters measured

for ion channel properties. We strongly advise that further research should report a precise

value of the temperature, and ensure its stability.

Regarding the slowing down of the cellular processes, we found that the bigger effect is the

synaptic delay. This changes the onset spiking of neurons as late as 8ms at an 8˚C temperature

decrease for the proposed HVCRA to HVCINT synapse. For HVCRA the effect was of more than

3ms, a value compatible to one measured in vivo recently [33]. Spike shape widening can be as

dramatic as doubling its value for HVCINT, but this represents only 0.5ms for a 10˚C decrease.

When studying the distribution of spikes during spontaneous firing, we found that only sto-

chastic Poissonian input cannot completely shape the distribution of ISIs measured. There is a

second timescale present at values bigger than 10ms that we could not reproduce. This suggests

that the underlying connectivity present in HVC does shape this pattern on a timescale bigger

than a single spike. Although it was not the purpose of our work to unveil the microcircuitry

within HVC, we added evidence that spontaneous activity is not just random. The temperature

manipulation tool could prove very useful to test different scenarios in further studies. We
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would also like to emphasize that our results show contributions to shaping the activity of

HVCINT neurons from HVCX neurons that cannot be disregarded. We are not aware of any

work about network modeling in HVC that takes HVCX neurons into account. We will not be

surprised in the future if we see the inclusion of them in the modeling, just the same that hap-

pened when early models of HVC only used HVCRA neurons and now all added HVCINT

neurons.

Coming to the initial question that triggered our work, we could not find a striking effect in

the cellular mechanisms that could be related to the “breaking” of the syllables found in canar-

ies when cooling HVC. Our results suggest that this enigma will be resolved examining net-

work effects either at the local network in HVC or at the global network involving the whole

motor pathway. We did in fact find a local unexpected emergent property that changed with

temperature: the disappearance of the second timescale in the interspike-interval-distribution

of the interneurons. This happened at around 36˚C, which is about the temperature when

“breaking” effects start to manifest. Since our modeling demonstrates that poissonian synaptic

inputs are not sufficient to reveal this second timescale, it is parsimonious to hypothesize that

some serial activation of HVC excitatory neurons occurs, and that a group of them that are

separated by no longer than 30 ms of synapses are connected to the same interneuron. If this is

the case, the absence of the second timescale at lower temperatures could point out the impos-

sibility to sustain reliably this activity in the excitatory neurons. The two possibilities that we

foresee, apart from the expected delay from synaptic output and onset, is that some neurons

continue their song related activity and that some fail to spike. From the “clock” model per-

spective, these defects can propagate downstream in the motor pathway to produce the “break-

ing”. However, this timescale could be not related to song production and may be used (or

not) in other manner. Another possibility is that this second timescale provides robustness to

the system in sending synaptic signals downstream by recruiting many cells in a short time

window, and that its absence does not preclude the instruction to exit from HVC. In view of

the “circular model”, the breaking effect can arise at the whole motor pathway network only

from the delay of spiking and the widening of the bursts. Given the case that both models have

some insight into the true mechanism, it could be that short feedforward chains are produced

for the generation of small parts of the song, and that the circular network flow is continuous.

It would be interesting to test this hypothesis under a paradigm where the spike timing of the

cells could be related to song structure. Future work can aim to asses how the timing of phasic

firing neurons that respond to song playback is modified with cooling, or how this occurs dur-

ing singing.

From a methodological perspective, we believe that the dynamics of the relevant behavior

of the neurons at a network level are already present in their spiking pattern. Two of these

behaviors are measured and reported in our study: spike rate and interspike interval distribu-

tions. In addition, Q10 values are robust enough to reveal the relevant mechanisms of the neu-

ronal dynamics without the need of having their exact values. Finally, we want to point out,

that the use of computational models allows to find a region of parameter values where a sys-

tem behaves in a similar manner, although not having full knowledge of every parameter in

play. The work of Daou et al. has done an absolutely great job in measuring experimentally

and fitting computationally this parameters, and our incremental experimental and modeling

approach makes educated extrapolations and it enlightens some aspects of temperature and

network modeling that were not taken into account until now.

To conclude, we provided a detailed model of single neurons, synaptic connections and

temperature manipulations that proved capable to explain experimental measurements. Our

work provides further insight into how intrinsic cellular mechanisms may take part in the

emergence of global activity patterns, that in turn produce behavior.
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Supporting information

S1 Fig. Cooling device and cooling characterization. (A) Left: Bronze pad that is attached by

its square surface to the cool side of the Peltier. The salient is shaped at a 20 degree angle to

match the inclination of the HVC surface and is 2mm x1 mm. An orifice of 0.5mm diameter

to lower the measuring electrode is made in its center. Right: Water chamber made with 3D

printing with an aluminum cap that attaches to the hot surface of the Peltier. (B) 4 by 4 element

square Peltier obtained and adapted from one of 256 elements. (C) Two views of the finished

cooling device. Connectors are for current supply and water circulation. (D) Evolution of

HVC surface temperature for a current step between 0.25A and 0.50A with current pulsed at a

6s period (blue). Red curve shows an exponential fit with a characteristic time of 32.4±0.1 s.

(E) Evolution of HVC surface temperature for a current step between 0.75A and 0.50A when

current is pulsed at a 6s period (blue). Red curve shows an exponential fit with a characteristic

time of 27.8±0.1 s. (F-G) Exploration of different pulsed frequencies across current values for

left and right cooling devices. A good compromise was achieved with a 0.16Hz (6s period)

where temperature amplitude fluctuations were less than 0.35˚C and 0.3˚C for the highest cur-

rent of 2A used.

(EPS)

S2 Fig. Temperature effects on HVC neurons and ISI quantifications. (A) Spike shape

widening of waveforms across temperatures for FS, RShf and RSlf. We see that RShf units

show a bigger width change than RSlf (p� < 0.05, p�� < 0.02 values for two tailed t-test made

at each temperature). (B) Not normalized firing rate across temperatures. (C) Median value

of the ISI distributions above and below 10ms for regular spikers. Linear fits below 20ms

have slopes of 2.8±0.7 ms/10˚C for RShf and 4.1±1.7 ms/10˚C for RSlf, and above show an

inverted relationship. This shows that although reducing their firing rate, these neurons

retain their bursting behavior even at low temperatures. (D) Median value of the ISI distribu-

tions above and below 20ms for fast spikers. A linear fit below 20ms has a slope of 3.9±0.9

ms/10˚C and -2.5±0.1 ms/10˚C above. This means that FS neurons retain their timescale

below 20ms of ISI and that above it gets depleted. In A-D orange circles are FS, blue triangles

are RShf and blue squares are RSlf. Values are mean ± s.e.m. (E-G) Cumulative distributions

of the ISI for the three types of FS neurons below 20ms (upper panel) and above 20ms (lower

panel). We see that only the neurons with intermediate timescale show significant changes

between normal and low temperatures. FS 2 does not show changes below 20ms because it

lacks the lower timescale (H) Cumulative distributions of the ISI for RS neurons (p� <

0.0005 Kolmogorov Smirnov test, ns: not significant, alpha value is strict to account for

fewer counts at lower temperatures).

(EPS)

S3 Fig. Exploration of model neurons resting membrane voltages in Q10 parameter space

and across temperatures. Voltage of neurons was measured at 20 different temperatures after

1s integration to reach stationary values. (A) HVCRA presents a variation of less than 1 mV for

all values explored. Parameters chosen at (3.0,1,4) imply an imperceptible voltage increase

with decreasing temperature. (B) HVCINT varies just above 0.5 mV in the most extreme cases.

At low Qk
10

values increases at lower temperatures. For the parameters (3.0,2,5) it elevates

the voltage at lower temperatures (C) HVCX increases its voltage at low values of Qk
10

when

decreasing the temperature. Parameters at (3.0,2,5) show the biggest increase of about 3 mV.

(D) Evolution across experimental temperatures of the three HVC neurons for the parameters

selected.

(EPS)
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S4 Fig. Quantification of changes in model ISI distributions from poisson excitable inputs.

(A-C) Cumulative distribution of the ISI of the three connectivities of Fig 6 for below 20ms

(upper panel) and above 20ms (lower panel). The distributions with the peak below 10ms

change significantly with respect to the one at normal temperature below 20ms but not above

(p� < 0.0005 Kolmogorov Smirnov test, ns: not significant). This is due to the slight shift to the

right of this peak at lower temperatures. (D-F) Evolution across temperatures of the spike rate

of the simulated neurons corresponding to Fig 6J–6L (G-H) Evolution across temperatures of

the spike rate of the simulated neurons corresponding with no noise in the input current (I)

Resting membrane potential increases in all the cases about 1mV in the 10˚C range explored.

(EPS)

S1 Code. Code file used for modeling cool neurons.

(C)
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