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Abstract

Background: Numerous studies have highlighted the elevated degree of comorbidity associated with autism spectrum
disorder (ASD). These comorbid conditions may add further impairments to individuals with autism and are
substantially more prevalent compared to neurotypical populations. These high rates of comorbidity are not
surprising taking into account the overlap of symptoms that ASD shares with other pathologies. From a research
perspective, this suggests common molecular mechanisms involved in these conditions. Therefore, identifying
crucial genes in the overlap between ASD and these comorbid disorders may help unravel the common
biological processes involved and, ultimately, shed some light in the understanding of autism etiology.

Results: In this work, we used a two-fold systems biology approach specially focused on biological processes and
gene networks to conduct a comparative analysis of autism with 31 frequently comorbid disorders in order to define a
multi-disorder subcomponent of ASD and predict new genes of potential relevance to ASD etiology. We validated our
predictions by determining the significance of our candidate genes in high throughput transcriptome expression
profiling studies. Using prior knowledge of disease-related biological processes and the interaction networks of the
disorders related to autism, we identified a set of 19 genes not previously linked to ASD that were significantly
differentially regulated in individuals with autism. In addition, these genes were of potential etiologic relevance to
autism, given their enriched roles in neurological processes crucial for optimal brain development and function,
learning and memory, cognition and social behavior.

Conclusions: Taken together, our approach represents a novel perspective of autism from the point of view of related
comorbid disorders and proposes a model by which prior knowledge of interaction networks may enlighten and focus
the genome-wide search for autism candidate genes to better define the genetic heterogeneity of ASD.

Keywords: Autism Spectrum Disorder, Autism sibling disorders, Gene set enrichment, Process enrichment,
Comparative network analysis, Systems biology

Background
Autism spectrum disorder (ASD) encompasses a group of
complex neurodevelopmental disorders characterized, in
different ranges, by impaired social interaction, difficulties
in verbal and non-verbal communication and restricted,

stereotyped and repetitive behaviors. Its symptoms begin
in early childhood and persist through adulthood, affect-
ing daily functioning [1].
This lifelong condition, 4 times more common in males

than females, is one of the fastest-growing developmental
disorders worldwide and its prevalence continues to in-
crease at an alarming rate. In fact, large-scale surveys esti-
mated median rates of increase at 1–2% [1–8]. The US
Center for Disease Control and Prevention (CDC) [9] now
indicates that 1 in 68 American children have ASD. In
addition, the 2014 National Health Interview Survey,
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conducted by the National Center for Health Statistics
(NCHS) estimates that 1 in 45 children ages 3 through 17
have an autism diagnosis [10].
It is clear that ASD is a complex and heterogeneous

disorder that arises from the interaction of genetic,
neurologic, immunologic and environmental factors [11]
with a high and complex heritability, as both rare and
common genetic variants contribute to autism risk [12].
The great variation reported in behavioral traits and cog-
nitive profiles make it challenging to define specific gen-
etic risk components [13]. Therefore, despite recent
scientific advances shedding light into the molecular
agents and biological mechanisms responsible for ASD,
contributing to the discovery and validation of its causa-
tive genes [14], the exact factors still remain elusive and
no unifying hypothesis about the molecular pathology of
autism has emerged.
Interestingly, several large-scale clinical studies have

confirmed the high rate of comorbidity associated with
ASD. These comorbid conditions represent an additional
burden of illness [15]. Indeed, approximately more than
70% of individuals diagnosed with autism have concur-
rent medical conditions with significantly higher fre-
quency than in neurotypical populations [12]. Some of
these disorders, like epilepsy or depression, can first ap-
pear in puberty or even later in life, compounding lifelong
impairment. Almost 45% of individuals with autism are
also affected by intellectual disability, 28–44% have been
diagnosed with attention deficit hyperactivity disorder,
12–70% have clinical depression, 8–30% of ASD individ-
uals have epilepsy, 42–56% have anxiety and 9–70% of
manifest gastrointestinal problems [12].
These high rates of comorbidity are not surprising

considering the overlap of ASD symptoms with many
other human disorders, either neurological in nature or
not. This suggests a testable hypothesis: disorders with
an elevated level of co-occurrence with autism may have
many genes in common with ASD and therefore an
overlap in the biological processes involved. Thus, the
detection of key genes present in the intersection be-
tween ASD and several concurrent disorders (behavior-
ally related, comorbid or both) may help decipher
common molecular mechanisms and/or a shared patho-
physiology and, ultimately, yield powerful insights in the
understanding of autism etiology.
In the present work, we performed a comprehensive

cross-disorder analysis comparing autism with 31 comor-
bid conditions with the aim of quantifying their overlap at
the level of molecular physiology, specifically focusing on
biological processes and gene networks. We used a sys-
tems biology approach to robustly characterize disease
genes, identify the comorbid disorders most closely related
with autism and quantify and explore the intersection. By
implementing a two pronged strategy that leverages both

gene function and network connectivity [16] we took ad-
vantage of the prior knowledge from related conditions to
predict new genes of possible relevance to ASD etiology.
Finally, we utilized transcriptome expression profiling ex-
periments to validate our predictions, by identifying sig-
nificant differential expression of our novel candidate
genes in these high-throughput studies.

Methods
Diseases and gene lists
To obtain a robust set of related conditions, we leveraged
the results of research studies that investigated autism co-
morbidity occurring at a significantly higher frequency in
ASD patients than in an age-matched control population,
using a population- derived sample [17–19], electronic re-
cords [19–23] and review papers [19, 24]. We extracted all
the ICD-9 codes of autism and its comorbid conditions in
these studies and, when ICD-9 code lists were not directly
available, we matched the co-occurring conditions mined
from these sources to their corresponding codes and refer-
ences under the ICD-9 system, broadly used in healthcare
[25]; then, we mapped each ICD-9 code in our comorbid
disorder list to MeSH (Medical Subject Headings form
from U.S. National Library of Medicine) terms in order to
facilitate the subsequent automated gene search. For in-
stance, the MeSH Term “Anxiety disorders” was matched
to the ICD-9 code 300.02 consistent with the ICD-9 refer-
ence “Generalized anxiety disorder”, while the MeSH
Term “Depressive disorder” corresponded to the 296.3
ICD-9 code with expanded description of “major depres-
sive disorder recurrent episode”.
Next, we generated lists of disorder-related genes by

using two powerful text mining tools, Phenopedia and
Genehawk, which text mine disease-to-gene relation-
ships in the bibliome. Phenopedia [26], is a web-based
application that gathers human genetic associations from
literature through a database constantly updated from
Pubmed, using either genes or diseases as the starting
point. The complete method is described in Yu et al.
[26]. Genehawk [27] is a gene-disorder-publication data-
base that collects and ranks associations between genes
and diseases, built on evidences from all publication ab-
stracts available via PubMed, as well as the type of study
itself. For a given disorder, Genehawk retrieves all re-
lated abstracts, filters out those with specific genetic test
results and mines gene symbols and maps these to unique
identifiers; finally, the obtained results are ranked to assess
their significance taking into account the number of sup-
porting evidences, the article structure (review or hypoth-
esis) and the strength of the publication (journal impact
factor and year of publication). A complete explanation of
this method can be found in Jung et al. [27]. Since both
sources, Phenopedia and Genehawk, employ MeSH terms
for their automatic exploration of Pubmed, we matched
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our comorbid disorder ICD-9 code list to this controlled
vocabulary thesaurus used for article indexing, as pointed
out previously. For ASD, we completed our resulting list
of associated genes by adding the autism genes included
in SFARI gene [28], as well as those reported as candidates
in Iossifov et al. [21] and De Rubeis et al. [29].

Disease-gene cluster and bootstrap validation
We then converted the obtained seed list into a matrix
of binary gene presence/absence with respect to each
disorder. The matrix was analyzed using the Jaccard co-
efficient in MATLAB® to build a gene-based dendrogram
of all comorbid disorders. The Jaccard statistic, defined
by the size of the intersection divided by the size of the
union of sample sets, was originally conceived for pat-
tern discovery with binary matrices and computes the
similarity and diversity among sample sets without con-
sidering the shared absence of a characteristic as evi-
dence for relatedness.
For assessing clusterwise stability and validity of the

groupings within the disease relationship tree we used
clusterboot(), an integrated function of the ‘fpc’ package
in R [30]. We resampled with replacement from the ori-
ginal data by using a non-parametric bootstrapping
method (B = 1000 runs) with the aim of generating boot-
strap matrices and clusters and iteratively utilized the
Jaccard coefficient to measure the structural similarity of
the resampled trees with the tree derived from the ori-
ginal data. We considered the mean of the Jaccard coef-
ficients, calculated per permutation as the overall
similarity between the original and iterated data, as the
index of cluster’s stability and validity. In order to match
the total number of clusters obtained in the observed
disease relationship tree, we set for each permutation
the number of subsets, k, to 6. Then, those clusters sup-
ported by a Jaccard coefficient greater than 0.6 were
considered robust and stable, while values approaching
1.0 exhibited the highest stability. Jaccard coefficient
values equal or lower than 0.5 were considered not
stable and, thus, not taken into account for the analysis.
A complete explanation of this method can be found in
this study by Hennig [31]. These cluster stability ana-
lyses were complemented with a classical multidimen-
sional scaling approach that projects our dissimilarity
data onto its first two principal dimensions, generated
by the ‘showplots’ argument of Clusterboot() function.

Generation of molecular networks
We used STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) version 10 [32] to generate
networks for the gene lists of the concurrent conditions
most closely related with ASD. The networks were cre-
ated using the default settings in STRING and the lists
of edges were derived from all the available lines of

evidence: Neighborhood, Gene Fusion, Co-occurrence,
Co-expression, Experiments, Databases and Textmining.
It is worth highlighting that, in STRING, every source of
interaction evidence is benchmarked and calibrated
against prior knowledge, according to the manually cu-
rated information provided by the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway maps [33]. The
complete method has been described by Szklarczyk et al.
[32]. The returned gene interactions were used for sub-
sequent analysis in our network-driven search for autism
candidate genes.

Biological process enrichment
To identify the biological processes for which the comor-
bid disorders most closely related with autism were
enriched, we utilized DAVID Bioinformatics Resources
(Database for Annotation, Visualization and Integrated
Discovery) version 6.7 [34], a high-throughput data-
mining environment. This web-accessible functional an-
notation tool for gene ontology (GO) enrichment analysis
embodies an integrated biological knowledge database and
analytical implements to automatically extract biological
features/meanings associated with large lists of genes. Fur-
ther information regarding DAVID protocol is detailed in
[34]. For our analysis, we employed the “Functional Anno-
tation” tool that basically provides batch annotation and
gene-GO term enrichment analysis to emphasize the most
important GO terms related with a specified gene list. By
choosing the GO fat categories,“GOTERM-BP-FAT” op-
tion, to report the enrichment results, we are selecting a
subset of the more general GO term; hence, the broadest
terms are filtered so that they will not overshadow the
more specific ones. In order to evade over counting dupli-
cated genes, DAVID performs Fisher Exact statistics on
corresponding DAVID gene IDs by which all redundancies
in original IDs are eliminated. All the results displayed in
the Functional Chart Report did pass the established
thresholds (by default, Max. Prob. < =0.1 and Min.
Count > =2) so as to ensure only the statistically signifi-
cant outcomes are showed. Finally, only those biological
processes with a false discovery rate (FDR) score below
0.05 were selected as strongly enriched, according to their
statistical significance after multiple test correction.

Expression analysis
From Gene Expression Omnibus (GEO) [35] we down-
loaded data from three independent experiments,
GSE18123 (gpl570) [36], GSE25507 [37] and GSE42133
[38], in order to validate our autism candidate genes. Add-
itional file 1 (Table S1) summarizes the information about
the datasets selected. Raw data of Affymetrix datasets,
GSE18123 (gpl570) and GSE25507, was preprocessed and
RMA normalized using ‘affy’ package in R [39] and Bio-
conductor [40], while with the Illumina dataset GSE42133
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we employed the preprocessed data provided in GEO
database, Log2 transformed and quantile normalized using
Illumina GenomeStudio® software (version 1.1.1) and
‘Lumi’ package in R and Bioconductor [41]. Additional file
2 (Figure S1) shows the distribution of the samples after
preprocessing, median-centered values indicate that the
data are normalized and cross-comparable. All expression
analyses were done using mt.teststat function from “mult-
test” package in R and Bioconductor [42]; to increase the
test power for samples with unequal sample size and vari-
ance, we performed a t-test based on two-sample Welch
t-statistics to determine the difference in signal be-
tween the ASD and control group. Finally, we per-
formed multiple test correction to the unadjusted p-
values from the comparative analyses by calculating q-
values, a measure of significance in terms of the FDR [43].

Functional analysis of ASD candidate genes
Our candidate genes identified to be differentially
expressed in all three experiments were uploaded into
the QIAGEN® Ingenuity® Pathway Analysis (IPA®) soft-
ware, in order to explore gene connectivity and related
biological functions both within and across disease. IPA®
uses a human-curated pathways knowledge base con-
taining genes, proteins and RNAs to retrieve biological
interactions and associate biological functions and
disorders with experimental results, providing statistical
support for gene-to-gene associations. We generated net-
works for our ASD candidate genes using an edge rank
score (p-score = −log10 (p-value)) that designated the like-
lihood of the concurrent or interacting genes by random
chance. A rank score value greater than 3 (p < 0.001) de-
noted an edge linking two genes as a statistically relevant
not random association, with more than 99.9% confidence.
Additionally, we performed a “disease and function” ana-
lysis to test whether our ASD gene candidates were
enriched in specific human disorders and investigated
their role in the context of statistically significant bio-
logical processes, pathways and networks. IPA® performs a
Fisher exact test to calculate p-values that define the sig-
nificance of the association between a focus gene and a
biological process or pathway; thus, those biological pro-
cesses with p-values ≤0.05 are considered as statistically
significantly enriched with genes of interest.

Results
The multi-disorder component of ASD
We retrieved from the literature [17–24] 132 medical
conditions concurrent with autism that were matched
with their corresponding codes and references under
ICD-9 system [25] and later consolidated into a defined
set of 31 disorders comorbid with ASD (See Additional
file 3: Table S2). Using Phenopedia [26] and Genehawk
[27], we generated lists of genes associated to each

comorbid condition and, as pointed out previously, in
the case of autism, we completed its gene list by adding
the ASD candidate genes included in SFARI gene [28],
Iossifov et al. [21] and De Rubeis et al. [29]. The total
number of genes utilized for this study are detailed in
Additional file 4: Table S3. By converting the retrieved
gene lists into a binary matrix of gene presence/absence,
we were able to generate a disorder phylogeny using the
Jaccard Coefficient (Fig. 1). The tree obtained grouped
autism with 13 disorders that we called “sibling” comor-
bid disorders of ASD, including epilepsy, intellectual dis-
ability, fragile X syndrome, schizophrenia, depressive
disorder, bipolar disorder and attention deficit hyperactivity
disorder (ADHD), among others. Cluster wise validity and
stability within the tree was assessed by means of a non-
parametric bootstrap procedure (1000 runs) that yielded a
mean Jaccard value of 0.785 for our autism sibling comor-
bid disorders cluster (See Additional file 5: Table S4, also
Additional file 6: Figure S2). Thus, we considered this sib-
ling group as stable and statistically robust and focused on
this group for subsequent analyses.
With the aim of exploring genetic overlap between

autism and its sibling comorbid conditions, we used the
tool STRING [32] to generate gene networks for each
member of the ASD sibling group (edge summary in-
cluded in Additional file 7: Table S5). Of the 1066 genes
present in our seed list for ASD, 710 have also been
linked to at least one other autism sibling disorder
(the multi disorder autism gene set, and the sibling
comorbid conditions where they are found, are de-
tailed in Additional file 8: Table S6). This multi dis-
order autism gene set (MDAG) conforms a highly
interconnected subcomponent of the ASD gene net-
work (Additional file 9: Figure S3), suggesting com-
mon molecular mechanisms and shared biological
functions among the MDAG members. To test this,
we utilized DAVID [34] to identify significant enrich-
ment of MDAG genes in biological processes (BP). A
total of 378 BP had significant overrepresentation fol-
lowing FDR multiple test correction (top 30 BP are
listed in the Table 1), significant if FDR < 0.05; the
complete list of BP for which the MDAG genes are
enriched can be found in Additional file 10: Table S7.

Biological process-driven search for novel ASD candidates
The large extent of genetic overlap between autism and
several of its sibling conditions may rely on specific dys-
regulations of any or all the biological processes for
which the MDAG is enriched. Therefore, other genes
associated to any of the 378 statistically significant pro-
cesses that have not yet been linked to ASD could be
regarded as possible novel candidates for autism. To
address this premise, the gene lists of all the ASD sibling
disorders were mined to identify and retrieve a non-
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redundant set of 1588 process-based candidates (PBC); 34
processes were not found among the genes in the autism
sibling disorders (See Additional file 10: Table S7). All
other enriched processes returned 2 or more predictions
all of which are implicated in at least 2 autism sibling dis-
orders, but not found in our original gene candidate list
for ASD. The complete list of 1588 process-based candi-
dates can be found in Additional file 11: Table S8.
To empirically test the importance of our process-

based candidates, we checked whether they were signifi-
cantly differentially regulated in autistic patients versus
healthy controls, using the three independent GEO ex-
periments described above (GSE18123gpl570, GSE25507
and GSE42133) [36–38]. Since our foremost interest was
to confirm our PBC, we performed multiple test correc-
tion to the unadjusted p-values obtained from the ana-
lyses by calculating q-values (see Additional file 12:
Figure S4), an FDR-based measure of significance. For
each experiment, we considered the number of PBC
present in the array as the total number of hypotheses,
as previously done in [16]. The resultant number of dif-
ferentially expressed PBC with q-value <0.05 are summa-
rized in Table 2, where there are 1058 significant PBC
for GSE18123gpl570, 626 for GSE25507 and 269 in the
case of GSE42133; a total of number of 80 significant
PBC constituted the overlap among the three datasets.
The identities of the differentially expressed PBC in each
experiment, along with their corresponding q-values, the

biological processes where they are involved and the co-
morbid disorders where they are implicated, can be also
found in Additional file 11: Table S8.

Network-driven search for new autism genes
Using data derived from STRING [32], we constructed
gene networks for each of the autism sibling disorders
with the purpose of exploring the surrounding members
of the MDAG genes, specifically focusing on their first
neighbors that were not included in our original ASD can-
didate list. This analysis yielded 1794 network-based can-
didates (NBC), directly linked to a member of the MDAG
but not known yet as relevant for autistic disorder. From
the total set of genes constituting the NBC, 233 candidates
occur in at least 5 sibling conditions, 74 are present in 7
or more siblings, 29 in 8 or more, 13 in 9 autism siblings,
3 in 10 autism sibling disorders (MAGI2, NR3C1,
SLC1A2) and one (SLC1A2) present in 12 siblings. The
complete list of 1794 network-based candidates can be
found in Additional file 13: Table S9.
We leveraged the same mRNA expression datasets as be-

fore to calculate q-values and verify whether our network-
based candidates exhibited significantly different gene
expression in individuals with autism when compared to
normal controls (see Additional file 12: Figure S4). We vali-
dated the NBC by testing for significant differential expres-
sion in each of the three separate microarray experiments,
GSE18123gpl570, GSE25507 and GSE42133. We treated

Fig. 1 Gene-based phylogeny of autism and related co-ocurring conditions, generated using the Jaccard Coefficient. The group containing autism
is highlighted and referred to in the text as “Autism sibling comorbid disorders”. Bootstrap stability indices are also provided for each subgroup
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each test of the NBC as a separate experiment and adjusted
for multiple testing each time by computing the q-value for
the total number of NBC genes found on the separate ar-
rays, 1210, 691, 298, respectively. Table 2 shows the num-
ber of NBC found to be significantly differentially regulated
(q-value <0.05) in each experiment. A total of 91 signifi-
cant NBC were found in common among the three gene
expression datasets. Their identities, q-values, MDAG
interactors and comorbid disorders in which they
play a role, can be also found in Additional file 13:
Table S9.

Intersection of PBC and NBC to prioritize autism
candidate genes
We intersected our two computational strategies to tri-
angulate on the set of genes that were independently
predicted and verified by both approaches. A total of
1358 genes formed the overlap of PBC and NBC
(PBC∩NBC); the total number of significant differentially
expressed candidates, with q-value < 0.05, predicted in
each experiment by both approaches is 925, 532 and 214
genes for GSE18123gpl570, GSE25507 and GSE42133
respectively (Table 2), with a total of 64 significant can-
didates overlapping across all three experiments. The
identities of these candidate genes are detailed in
Additional file 14: Table S10, along with the biological
processes where they participate, their MDAG interac-
tors and the comorbid disorders associated with them.
Next, we cut down the size of the overlap by removing
those genes that occur in 2 or fewer autism sibling disor-
ders. This is based on the premise that genes with nu-
merous independent associations to our sibling
comorbid disorders are more likely to participate in typ-
ical neurodevelopmental processes and functions. From
the 1358 genes present in the overlap (PBC∩NBC),
only 489 candidates predicted by both strategies oc-
curred in 3 or more siblings. Table 2 also shows, for
each dataset, the number of differentially expressed
candidates independently predicted and verified by
both strategies occurring in 3 or more autism sibling
disorders: 330 for GSE18123gpl570, 183 for
GSE25507 and 69 in the case of GSE42133.
Finally, with the aim of obtaining a definitive set of

candidates, we intersected the differentially expressed
genes obtained from the analysis of the three GEO data-
sets occurring in 3 or more sibling comorbid disorders;

Table 1 Top 30 biological processes for which the multi-disorder
component of the autism gene set (MDAG) were enriched

Biological process # MDAG
genes

p-Value FDR

Transmission of nerve impulse 119 1.18E-71 2.18E-68

Synaptic transmission 110 2.53E-70 4.67E-67

Behavior 123 1.07E-59 1.97E-56

Cell-cell signaling 137 7.08E-59 1.31E-55

Regulation of system process 84 2.00E-41 3.70E-38

Neurological system process 164 7.03E-39 1.30E-35

Regulation of neurological system
process

57 4.56E-36 8.42E-33

Learning or memory 49 4.57E-35 8.43E-32

Regulation of transmission of nerve
impulse

54 8.64E-34 1.59E-30

Regulation of synaptic transmission 51 2.12E-32 3.91E-29

Neuron differentiation 85 2.91E-30 5.38E-27

Neuron development 74 1.13E-29 2.08E-26

Neuron projection development 61 1.40E-26 2.59E-23

Second-messenger-mediated signaling 58 4.18E-26 7.71E-23

Cyclic-nucleotide-mediated signaling 44 7.72E-26 1.43E-22

Cell morphogenesis involved in neuron
differentiation

54 2.48E-25 4.57E-22

Cell morphogenesis involved in
differentiation

58 3.25E-25 5.99E-22

G-protein signaling, coupled to cyclic
nucleotide second messenger

41 4.61E-25 8.51E-22

Learning 31 1.12E-24 2.07E-21

Neuron projection morphogenesis 53 4.86E-24 8.98E-21

Response to endogenous stimulus 73 6.40E-24 1.18E-20

Regulation of secretion 51 1.92E-23 3.54E-20

Axonogenesis 49 1.21E-22 2.23E-19

Feeding behavior 31 2.00E-22 3.69E-19

Response to organic substance 97 5.25E-22 9.70E-19

Intracellular signaling cascade 135 1.40E-21 2.59E-18

Cell projection organization 66 1.65E-21 3.04E-18

Cell projection morphogenesis 53 4.54E-21 8.39E-18

Regulation of cellular localization 53 8.10E-21 1.50E-17

Cell motion 74 2.12E-20 3.92E-17

Table 2 Number of significantly differentially expressed process and network based candidates in the datasets

GSE18123gpl570 GSE25507 GSE42133 All datasets

# significant PBC (q < 0.05) 1058 626 269 80

# significant NBC (q < 0.05) 1210 691 298 91

# significant PBC∩NBC (q < 0.05) 925 532 214 64

# significant PBC∩NBC in 3 or more siblings (q < 0.05) 330 183 69 19
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this yielded an overlap of 19 genes (Table 3). The overlap
across the three sets of differentially expressed genes is
shown in Fig. 2.
Additionally, this final set of 19 candidates was loaded

into IPA® to explore connectivity and biological function.
The analysis performed associated our 19 candidate
genes to four Top Canonical Pathways (Table 4), related
to brain development and function, neurodegeneration
and behavior and known to be relevant in the molecular
pathology of ASD. We also conducted a “Diseases &
Function” analysis for the 19 genes that linked them
with several significant annotations; Table 5 shows the
most compelling examples and the candidate genes in-
volved in each biological function.
Regarding gene connectivity, IPA® provided a statistically

robust network (score = 31), shown in Fig. 3, where 14
genes from the original 19 candidates are interacting with
other molecules in several significant neurological pro-
cesses involved in normal brain growth and development,
such as proliferation of neuronal cells, formation and
branching of neurites, migration of neurons, among others
(see Table 6). Dysregulation of any of these candidates may
affect crucial brain processes since many of them interact
with genes already included in our original seed list for
autism (APP, CYP19A1, ESR1, MAPK1, SETD2, SHANK2,
TRPV1), some of them being highly interconnected nodes
within the network (ESR1, APP, MAPK1). In addition, im-
portant neurological processes such as cognition, learning
and memory may be altered since several of our candi-
dates are linked to key network genes (ESR1, Pkcs, AKT1),
implicated in postsynaptic density and glutamatergic
synapses, and, hence, in synaptic plasticity. Furthermore,
our candidate genes also seem to be involved in pathways
where central genes within the network, such as MAPK1,
ESR1, Pkcs, TP53, APP and EGFR, are thought to regulate
molecular functions associated with multiple aspects of
social and anxiety-related behaviors, mood outcomes
and impaired long-term memory, cognitive degener-
ation and neurological dysfunction. This network also
showed an interesting connection between genes linked
to ASD and other neurological conditions and endo-
crine hormones of the hypothalamic-pituitary-gonadal
axis, such as the luteinizing hormone (Lh). The neuro-
logical functions statistically significantly enriched in
the network are described in Table 6, along with the
genes implicated in each process and their correspond-
ing p-values.
Using this novel two-pronged computational ap-

proach, we were able to discover a final set of 19 ASD
candidate genes that have been predicted by both strat-
egies (network and process-based) that occur in 3 or
more autism siblings and that were found to be signifi-
cantly differentially regulated in three independent
mRNA expression experiments, lending support to the

hypothesis of common molecular mechanisms between
autism and other comorbid disorders.

Discussion
In this study, we conducted a comparative analysis of aut-
ism and 31 comorbid conditions mined and retrieved from

Table 3 List of the 19 candidate genes significantly differentially
expressed in the three experiments and the disorders where
they are implicated

Genes Sibling disorders # Disorders

ADAM10 Bipolar Spectrum Disorders, Down
Syndrome, Sleep Disorders

3

ADCY9 Bipolar Spectrum Disorders, Depressive
Disorder, Epilepsy, Schizophrenia, Sleep
Disorders

5

ADCYAP1R1 Anxiety Disorder, Bipolar Spectrum
Disorders, Obsessive Compulsive Disorder,
Panic Disorder

4

AKT1 Bipolar Spectrum Disorders, Depressive
Disorder, Epilepsy, Fragile X Syndrome,
Schizophrenia, Tuberous Sclerosis

6

ATN1 Epilepsy, Fragile X Syndrome, Intellectual
Disability, Schizophrenia, Sleep Disorders

5

DGCR8 Depressive Disorder, Fragile X Syndrome,
Schizophrenia, Sleep Disorders

4

DLGAP4 Anxiety Disorder, Bipolar Spectrum Disorders,
Obsessive Compulsive Disorder, Panic
Disorder, Schizophrenia, Sleep Disorders

6

HSPA1L Bipolar Spectrum Disorders, Depressive
Disorder, Schizophrenia

3

KCNH2 Epilepsy, Intellectual Disability, Schizophrenia,
Sleep Disorders

4

MEGF10 Bipolar Spectrum Disorders, Schizophrenia,
Sleep Disorders

3

MMP2 Epilepsy, Sleep Disorders, Tuberous Sclerosis 3

NDE1 Bipolar Spectrum Disorders, Epilepsy,
Intellectual Disability, Schizophrenia

4

NPPB Anxiety Disorder, Bipolar Spectrum Disorders,
Obsessive Compulsive Disorder, Panic
Disorder, Sleep Disorders

5

NRP1 Anxiety Disorder, Bipolar Spectrum Disorders,
Obsessive Compulsive Disorder, Panic
Disorder, Sleep Disorders

5

PPP3CB Attention Deficit Hyperactivity Disorder,
Schizophrenia, Sleep Disorders

3

PRKG1 Attention Deficit Hyperactivity Disorder,
Fragile X Syndrome, Schizophrenia, Sleep
Disorders

4

SLC29A2 Depressive Disorder, Epilepsy, Sleep
Disorders

3

SMARCA2 Epilepsy, Intellectual Disability,
Schizophrenia, Sleep Disorders

4

VIPR2 Anxiety Disorder, Bipolar Spectrum Disorders,
Depressive Disorder, Down Syndrome, Epilepsy,
Intellectual Disability, Obsessive Compulsive
Disorder, Panic Disorder, Schizophrenia

9
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bibliome. By focusing on a set of 13 disorders that appeared
to be most closely related to ASD (autism sibling comorbid
conditions, see Fig. 1), we discovered that more than half of
the autism genes included in our ASD seed list are also as-
sociated to related comorbid conditions. This finding sup-
ports our hypothesis, confirming the existence of molecular
overlap and suggesting that these autism sibling comorbid
disorders may share molecular mechanisms that could be
enlightening for our understanding of the genetic etiology
of ASD. Moreover, the multi-disorder component of the
autism network (MDAG) is highly interconnected and sig-
nificantly enriched for relevant and informative biological
processes, such as synaptic transmission, neuron develop-
ment, axonogenesis, transmission of nerve impulse and
learning or memory, among others.
Motivated by these findings, we devised two analytical

approaches to verify whether information from concur-
rent conditions could yield meaningful focus to the
genome-wide search for ASD gene candidates. Our first
approach, a process-based strategy, was grounded on the
premise that processes for which the MDAG genes were
enriched are generally relevant for neurological dysfunc-
tion. It is further predicated on the assumption that
genes implicated in these processes that have been tied
to one or more autism sibling comorbid disorders, but
still have not yet been associated to ASD, should be aut-
ism gene candidates. To test this hypothesis we used
available whole-genomic expression data from three in-
dependent experiments and found that 80 genes from

our process-based candidate list were under significant
differential expression in individuals with autism in the
three datasets. The fact that they have been linked to
neurological dysfunction together with having been impli-
cated in biological processes that seem to play a role in
autism makes these genes appealing new leads that may
shed light in elucidating the molecular pathology of ASD.
The second approach, a network-based strategy, was

based on the mainstream conception that protein inter-
action networks could give relevant and sometimes for-
tuitous leads for disease causative agents, suggesting

Table 4 Top canonical pathways for which the 19 candidates
genes are enriched, according to Ingenuity® Pathway Analysis (IPA®)

Canonical pathway p-value Overlap

eNOS signaling 9.45–06 3.0% 4/135

Gap junction signaling 1.47–05 2.6% 4/151

Axonal guidance signaling 5.55–05 1.2% 5/427

Glucocorticoid receptor signaling 1.46–04 1.5% 4/272

Table 5 Significant functional annotations of our final set of
candidate genes according to Ingenuity® Pathway Analysis (IPA®)

Diseases or functions annotation p-value Candidate genes
involved

Proliferation of nervous tissue
cell lines

2.07E-05 AKT1,NRP1

Action potential of embryonic
stem cell lines

1.02E-03 KCNH2

Arrest in growth of nervous tissue
cell lines

1.02E-03 NRP1

Formation of cranium 1.02E-03 MMP2

Quiescence of nervous tissue
cell lines

1.02E-03 NRP1

Schizophrenia 1.55E-03 AKT1,KCNH2,PPP
3CB,SMARCA2

Generation of plasmacytoid
dendritic cells

4.08E-03 AKT1

Induction of CD4+ T-lymphocytes 5.10E-03 PRKG1

Induction of Th17 cells 5.10E-03 PRKG1

Binding of cells 5.40E-03 MMP2,NPPB,NRP1

Permeability of blood–brain barrier 6.11E-03 MMP2

Gene silencing 8.14E-03 SMARCA2

Loss of neurons 1.32E-02 ATN1

Rasmussen’s encephalitis 1.42E-02 PPP3CB

Cognition 1.52E-02 AKT1

Neuropathic pain 2.12E-02 KCNH2

Apoptosis of dendritic cells 2.22E-02 AKT1

Release of nitric oxide 2.32E-02 AKT1

Quantity of neurons 2.42E-02 ATN1

Transcription of RNA 2.84E-02 AKT1,ATN1,SMARCA2

Epilepsy 3.13E-02 HSPA1L,NPPB

Fig. 2 Venn diagram showing the overlap in the number of significant
differentially regulated process and network based candidate genes
(PBC∩NBC) occurring in 3 or more autism sibling comorbid disorders
for the three datasets. Only 19 candidate genes are present in all three
transcriptome experiments
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potential points for biomarkers or drug targets and help-
ing in elucidating the biological mechanisms involved
[44–52]. In our approach, instead of looking at the
whole protein interaction network, we took the set of all
genes directly interacting with MDAG genes such that
they contained only those proteins present in the list of
autism sibling comorbid conditions, but absent from our
seed list of published ASD candidates. Several genes
within these network-based candidates have been previ-
ously related to neurological dysfunction. For instance,
rare genetic variation in SLC1A2, necessary for proper

synaptic activation and neurotransmission, has been
associated with a wide range of neurological conditions
including bipolar disorder, schizophrenia and autism
[53]. Methylation of the glucocorticoid receptor gene
NR3C1 through epigenetic processes, crucial in the
hypothalamic-pituitary-adrenal axis modulation, our pri-
mary stress response system, has been linked to psycho-
pathological conditions such as anxiety and depression
[54, 55]. Variations in MAGI2, a synaptic scaffolding
molecule with an essential role in synaptic transmission,
are known to be related to epilepsy and cognitive

Fig. 3 Statistically significant biological network obtained through Ingenuity Pathway Analysis (IPA®). 14 of our 19 candidate genes are tightly
connected and interact in neurological processes and conditions detailed in Table 6. Our candidate genes are highlighted in purple and their
interactions in turquoise
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impairment in patients with schizophrenia [56, 57]. In
addition, mutations in CTNND2, a gene that plays a key
role in neuronal development, particularly in the forma-
tion and maintenance of dendritic spines and synapses,
have also been recently associated to autism [58].

Moreover, other candidate genes such as GRIA1, GRIA2,
GABBR1, GABRG2, GABRR2, NRG2, NRG3, GRIK1,
GRIK4, GRIN3A and GRM3, with functions that com-
prise formation of synapse, transmission of nerve im-
pulse, behavior, learning or memory, are among families

Table 6 Significant diseases and functions enriched in the biological network (Fig. 3) obtained through Ingenuity® Pathway Analysis
(IPA®)

Diseases or functions annotation p-Value Molecules

Proliferation of neuronal cells 1.95E-06 ADAM10, ADCYAP1R1, AKT1, APBB1, APP, CYP19A1, EGFR, ESR1, FKBP4,
HBA1/HBA2, MAPK1, MMP2, NDE1, NFATC4, NRP1, Pkc(s), TP53

Growth of neurites 3.24E-06 ADAM10, AKT1, APBB1, APP, CYP19A1, EGFR, ESR1, FKBP4, HBA1/HBA2,
MAPK1, MMP2, NFATC4, NRP1, pkc(s), TP53

Interphase of brain cells 8.22E-06 ADCYAP1R1, APP, TP53

Outgrowth of neurites 1.78E-05 ADAM10, AKT1, APBB1, APP, EGFR, ESR1, FKBP4, HBA1/HBA2, MAPK1,
NFATC4, NRP1, Pkc(s), TP53

Behavior 1.98E-05 ADAM10, AGAP2, APBB1, APP, CYP19A1, ESR1, HBA1/HBA2, HDC, MAPK1,
mir-103, MYBL1, NFATC4, NPPB, Pkc(s), PPP3CB, PRKG1, SHANK2, TP53,
TRPV1, UCHL1

Alzheimer’s disease 5.88E-05 ADAM10, APBB1, APP, ESR1, FDFT1, HBA1/HBA2, LSS, mir-103, miR-125b-5p
(and other miRNAs w/seed CCUGAG), MMP2, NFATC4, Pkc(s), TP53, UCHL1

Microtubule dynamics 7.64E-05 ABLIM1, ADAM10, AGAP2, AKT1, APP, CYP19A1, DUSP9, EGFR, ESR1, FKBP4,
Hsp90, KIF24, MAPK1, NDE1, NFATC4, NRP1, Pkc(s), PPP3CB, PRKG1, PTPRE,
TP53, UCHL1

Organization of cytoskeleton 7.78E-05 ABLIM1, ADAM10, AGAP2, AKT1, APP, CYP19A1, DUSP9, EGFR, ESR1, FKBP4,
FLNC, Hsp90, KIF24, MAPK1, MGAT5, NDE1, NFATC4, NRP1, Pkc(s), PPP3CB,
PRKG1, PTPRE, TP53, UCHL1

Branching of neurites 7.87E-05 ADAM10, AGAP2, AKT1, APP, CYP19A1, NFATC4, NRP1, PRKG1, TP53

Entry into S phase of cerebral cortex cells 1.18E-04 ADCYAP1R1, APP

Anxiety 1.65E-04 ADCYAP1R1, APP, HDC, MAPK1, NFATC4, SHANK2, TRPV1

Branching of cells 1.86E-04 ADAM10, AGAP2, AKT1, APP, BDKRB2, CYP19A1, NFATC4, NRP1, Pkc(s),
PRKG1, TP53

Hyperactive behavior 1.92E-04 ADCYAP1R1, AKT1, APP, ESR1, PPP3CB, SHANK2

Development of central nervous system 2.07E-04 ADAM10, ADCYAP1R1, AKT1, APBB1, APP, CYP19A1, EGFR, MAPK1, NDE1,
PRKG1, SETD2, TP53, TRPV1

Interphase of neural precursor cells 2.67E-04 ADCYAP1R1, TP53

Conditioning 2.87E-04 ADCYAP1R1, APP, ESR1, MAPK1, MMP2, TRPV1, UCHL1

Firing of neurons 2.97E-04 APP, MAPK1, NPPB, TRPV1

Locomotion 3.09E-04 AGAP2, APP, CYP19A1, ESR1, NFATC4, PPP3CB, TMOD1, TP53, UCHL1

Formation of brain 3.37E-04 ADAM10, ADCYAP1R1, APBB1, APP, CYP19A1, EGFR, NDE1, PRKG1, SETD2,
TP53, TRPV1

Cell viability of neuroglia 3.48E-04 AKT1, APP, EGFR, TP53

Cell death of sympathetic neuron 3.96E-04 AGAP2, AKT1, APP, Pkc(s), TP53

Morphogenesis of neurites 4.00E-04 ADAM10, AGAP2, AKT1, APP, CYP19A1, EGFR, NFATC4, NRP1, PRKG1, TP53

Neuritogenesis 4.44E-04 ADAM10, AGAP2, AKT1, APP, CYP19A1, EGFR, NFATC4, NRP1, PRKG1, PTPRE,
TP53, UCHL1

Formation of forebrain 5.97E-04 ADAM10, ADCYAP1R1, APBB1, APP, NDE1, PRKG1, SETD2

Migration of neurons 9.72E-04 ADAM10, APBB1, DGCR8, EGFR, NDE1, NRP1, PRKG1

Emotional behavior 1.06E-03 APP, CYP19A1, ESR1, MAPK1, NPPB, SHANK2, TRPV1

Schizophrenia spectrum disorder 1.21E-03 AKT1, APP, EGFR, ESR1, KCNH2, mir-103, Pkc(s), PPP3CB, SHANK2, SMARCA2

Long-term potentiation 1.22E-03 ADCYAP1R1, APP, CYP19A1, EGFR, MAPK1, Pkc(s), SHANK2, TRPV1

Cognition 1.52E-02 AKT1

Our candidate genes are highlighted in bold
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of genes that have been shown to have roles in neuro-
logical dysfunction jointly impacted in disorders like aut-
ism, schizophrenia and bipolar disorder [59–64].
Overall, the network-driven strategy yielded 91 genes
found to be differentially expressed in individuals with
autism when compared to healthy controls in all three
experiments. This approach revealed the existence of a
significant signal in the protein interaction networks of
these related comorbid conditions, even one step re-
moved from those genes that are shared among them
(the MDAG). Even though these variations may represent
real mechanistic differences between ASD and its sibling
comorbid conditions, the overlap of 91 candidates found
to be differentially regulated in autistic individuals from
three independent datasets makes more likely that at least
some reflect key holes in our understanding of autism.
In both analytical approaches, we were able to leverage

the prior knowledge from two different sources, in this
case from biological processes and protein interaction
networks, to provide focused sets of candidates hypothe-
sized to be under differential regulation in individuals
with autism. From a methodological point of view, it is
worth highlighting that in the absence of such prior know-
ledge several of the genes measured in the autistic patients
included in all the three experiments would have had false
discovery rate (FDR) values above the 0.05 threshold. In
fact, this is a common circumstance in cases of weak sig-
nals and large background noise in several transcriptome-
level experiments [65–67]. Conversely, with the utilization
of prior knowledge, the major part of the candidate genes
tested showed an FDR < 0.05. This turnabout of the fre-
quent specificity problem at the genome-scale points
towards a promising merging between knowledge and
data-driven methodologies.
Finally, although the results evaluated herein should be

considered preliminary, how the related comorbid disorder
networks overlap with ASD have proved to be useful in en-
lightening important disease related biological processes
and discovering potential autism candidate genes. In this
work, by combining our process and network-based strat-
egies, we were able to algorithmically assemble 19 candidate
genes confirmed to be significantly differentially expressed
in individuals with autism from three independent experi-
ments. Moreover, to better understand the biological signifi-
cance of our final set of candidates, we tested their
enrichment in signaling pathways and specific biological
processes and whether they were interconnected within a
biological network. Our analysis revealed that our
predicted genes were implicated in 4 canonical path-
ways associated with brain structure and functioning,
neuroinflammation, neurodegeneration, cognition and
behavior [68–77]; alteration in these signaling path-
ways may play an important role in the pathophysi-
ology of ASD.

Fourteen of these candidates interact with other mole-
cules conforming a network significantly enriched in
relevant biological processes related to normal brain
growth and development. Dysregulation of any of these
candidates may cause relevant disruptions in these
fundamental processes altering neural outcomes and af-
fecting cognition, learning and memory, especially since
many of them interact with genes already associated to aut-
ism (APP, CYP19A1, ESR1, MAPK1, SETD2, SHANK2,
TRPV1). In addition, some of the most connected nodes
within the network (ESR1, TP53, AKT1, MAPK1, Pkcs,
EGFR and APP) may support molecular mechanisms im-
plicated in neuronal connectivity and synaptic plasticity;
dysfunction in these neurological pathways have been
linked to social and anxiety-related behaviors, mood condi-
tions, cognitive degeneration and loss of neurological func-
tion, characteristic features observed in many neurological
conditions, including ASD [78–90]. Finally, a remarkable
connection was observed in this network between genes
associated to ASD and other comorbid disorders and
Luteinizing hormone (Lh), an endocrine hormone of the
hypothalamic-pituitary-gonadal axis that acts in synergy
with follicle-stimulating hormone (FSH), with roles in
brain development and neuron differentiation [91]. More-
over, the regulation of these hormones release in blood is
controlled by oxytocin, a neurohypophysial hormone that
also operates as a brain neurotransmitter and that have
been implicated in social behavior, recognition and bond-
ing [92–96] and, therefore, alterations of its neuromodula-
tory activity have been associated to several mental
disorders including autism [97–100]. Interestingly, dysreg-
ulation of the endocrine activity, particularly an interaction
between potential ASD candidate genes and endocrine
hormones of the hypothalamic-pituitary-gonadal axis was
also found in our previous study [101]. Overall, these re-
sults lend additional support to the hypothesis that prior
knowledge leveraged from comorbid conditions may con-
tribute significantly to the progress in the genome wide
search for autism candidate genes.

Conclusion
A number of large-scale clinical studies have shown the
high rates of comorbidity linked to autism that suggest the
existence of an overlap in genes and biological processes in
common between ASD and its co-occurring conditions. In
the present work, we used a twofold systems biology ap-
proach to conduct a comparative analysis of autism and 31
comorbid disorders, with the aim of using the prior know-
ledge from these related conditions to predict 19 novel ASD
gene candidates validated through transcriptome expression
profiling experiments. This new set of genes appeared to be
of potential etiologic relevance to ASD, as most of its mem-
bers have been implicated in neurological processes critical
for optimal brain growth and function, and have confirmed
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roles in neurological disease. Future work, including the
evaluation of more comorbid conditions clustered in Fig. 1
and disorders neurological in nature or nor (for instance,
autoimmune disorders), may be useful in the effort to ar-
range and reorder genes that have been associated to autism
so far, and possibly unveil new genes worth investigating for
our understanding of the pathophysiology of autism.
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