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ABSTRACT
Metazoan genomes have a hierarchal 3-dimensional (3D) organization scaling from nucleosomes,
loops, topologically associating domains (TADs), compartments, to chromosome territories. The 3D
organization of genome has been linked with development, differentiation and disease. However,
the principles governing the 3D chromatin architecture are just beginning to get unraveled. The
nucleus has very high concentration of proteins and these proteins are either diffusely distributed
throughout the nucleus, or aggregated in the form of foci/bodies/clusters/speckles or in
combination of both. Several evidences suggest that the distribution of proteins within the nuclear
space is linked to the organization and function of genome. Here, we describe advances made in
understanding the relationship between subnuclear distribution of proteins and genome
architecture.
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Introduction

Folding of long genome into the specific 3-dimen-
sional (3D) conformation within the tiny cell nucleus
is attained with the help of proteins associated with it.
Some proteins enzymatically modify the chromatin
and facilitate acquisition of the required conforma-
tion. Others physically compact it by winding the
DNA around them, like histones, or act as physical
links via protein-protein interactions between distant
genomic regions and thus help in folding the genome
within the nucleus. Interactions among proteins
bound at different sites along the genome can result in
association of proteins into subnuclear foci/clusters.
However, it is also possible that some subnuclear pro-
tein clusters are devoid of DNA and act as storage or
sequestration sites of proteins and modulate organiza-
tion of genome indirectly. Unraveling how organiza-
tion of nuclear proteins is related to the genome
organization will provide novel insights into the prin-
ciples governing the 3D organization of genome.

Different cell types of an organism possess the same
DNA but during development and differentiation
their genomes get biochemically, structurally and
organizationally modified to attain cell type specific
gene expression. Hence, organization of genome is

different in different cell types. Analogous to the pro-
tein structure-function relationship, 3-dimensional
organization of genome has been linked to genome
function and overall development of an organism.1-4

Here, we will first briefly highlight different features
of chromatin organization by using parallel sets of evi-
dence from chromosome conformation capture and
microscopy based experiments followed by brief
description of subnuclear distribution of proteins and
then elaborate the links between the two.

Chromatin organization

Organization of metazoan genomes scales from nucleo-
somes, loops, TADs to chromosome territories (Fig. 1)
and application of various biochemical, genomic, imag-
ing and polymer modeling methods have revealed
many intricate details of genome organization. Genomic
contact maps obtained from chromosome conformation
capture based methods have revealed the topological
features of genome organization.5 From these studies
TADs have emerged as units of high order eukaryotic
genome organization.6 TADs are formed by establish-
ment of contacts within consecutive DNA sequences
resulting in formation of a folded domain. Between 2
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successive TADs lie DNA elements with fewer contacts
called boundary regions. TADs have been observed in
different organisms from yeast to humans.7-12 Evidences
supporting the existence of TADs have also come from
microscopy studies, where DNA sequences belonging to
the same TAD were found to lie closer to each other
than sequences present in 2 different TADs.13 Visual
demonstration of TADs came from a study on Drosoph-
ila larvae salivary gland polytene chromosomes, in
which TADs and boundaries were shown to correspond
to bands and interbands seen under microscope.14

TADs have also emerged as functional domains of
genome. TADs can provide the confinement within
which promoters interact with their respective
enhancers. Clustering of silenced or active genes on X-
chromosome also correlates with TADs.15. Besides the
transcriptional activity, TADs also correlate with the
replication domains as TAD boundaries coincide with
replication domain boundaries.16

Organization of genome at genomic and spatial scales
both beyond and below the level of TADs have been
studied. An elegant in situ Hi-C study showed that
TADs are composed of sub-TADs which have an aver-
age size of 185 kb.9 5C analysis of different genomic loci
at early developmental stages have identified sub-TADs
some of which get rearranged during differentiation of
embryonic stem cells (ESCs) to neuronal progenitor
cells (NPCs).10,17 Recently Kundu et al., identified sub-
mega base, polycomb group (PcG) protein repressed
discrete domains distinct from TADs and the organiza-
tion of these PcG domains changed upon differentiation
of ESCs to NPCs.18 In an elegant in situ hybridization
coupled to super-resolution microscopy study different
epigenetic chromatin states were found to have distinct
folding. In comparison to inactive and active domains,
PcG-repressed domains were found to have the most
dense packing with high degree of intermixing.19

At the higher level, TADs are further organized into
spatial compartments. Hi-C studies have shown that

active and inactive TADs cluster in different compart-
ments and sub-compartments.8,9,20 A multiplexed
fluorescence in situ hybridization (FISH) analysis
demonstrated that TADs of individual autosomes and
X chromosome are spatially arranged into different
compartments and these compartments were observed
in most of the individual cells analyzed.21 These stud-
ies suggest that compartments are stable physical
structures separating the inactive and active TADs of
a chromosome. At the chromosome level of organiza-
tion a territorial model has been proposed according
to which chromosomes occupy distinct regions within
the nuclear space called chromosome territories
(CTs). Several evidences suggest that CTs are an
important and prominent feature of genome organiza-
tion.22-25 However, excursions of chromatin regions
from CT causing intermingling of chromosomes have
been observed. In addition to the visual evidences pro-
vided by imaging studies, the 3C based studies have
also independently supported the existence of CTs
from yeast to mammals.8,26,27

So far we briefly highlighted the main features of
the 3D genome architecture. Although we have gained
a wealth of information about different features of
genome organization, the principles governing the 3D
organization of genome within the nuclear space are
just beginning to get unraveled. Numerous studies
suggest that nuclear proteins can be key players in
shaping the genome architecture. Starting at the geno-
mic scale of 146 bp, histone proteins comprising
nucleosomes provide the very first level of packaging.
At higher level there are loops between enhancers and
promoters that are mediated by transcription factors,
different TADs are enriched in different chromatin
associated protein, boundaries separating TADs are
bound by insulator proteins and lamins (long with
other proteins) are involved in radial arrangement of
chromosomes. Hence, studies investigating mechanis-
tic details by which nuclear proteins stabilize and

Figure 1. Genome organization: Eukaryotic genomes have hierarchal organization varying from nucleosomes, loops, sub-topologically
associating domain (sub-TADs), topologically associating domains (TADs), compartments to chromosome territories.
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regulate the dynamics of genome organization at mul-
tiple genomic and spatial scales are in high demand.
In this review we will describe the relationship
between genome organization and sub-nuclear distri-
bution of proteins.

Subnuclear distribution of proteins

Microscopy based studies have revealed enormous
information about the subcellular distribution of pro-
teins. Immunofluorescence imaging of the nuclear
proteins in general shows either a diffuse distribution,
an aggregated/punctate distribution, or a combination
of both diffuse and aggregated (Fig 2). Before describ-
ing the “diffused” and “aggregated” fractions it is
important to note that these definitions are relative
and depend on the resolution of the microscope. Mac-
romolecules even if aggregated/clustered will appear
diffused if their size is below the diffraction range of
light used to image.28,29

The “diffused fraction” in the nucleus is likely com-
posed of proteins either in monomeric or oligomeric
form with dimensions escaping the resolution limit of
microscope used for imaging. This fraction can be fur-
ther divided into 2 fractions; proteins which are either
randomly diffusing within the nucleus and proteins
bound to chromatin (Fig 3). Examples of the diffused
fraction include transcription factors, enzymes and
chromatin remodeling factors either free in the nucle-
oplasm or transiently binding to the chromatin and
other proteins not related to chromatin dynamics but
floating within the nucleus.

The “aggregated fraction” appears as clusters/foci/
bodies. These structures comprise of either proteins
only, or proteins and RNA, or proteins and DNA, or

proteins, DNA and RNA. They can be either small
and randomly diffusing or they can form well-assem-
bled compartments within the nucleus like nucleolus.
This fraction has been studied more thoroughly than
the diffused fraction and includes different types of
bodies/clusters like cajal bodies, promyelotic leukemia
(PML) bodies, PcG clusters/bodies, insulator bodies/
speckles etc. These are membrane-less, dynamic struc-
tures, working as open systems slightly denser than
surrounding nucleoplasm as their components readily
exchange with freely diffusing molecules in the nucle-
oplasm.30,31 Fluorescence recovery after photobleach-
ing (FRAP) experiments of paraspeckles have shown
that the paraspeckle core proteins exchange rapidly
with nucleoplasmic pool with a t1/2 of the order of sec-
onds.30 Similarly, In case of PcG clusters, PcG proteins
were found to exchange between cluster and soluble
pool and the exchange rates were found to be different
between interphase and mitotic cell.32

Different models have been proposed for the for-
mation of nuclear bodies and have been reviewed
before.30 Cajal bodies seem to form stochastically
from different components while as assembly of para-
speckles and nucleoli starts from specific RNA tran-
scripts acting as seeds. In contrast, assembly of
Drosophila HLBs appears to start from protein seeds
involving Mxc and FLASH and follows a hierarchical
assembly.33 In addition to these models, assembly of
nuclear bodies though phase transition has been pro-
posed.34 Phase transitions have strong dependence on
concentration of different molecular species and tem-
perature. Assembly of Ddx4 protein into liquid like
droplets showed dependence on expression level of
protein, ionic strength and temperature in a manner
similar to that of a phase transition phenomena.35

Figure 2. Subnuclear distribution of proteins: (a) A confocal image showing aggregated (arrows) and diffused (arrow head) fractions of a
polycomb protein, polyhomeotic. (b) Super-resolution image showing the distribution of same protein in same cell type. (c) Zoom in
from b showing nano-scale subnuclear clusters (modified from Wani et al., 201629).
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Also incase of Caenorhabditis elegans embryos the size
of nucleoli was found to strongly correlate with the
concentration of different nucleaolar components,
indicating the possibility of phase transition type of
assembly. Recently, Larson et al., showed that hetero-
chromatin protein (HP1a) forms phase separated liq-
uid droplets and these droplets may sequester
chromatin and establish heterochromatin.36 However,
given the dynamic and heterogeneous nature of
nuclear bodies it is very challenging to determine their
mechanism of assembly.

The nuclear bodies appear to be stabilized by hubs of
intermolecular interactions, including protein-protein,
protein-RNA and protein-DNA interactions. Analysis of
about 3000 proteins constituting different nuclear com-
partments like Cajal bodies, nucleolus, promyelotic leu-
kemia bodies etc. showed that most of these proteins
have disordered domains, which enhance their ability to
promiscuously interact and bind with other proteins. In
line with this, protein-protein interaction networks of
these nuclear compartments were found to have more
interaction hubs than non-nuclear proteins.37

Nuclear bodies have been described as multifunc-
tional compartments.29,30 They are involved in diverse
functions varying form rRNA biogenesis, processing
and modifications of non-coding as well as coding
RNAs, telomere maintenance, ribosome assembly, cell
cycle progression, transcription, DNA repair, genome
stability, apoptosis and stress. These functions of NBs
have been extensively reviewed before.30,31 Our aim

here is to specifically describe the relationships
between nuclear bodies/clusters/speckles and genome
organization. In the following sections we will explain
the connection between subnuclear protein distribu-
tion and genome architecture by highlighting the
more recent research in the field.

And the links

We broadly classified the distribution of the nuclear
proteins into the “diffuse” and “aggregated” fractions.
First we will explain how the “diffused” fraction of
proteins can affect the genome organization followed
by the role of different nuclear bodies/cluster/speckles,
falling under “aggregated” fraction in shaping 3D
genome organization.

Diffused fraction and chromatin organization

The diffused fraction can be divided into 2 sub-fractions
“freely” diffusing molecules and molecules “bound” to
the chromatin (Fig. 3). Freely diffusing proteins contrib-
ute to the rheological (like viscosity) and crowding prop-
erties of the nucleoplasm. Given the viscous nature of the
nucleoplasm it can impede the diffusion of large macro-
molecular assemblies. A study estimated that forces in
the range of few piconewton are required to move the
nuclear bodies within the nucleoplasm.38 Intuitively, this
property of nucleoplasm should hinder the diffusion of
chromatin domains and decrease the probability of long-
range chromatin interactions. However, on the other
hand some studies suggest that molecular crowding leads
to compaction of chromatin. This effect has been
explained on the basis of depletion forces, which can arise
because of the differential size of protein molecules and
association of larger chromatin domains.39 The latter
causes an increase in the volume available to smaller mol-
ecules due to the overlap between exclusion volume of
chromatin domains upon self-association. The compac-
tion also seems to be entropically favored as it appears to
increase the overall entropy of the system.40 Although
there is loss of mixing entropy upon compaction/associa-
tion, due to increase in volume available to smaller mole-
cules their configurational freedom increases resulting in
net increase of entropy. Effects of changing nuclear
crowding on chromatin organization have been studied
by treating cells with different agents like sucrose or poly-
vinylpyrrolidone (PVP). Upon treatment of cells with
medium containing high concentrations of sucrose chro-
matin gets reorganized into dense staining domains.

Figure 3. Schematic showing sub-fractions of diffused and aggre-
gated fractions: Diffused fraction of protein can be either freely
diffusing (a) or bound to chromatin (b). Aggregated fraction can
also be either bound to chromatin (c) or floating freely in the
nucleoplasm (d). Some of the aggregated fraction can be bound
to nuclear membrane and chromatin (e).
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Interestingly, these effects on chromatin compaction
were found to be reversible when cells were transferred
into normal medium.41 Similar compaction effects were
observed when cells were treated with PVP or Dextran,
but the experiments were done with permeablized
cells.41,42 Although from these studies observed chroma-
tin reorganization seems to arise because of molecular
crowding, the hypertonic treatments can affect ionic
strength and can alter the binding affinities of proteins
with DNA or induce post-translational modifications
(PTMs),43 which in turn can result in changes in chroma-
tin organization. Hence, further studies are needed to dis-
sect specifically the contribution of crowding effects on
the organization of chromatin.

The “bound” component of the diffused fraction
includes proteins, which are bound to chromatin at dis-
tinct sites in their monomeric or oligomeric form. These
can be DNA binding proteins like transcription factors,
histone modifying enzymes, ATP-dependent chromatin
remodeling factors etc. These factors can spend different
durations on the chromatin before falling off and hence
can shuttle between bound and free fractions. Their dis-
tribution between these fractions can also get altered
upon external signals, cell cycle stage etc. Chromatin
immunoprecipitation coupled to genome wide sequenc-
ing studies have provided enormous information about
binding profiles of various chromatin associated proteins
along the genome. In general, binding of proteins to the
chromatin will increase its stiffness and alter its persis-
tence length which in turn can affect the folding of chro-
matin, and hence its organization. Discussing the role of
different proteins like individual transcription factors,
histone-modifying enzymes etc. falling in this fraction, in
modulating chromatin structure is beyond the scope of
this review.

Aggregated fraction and chromatin organization

The “aggregated fraction” as we defined above com-
prises of proteins which appear as clusters/bodies/
foci/speckles. In the following sections we will discuss
the relationship between some of these subnuclear
structures with genome organization.

Cajal bodies

Cajal bodies are one of the prominent subnuclear struc-
tures besides the nucleolus and have been discovered
more than a century ago. They appear in shape as round
to irregular foci usually found in-between chromosome

territories. Their observed size varies from 0.5–2 mm,
and their number per cell also varies in different organ-
isms, at different stages of development (more at earlier
stages of development), phases of cell cycle and withmet-
abolic state of the cell.44 Cajal bodies are composed of
many proteins and RNAs forming a complex ribonu-
cleo-protein assembly (Table 1). Coilin is a typical protein
of cajal bodies and has been used as a marker to track
cajal bodies. Cajal body proteins, like other nuclear com-
ponent proteins have disordered domains and have more
tendency to form protein-protein interaction networks
(PPINs) compared with non-nuclear proteins.37 The
identified proteome of cajal bodies has expanded since
their initial discovery andmany of the proteins are shared
between cajal bodies and other subnuclear structures like
nucleolus, histone locus bodies (HLB), and promyelo-
cytic leukemia (PML) bodies.44 The RNA fraction of cajal
bodies includes small nuclear RNAs, small nucleolar
RNAs and cajal body specific sca-RNAs. Cajal bodies are
involved in 30-end processing of histone mRNAs and
maturation of telomerase, processing and assembly of
RNAs as ribonucleoparticles like snRNPs, snoRNPs and
sca-RNPs.

Several gene loci have been shown to interact with
cajal bodies. RNU1 and RNU2 containing tandemly
repeated snRNA genes were shown to interact with
cajal bodies using immunostaining and FISH.45 RNU3
locus, containing clustered but not tandemly repeated
U3 genes, was also shown to interact with cajal bod-
ies.46 Analogous to rDNA sequences, which are called
nucleolus organizers, cajal body interacting loci were
called as “cajal body organizers." The histone locus that
contains the cluster of histone genes, was also shown to
interact with cajal bodies. These, studies suggested that
gene loci having tandemly repeated or clustered genes
interact with cajal bodies. However, loci like U4, U11
and U12, having single or 2 genes were also shown to
interact with cajal bodies.47 Further studies investigat-
ing interaction of DNA loci with cajal bodies suggested
that association of genomic loci with cajal bodies is
transcription dependent.45,48,49 Interaction of U2 loci
with cajal bodies was shown to be mediated by nascent
pre-U2 RNA when transcription was going on.50 A
recent study used a relatively high throughput and
genome wide approach to investigate the organization
of genomic regions around cajal bodies. Using a com-
prehensive FISH and 4C-seq analysis, authors showed
that highly expressed genes including sn/snoRNA and
histone genes, distributed throughout the genome
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clustered around the cajal body. 4C-seq analysis
revealed intra- as well inter chromosomal interactions.
An interaction hub was observed on chromosome 1.
Chromosomes 6 and 17, harboring histone gene locus
(HIST1) and RNU2, respectively were found to form
the inter-chromosomal interaction with chromosome
1, and all 3 chromosomes associate with cajal body.
Interestingly, upon perturbation of cajal bodies by
knock down of their components, the chromosomal
organization observed in wild type cells was dissolved,
suggesting the role of cajal bodies in orchestrating the
spatial organization of genome,51 with mostly active
genes surrounding it.

Polycomb clusters

Polycomb Group proteins (PcG) bodies/clusters are
associated with silenced genes. PcG proteins,

conserved from Drosophila to mammals and plants,
are important for proper development of metazoan
organisms. Polycomb proteins exist in the form of
protein-protein complexes namely polycomb repres-
sive complex 1 (PRC1), polycomb repressive complex
2 (PRC2) etc. For each of the Drosophila PcG protein
there exist more than one homolog in mammals,
increasing the diversity of PcG complexes. Initial
immunostaining experiments of PcG proteins revealed
few bright foci and diffused staining pattern. These
foci were called as “Polycomb bodies," and were found
in Drosophila, C. elegans, mouse cells, humans cell
lines, and in cancerous cells as well.52–55 Using super-
resolution microscopy we found that PcG proteins in
Drosophila cells are distributed in the form of hun-
dreds of nanoscale clusters varying in size from 10s to
100s of nanometers. This implies that PcG proteins
are organized in the form of discrete clusters.29 The

Table 1. Composition and function of different nuclear particles (Cajal bodies, PML bodies, PcG clusters, Insulator speckles, Nuclear
speckles and Nucleolus).

Nuclear Particle Composition Functions References

Cajal bodies Coilin, Fibrillarin, SMN1, Gemins, Nap57, NO38,
GAR1,NOPP140, TCAB1.
RNAs
U85 scaRNA, U87 scaRNA, U88 scaRNA, U89
scaRNA, U90 scaRNA, U91 scaRNA, U92
scaRNA, U2 snRNA, U4 snRNA, U5 snRNA, U6
snRNA, U3 snoRNA, U8 snoRNA, U14 snoRNA,
TERC RNA

� Processing 30 end of histonemRNA.
� Involved in the maturation of telomerase.
� Processing and assembly of ribonucleoproteins

like snRNPS, snoRNPs and sca-RNPs.
� Found to interact with gene like RNU1 and

RNU2.
� Involved in intra- and inter-chromosomal

interactions of chr1, chr6 and chr17

40,39,41,99,100,101

Promyelotic leukemia
(PML) bodies

PML,CBP, and other proteins such as Sp100, BLM,
Daxx, Hipk2, Mdm2, p53, SUMO-1, TRF1, TRF2

� Involved in antivirus response, apoptosis,
telomere shortening, DNA repair, cell cycle
control etc.

� Required for IFN-g MHC II expression.
� Also involved in gene repression with Daxx.

58,29,30,79,80,102,103

PcG clusters/bodies Mostly components of PRC1 have been found in
PcG clusters/bodies
PH, Pc, RING1, CBXs and BMI1
PcG like proteins SOR-1 and SOP-2 proteins in
C.elegans.

� Involved in genes silencing.
� Involved in the compaction of HOX genes.
� Maintain proper expression of HOX genes.
� Mediates long-range genomic interactions.
� A PcG protein, EZH2 helps in the the formation

of loop within the GATA-4 locus.

29,47-50,18,60,61,

67,102,103

Insulator bodies/
speckles

CTCF (mammals), CP190, Su(Hw), mod(mdg4),
BEAF, chromotor, dCTCF (Drosophila).

� Help in shaping chromatin topology, present at
inter-TAD boundaries.

� Involved in the formation of chromatin loops.
� These may be involved in intra-TAD interactions.

70
,
71,72,74,16

Nuclear speckles SR proteins (SF2/ASF, SC35, SRp20, SRp40,
SRp55, SRp75, SRp30c, 9G8, and SRp54), CLK/
STY, PRP4, PSKH1, eIF4Aiii and protein
phosphatase 1.
RNAs
U1 snRNA, U2 snRNA, MALAT1 RNA, Poly(A)C

RNA

� pre-mRNA splicing factors, including snRNPs and
serine/arginine-rich (SR) proteins.

� Regulates the post-translational modification of
splicing factors.

� Hubs for gene activation
� Mediates interchromosomal interaction events

induced by hormones.

30,100,104

Nucleolus Nucleolin, B23, Fibrillarin.
Transranslational factors and structural
proteins including keratin, lamins and tubulin
have also been identified in this
compartment.
RNAs
rRNAs, snoRNAs (U3 snoRNA,
U8 snoRNA, U13 snoRNA,
U14 snoRNA, U17 snoRNA,
E2 snoRNA, E3 snoRNA), snRNAs, tRNAs, 7SL
RNA.

� Primarily associated with ribosome biogenesis
but it is also involved in several different
functions like genome organization, stress
response, cell cycle and proliferation.

� intranuclear and nuclear–cytoplasmic transport,
� modification and assembling of snRNAs
� sequestrating proteins that control cell-cycle

check points including Mdm2, Cdc14, and
Pch2.

98,105,106
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larger clusters might appear as “PcG bodies” and
smaller more abundant clusters as diffused molecules
when observed by confocal microscopy. However, it
remains to be seen whether a similar nanoscale orga-
nization of PcG proteins exists in other organisms.

PcG foci/clusters like other nuclear bodies are
membraneless dynamic subnuclear structures. Fluo-
rescence Recovery After Photobleaching (FRAP)
experiments have shown that PcG proteins exchange
between PcG foci and surrounding molecules.56,57

Based on the recovery time during FRAP experiments,
PcG proteins within PcG foci were shown to be of 3
different fractions; fast (2–8 s), slow (10–20s) and
immobile within 300s, suggesting a heterogeneous
association kinetics. We and others have shown that
SAM-domain mediated polymerization of a PRC1
component, polyhomeotic (PH) is important for clus-
tering of PcG proteins into nanoscale clusters and for
larger foci in Drosophila and mouse, respectively .29,58

A microscopy based genome-wide RNAi screen iden-
tified 129 genes involved in modulating the distribu-
tion of PcG foci. This study showed that sumoylation
of polycomb (PC) subunit of the PRC1 complex regu-
lates the size of PcG clusters.59

Several studies have shown that non-coding RNAs
associate with PcG proteins and canmodulate their activ-
ity.60–62 Yang et al., showed thatmethylated Pc2 binds the
TUG1 ncRNA and holds the target genes to PcG clusters
but upon demethylation Pc2 binds theNEAT2/MALAT1
and target genes get relocated to interchromatin gran-
ules.61 A recent study showed that lncRNA, CAT7 cop-
urifies with PRC1 and regulates its binding to MNX1
locus during early neuronal differentiation.63 In case of
Drosophila it has been shown that RNAimachinery com-
ponents colocalize with PcG bodies and are required for
clustering of polycomb response elements (PREs).64

Although, these studies suggest ncRNAs can be compo-
nents of PcG clusters, further studies are needed to show
that like other nuclear bodies such as cajal and PML bod-
ies, ncRNAs are bonafide structural and functional com-
ponents of PcG clusters.

PcG proteins maintain proper expression of Hox
genes throughout the development of Drosophila.
Immuno-fluorescence in situ hybridization (FISH)
experiments demonstrated that PREs of Hox genes
localize to PcG clusters when the genes are
silenced.65,66 Fab7 PRE controlling the expression of
Hox gene AbdB in Drosophila, localizes to the PcG
foci in the head where AbdB is repressed but not in

the posterior regions where AbdB is expressed, sug-
gesting the silencing nature of PcG clusters.65 Further
immuno-FISH experiments revealed that intensity of
the PcG foci correlates with the size of underlying
genomic region, for example, BX-C which is about
350 kb localizes to more intense PcG cluster than NK-
C which is about 200 kb. This was further substanti-
ated by the observation that the paired Hox gene loci
of homologous chromosomes are present in more
intense PcG foci than in unpaired condition.55 FISH
experiments also demonstrated that long-range kiss-
ing interaction between ANTP-C and BX-C separated
by about 12 Mb is dependent on the PcG binding reg-
ulatory regions of these loci. Recently, a high resolu-
tion FISH study showed that compaction of a Hox
gene complex depends on PRC1 through knockdown
of the PH subunit that resulted in decompaction of
the Hox gene cluster.18 In addition to FISH, electron
microscopy studies also showed that PcG clusters
detected by immunolabeled BMI1 are enriched in con-
densed chromatin throughout the nuclei of U2-OS
cells.67 Electron microscopy based studies also showed
that PRC1 or its subunits from different organisms
compact nucleosomal arrays in vitro.68–70 Lau et al.,
showed that mutation in the nucleosome compaction
region of the Cbx2 PcG protein leads to homeotic
transformations in mouse.71 From all these micros-
copy based studies it is clear that PcG clusters/foci are
sites of highly condensed and compacted chromatin.

Besides microcopy studies, chromosome conforma-
tion capture based studies have also unraveled the role of
PcG proteins in mediating/stabilizing genomic interac-
tions in Drosophila and in mammals. 3C and 4C based
studies from different laboratories showed that polycomb
response elements (PREs) in Drosophila interact and
cluster together in a repressed state, which is dependent
on PcG proteins.65,66 Similarly looping within the
GATA-4 locus was shown to be dependent on the PcG
protein, EZH2.72 In case of mouse ESCs, PRC1 was
shown to act as an important regulator of genome archi-
tecture. PRC1 organizes the genomic interaction net-
works of 4 Hox gene clusters and early developmental
genes. These interaction networks were perturbed upon
depletion of the RING1B component of PRC1.73 By using
4C-seq we unraveledmultiscale interactions within BX-C
and between BX-C and rest of the chromosome 3R of
Drosophila. These genomic interactions were reduced
upon mutations in the SAM domain of the PRC1 sub-
unit, PH, and the same mutations disrupted the
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clustering of PcG proteins into hundreds of nanometer
scale clusters.29 From our and other studies it seems that
PcG proteins bound to chromatin self-associate into hun-
dreds of clusters by different mechanisms like SAM
domain polymerization of PH, sumoylation of polycomb
(Pc) and ncRNAs, andmediate chromatin interactions at
multiple genomic and spatial scales.

Insulator speckles

Another important group of proteins involved in
mediating genomic interactions are insulator proteins.
Insulator proteins appear as immunofluorescent foci
and were called as “insulator bodies” in Drosophila
cells.74 These proteins are bound to insulator elements
and prevent the spreading of transcription/repression
along the genome.75 In case of mammals CTCF is the
only insulator protein but in Drosophila there are sev-
eral of them like CP190, Su(Hw), mod(mdg4), BEAF,
chromotor etc. in addition to dCTCF. These proteins
were found to form about 10–20 “insulator bodies”
within diploid nucleus of Drosophila cells, and were
reported as clusters of insulators held together by
insulator proteins, and thus acting as hubs of genomic
interactions.76,77 However, a latter study reported that
detection of bright “insulator bodies” depends on pro-
cedures followed for dissection or staining like salt
concentrations in buffers and time taken. Treatment
with high NaCl concentration and longer time incuba-
tions in phosphate buffered saline (PBS) resulted in
detection of insulator bodies. These appeared as aggre-
gates of insulator proteins, devoid of insulator ele-
ments and got dissolved when cells were put back in
isotonic conditions.78 A few other studies also sup-
ported this idea that “insulator bodies” are aggregates
of only insulator proteins and not of underlying insu-
lator elements.79

A recent study taking advantage of high-resolution
structured illumination microscopy (SIM) detected
about 100 speckles of dCTCF and CP190 proteins per
nucleus, in contrast to 10–20 bright foci when lower
resolution microscope was used for imaging. To find
out the role of these insulator speckles in genomic
interactions, the authors analyzed the proximity
of these insulator speckles with kissing interactions of
Hox gene complexes separated by about 12 Mb of
genomic distance on Chr3R of Drosophila. The
authors reported that dCTCF speckles are significantly
closer to interacting Hox genes than non-interacting

genomic loci.28 However, the interaction frequency of
Hox gene clusters was very low. Two earlier studies
supporting this observation reported that insulator
elements and not PcG response elements are responsi-
ble for long-range interactions among PcG target
genes and targeting of PcG target genes to different
subnuclear compartments depends upon their state of
expression.80

A lot of literature exists on the role of insulator pro-
teins in shaping chromatin topology and has been
reviewed before.75 Insulator proteins are bound at
thousands of sites along the genome. They are
involved in formation of chromatin loops, whose size
depends upon the number and combination of insula-
tor proteins and cohesion bound at the bottom of the
loop.17 Insulator proteins particularly CTCF has been
found at inter-TAD boundaries, which are sites of low
frequency local interactions, and the strength of
boundary has been shown to correlate with binding of
insulator proteins.81 Furthermore, recent studies
showed that directionality of CTCF binding sites in
mammalian cells determines the formation of loops
and TADs.82 However, insulator proteins are not pres-
ent only at boundaries but also within the TADs and
might be involved in mediating intra-TAD interac-
tions. From these studies it clear that insulator pro-
teins play an important role in shaping the genome
architecture but the nature of insulator bodies/speck-
les and their role in 3D genome organization remains
ambiguous.

Other nuclear bodies

Promyelocytic Leukemia (PML) bodies are detected by
immunostaining of their PML protein and are usually
spherical in shape and vary in diameter from 0.2–1
mm and in number from about 5–30 per nucleus.83

They are involved in number of functions like antivi-
rus response, apoptosis, telomere shortening, DNA
repair, cell cycle control etc.30,31 Given their multi-
functional nature their composition varies and about
166 proteins have been shown to be associated with
PML bodies (Table 1). A large number of these pro-
teins are involved in transcription regulation. Several
studies reported that transcriptionally active genomic
loci are associated with PML bodies. Ulbricht et al.,
showed that IFN-g treatment increases spatial prox-
imity of MHC II gene cluster with PML bodies and
PML protein is required for IFN-g MHC II
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expression.84 However, another study points to the
role of PML bodies in gene repression. Daxx, a tran-
scriptional corepressor is a key component of PML
bodies and gets SUMOylated on its C-terminus.
SUMOylation of Daxx is important for both associa-
tion of Daxx with the PML protein as well as for tar-
geting of Daxx to promoters of anti-apoptotic genes.85

Nuclear speckles are ribonucleo-protein macromo-
lecular assemblies enriched in splicing factors and also
contain proteins like ser2-phosphorylated RNA pol
II.86,87 Many actively transcribing genes have been
shown to localize in close proximity of nuclear speck-
les making them as hubs of active genes. Association
of Hsp70 gene with nuclear speckles has been shown
to be mediated by its promoter and is dependent on
transcription.88 Nevertheless, the association does not
correlate with level of transcript and Hsp70 does not
have introns. Further studies showed that directed
motion of Hsp70 in response to heat shock is actin
dependent, as actin depolymerization blocked the
association of Hsp70 with nuclear speckles.89

Apart from above discussed subnuclear clusters/
foci/bodies, nucleolus is the most prominent subnu-
clear body. It is organized around tandemly repeated
rDNA gene clusters known as nucleolus organizer
regions (NORs). The nucleolus has been primarily
associated with ribosome biogenesis but it is also
involved in several different functions like genome
organization, stress response, cell cycle and prolifera-
tion.30,31 Although it is a site of active transcription at
the center, at its periphery it is associated and sur-
rounded by silent heterochromatin.90 The inactive X
chromosome, imprinted genes and centromeres are
localized to the nucleolar periphery.91,92 A couple of
independent studies investigated the nucleolus associ-
ated genomic regions using deep sequencing.93,94 One
of the studies identified nucleolus associated chromatin
domains containing one thousand 37 genes. A
genome-wide analysis of nucleous associated domains
(NADs) in human cells showed that these domains are
characterized by low gene density and transcriptionally
repressed genes, suggesting that these might be general
properties of chromatin associated with nucleolus.94

However, in case of yeast RNA pol III actively tran-
scribed genes are tethered to the nucleolus but nearby
RNA pol II transcribed genes, also associated with
nucleolus, are repressed.95,96 Different factors like
RNAs, proteins and post-translational modifications of
histones have been reported to be involved in tethering

of different genomic loci to nucleous. ncRNAs like Xist
and Kcnq1ot have been shown to be involved in medi-
ating tethering of inactive X-chromosome and
imprinted Kcnq locus to nucleolar periphery. Proteins
like CTCF, modulo, nucleoplasmin and histone modi-
fications like H3K9me are involved in sequestering the
NADs to the nucleolus.90

Conclusion and future perspectives

In this review we discussed connections between subnu-
clear distribution of proteins and organization of genome
within the nuclear space. From above discussed literature
it is clear that spatial distribution of proteins within the
nucleus plays an important role in shaping the genome
architecture (Fig 4).We first classified distribution of pro-
teins into the diffused and aggregated fractions based
mainly on images available from confocal or other lower
resolution microscopy studies. However, from super-res-
olution microscopy it appears that the fraction of a pro-
tein that appears as diffused at lower resolution might be
aggregated/clustered into nanoscale speckles or clusters.
Hence, in future it seems important to use super-resolu-
tion microcopy to fully understand the subnuclear distri-
bution of proteins and then link it with genome
organization.

Although polymer modeling provides 3D models of
genome organization,97,98 a direct experimental picture
of how DNA and associated proteins are arranged with
respect to each other in 3D nuclear space is not avail-
able. Excavating the 3D organization of genome along
with associated proteins will be challenge for future.

More directed studies analyzing genome-wide
interactions between genome and subnuclear body/
clusters need to be performed to identify the nuclear
body/cluster associated domains to understand the
relationship between the organization of proteins and

Figure 4. Relationship between subnuclear distribution of pro-
teins and genome organization: Sub-nuclear distribution of pro-
teins (left) can regulate 3D genome organization (right);
however, it is also possible that spatial arrangement of genome
can affect distribution of proteins within the nucleus.
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genome organization. Furthermore, studies unraveling
mechanisms which orchestrate the interactions
between different components of subnuclear clusters
(Protein-DNA, protein-protein, protein-RNA and
DNA-RNA) will be highly valuable to understand the
determinants of genome organization.

ChIP-seq studies have provided enormous data about
binding of thousands of proteins along the genome and
this one-dimensional arrangement of proteins correlates
with 3D organization of chromatin. It might be helpful
to integrate the spatial distribution of these proteins
along with their one-dimensional binding information
while interpreting their role in genome organization.
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