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ABSTRACT: Equivariant neural networks have emerged as prominent models in advancing the construction of interatomic
potentials due to their remarkable data efficiency and generalization capabilities for out-of-distribution data. Here, we expand the
utility of these networks to the prediction of crystal structures consisting of organic molecules. Traditional methods for computing
crystal structure properties, such as plane-wave quantum chemical methods based on density functional theory (DFT), are
prohibitively resource-intensive, often necessitating compromises in accuracy and the choice of exchange−correlation functional. We
present an approach that leverages the efficiency, and transferability of equivariant neural networks, specifically Allegro, to predict
molecular crystal structure energies at a reduced computational cost. Our neural network is trained on molecular clusters using a
highly accurate Gaussian-type orbital (GTO)-based method as the target level of theory, eliminating the need for costly periodic
DFT calculations, while providing access to all families of exchange−corelation functionals and post-Hartree−Fock methods. The
trained model exhibits remarkable accuracy in predicting lattice energies, aligning closely with those computed by plane-wave based
DFT methods, thus representing significant cost reductions. Furthermore, the Allegro network was seamlessly integrated with the
USPEX framework, accelerating the discovery of low-energy crystal structures during crystal structure prediction.

1. INTRODUCTION
Molecular organic solids, characterized by their crystalline
nature, are fundamental to a wide array of industries, including
pharmaceuticals,1−4 agrochemicals,5 defense,6 electronics,7−10

and semiconductors.11 They also significantly contribute to
processes such as gas separations,12 as well as the purification
and separation of organic molecules.13−18 Crucially, the
properties of these organic solids are intimately linked to
their crystal structure, underscoring the importance of
understanding and controlling this aspect. Consequently, the
development of crystal structure prediction (CSP) methods,19

employing computational techniques, has been gaining
momentum.20,21 These methods aim to identify the exper-
imentally observed (or the most stable) crystalline polymorphs
of a given organic molecule under ambient conditions, a crucial
task given that approximately half of all organic molecular
crystals are known to exhibit polymorphism.22

The CSP protocol encompasses two primary steps. The first
step involves the exploration of potential crystal structures,

requiring an exhaustive search within the conformational and
crystallographic space. The sheer number of feasible
combinations for the crystal structures that arise from this
high-dimensionality escalates the problem to an NP-hard level
of complexity.23 The second step involves the accurate ranking
of these crystal structure polymorphs based on their relative
energetic stability. Traditionally, this ranking is achieved by
calculating the lattice or binding energy of the crystal
structures at absolute zero temperature (0 K). However,
recent advances in machine learning (ML) methods are
opening up new possibilities for moving beyond zero Kelvin
CSPs, with increasing interest in exploring binding free energy
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metrics for crystal structure ranking.24 While this approach
shows promise for more accurate and realistic predictions, it
represents an exciting future direction that complements the
primary focus of our current work.
During the ranking phase of the CSP process, the number of

polymorphs can often range between 104 and 106,25 which
need to undergo energy minimization for structure refinement,
to weed out duplicate or equivalent structures, and to filter out
high-energy configurations. Given the magnitude of the task,
leveraging cost-effective theoretical methods, such as force
fields or semiempirical approaches, becomes essential.
Invariably, the definitive ranking of these structures is
predicated on lattice energy calculations, with a strong
preference for dispersion-corrected density functional theory
(DFT) methods to capture the van der Waals interactions that
bind molecular fragments in the crystal phase. In this context,
the application of periodic boundary conditions (PBC) is a
concomitant procedure for computations on molecular solids.
With plane-wave basis sets, the system is distinctly defined
within a uniformly filled three-dimensional (3D) space,
ensuring intrinsic periodicity in all dimensions. This inherent
characteristic has long favored plane-wave (PW) based DFT
methods for determining the energetic stability of crystal
structures, leading to their widespread acceptance as the final
ranking method in organic CSP blind tests.20

While the PW approach offers distinct advantages, it comes
with its own set of challenges. Primarily, for technical reasons,
most PW DFT calculations use generalized gradient
approximation (GGA) DFT. Attempts to employ more
accurate hybrid functionals (and post-Hartree−Fock meth-
ods), which incorporate exact Hartree−Fock (HF) exchange,
are met with substantial increases in computational costs,
thereby limiting their mainstream adoption.26−28 Moreover,
PWs predominantly describe only valence electrons, using
pseudopotentials to capture the effects of core electrons. Yet,
even when employing pseudopotentials, a PW calculation
might require several hundred times more basis functions than
Gaussian-type orbitals (GTOs) to reach a similar level of
convergence with respect to the basis set limit.
In contrast, Gaussian-type basis sets, though less frequently

employed in quantum chemical analyses of molecular solids,

have a foundational role in molecular quantum chemistry,
drawing upon decades of established techniques and insights.
This includes recent breakthroughs in accelerating the
computation of coulomb and exchange-type matrices using
RIJCOSX29,30 approximations, as well as the evolution of linear
scaling correlated methods through tensor decomposition
techniques, notably the domain-based local pair natural
orbital31−34 method. Hence, GTO-based methods have
naturally found their application in computing crystal structure
lattice energies, though in an implicit manner. Most notably,
fragment-based energy methods�often expressed through
many-body expansions such as the hybrid many-body
interaction35,36 approach�incorporate corrections from one-
and two-body interactions (represented by monomers and
dimers, respectively) employ accurate GTO methods.37−39

Moreover, the rapidly expanding field of ML has been
instrumental in enhancing these many-body expansion
methods, either through ΔML approaches or by offering a
more efficient and accurate computation of the many-body
terms.40,41

In this study, we seek to bridge the gap between the PW and
GTO based methods via ML. Our approach involves training
an equivariant neural network on a data set of molecular
clusters, derived from computationally efficient GTO-based
methods. This is intended to craft a ML potential proficient at
capturing both intra- and intermolecular interactions within
our targeted systems. Once trained, this potential is equipped
to predict lattice energies of periodic molecular crystal
structures. In this context, it is noteworthy that Szalewicz
and co-workers developed the autoPES method, an inter-
molecular potential based on symmetry-adapted perturbation
theory, fitted to molecular cluster data, which has been utilized
for lattice energy minimization of crystal structures.42−44 Their
approach employs a distinct empirical potential for intra-
molecular interactions, which must align with the intermo-
lecular potential for consistency. Our method differs by aiming
to concurrently capture both inter- and intramolecular
interactions within a unified framework through the
application of an equivariant neural network.
Amine molecules serve as our primary testbed in this

endeavor, selected for their scientific significance, especially for

Figure 1. (a) 2D and (d) 3D structures of benzene-1,2,4,5-tetrayltetramethanamine. (b) 2D and (e) 3D structures of 3-oxabicyclo[3.2.0]hepta-1,4-
diene. (c) 2D and (f) 3D structures of Hydantoin.
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their pivotal role in capturing carbon dioxide.45−49 Historically,
amines have been extensively researched for their ability to
bind with CO2, facilitating its capture under a range of
conditions. Notable examples of this include amine-appended
metal−organic frameworks (MOFs)50 and cyanuric acid-
stabilized melamine nanoporous networks51 capturing carbon
dioxide through chemisorption. In the case of ethylenedi-
amine-appended MOFs, amine molecules engage in coopera-
tive CO2 capture to form ammonium carbamate chains
reminiscent of the crystal structure of neat N-(2-
ammoniumethyl)carbamate. Appreciable insight in periodic
crystalline structure of polyamines more complex than
ethylenediamine may rapidly accelerate the discovery of
candidate polyamines suitable for CO2 capture. Additionally,
aqueous amines are employed in industrial settings, particularly
due to their efficiency in selectively binding and removing
carbon dioxide from flue gas.48 In the solid state, these organic
amines can manifest an array of crystalline structures. This
diversity arises from the interplay of noncovalent intra- and
intermolecular interactions, resulting in a range of crystal
structures. While this study emphasizes amine structures, our
proposed methodology possesses the flexibility and versatility
to address crystal structures of any organic molecule. To
demonstrate the broader applicability of our method, we
predict crystal structures of two organic molecules with
complex intermolecular interactions, illustrating its potential
beyond amine structures.

2. METHODS
An aromatic tetraamine (benzene-1,2,4,5-tetrayltetramethan-
amine52) (Figure 1a) was selected as a representative molecule
for designing the ML protocol. Its high symmetry, coupled
with multiple amine groups and conformationally flexible
substituents, makes periodic packing predictions challenging.
Furthermore, the numerous amine groups can facilitate a vast
array of periodic hydrogen bonding structures, adding to its
complexity and making it an intriguing test case.
To further validate our protocol, Section 3.4 discusses 3-

oxabicyclo[3.2.0]hepta-1,4-diene (Figure 1b) and hydantoin
(Figure 1c) molecules, test cases from the Cambridge
Crystallographic Data Centre CSP challenges, encompassing
a broader spectrum of noncovalent interactions between
molecules.53,54

2.1. Molecular Cluster Data Set. To develop a robust
ML model for predicting properties in periodic systems, we
curated a comprehensive data set of molecular clusters. These
clusters, including monomers, dimers, trimers, and higher-
order aggregates, aim to capture the full spectrum of
intramolecular, intermolecular, and multibody interactions
characteristic of the target system. While ML methods often
require large data sets, recent advances in equivariant neural
networks (e.g., NequIP,55 Allegro,56 MACE57,58) have
demonstrated data efficiency by leveraging molecular symme-
tries to reduce data requirements by up to 3 orders of
magnitude while maintaining accuracy.55−58 Nevertheless, a
reasonably sized data set is still necessary to avoid underfitting.
To further explore the data efficiency of equivariant neural
networks in the context of CSP, we aim to utilize a similar
number of data points (typically, on the order of 103) for
model training as in other data-efficient methods for CSP, such
as AutoPES43,44 and Gaussian Process Regression.41 Addition-
ally, we build the data set sequentially, progressing from
simpler (smaller) body terms to more complex higher-body

terms, effectively minimizing both data generation costs and
computational resources required for model training.
To accurately predict energies of molecular crystal structures

with diverse molecular conformations and orientations, our
training data set fundamentally requires monomers and dimers
in various configurations. This captures intra- and intermo-
lecular interactions, providing a baseline representation of the
system. To enhance data set diversity, we employ an energy
window parameter, controlling the range of generated
conformers relative to the lowest energy conformation.
Broader energy windows typically yield more varied con-
formations, increasing the data set size and diversity. While an
energy window of 12 kcal mol−1 (50.2 kJ mol−1) is typically
sufficient for systems with moderate conformational flexibil-
ity,59 achieving a large and diverse data set size may necessitate
enlarging this window to include higher-energy conformers.
However, it is important to note that simply widening the
energy window does not guarantee increased diversity,
particularly for molecules with limited intermolecular inter-
actions. In such cases, higher-energy conformations may
predominantly consist of disjointed monomers, i.e., config-
urations where the interaction energy between the constituent
molecules is negligible (typically, less than 0.1 kcal mol−1).
These noninteracting monomers offer no additional informa-
tion beyond what is already captured in the monomer data set.
Therefore, we refined our data sets by removing such
structures, ensuring the relevance of each configuration to
potential crystal packing. When monomers and dimers alone
fail to yield a sufficiently large data set (on the order of 103
data points), particularly for conformationally rigid molecules,
we systematically incorporate higher-order many-body config-
urations, starting with trimers and progressing to more
complex configurations (e.g., tetramers, etc.) as necessary to
ensure comprehensive representation of molecular interac-
tions. This approach expands the data set’s scope and scale,
capturing a wider range of intermolecular interactions relevant
to crystal packing and potentially improving both the model’s
performance and its ability to generalize to unseen data, albeit
at an increased computational cost. In summary, we utilize two
tunable parameters�cluster aggregate size and conformer
energy window�to control the data set’s size and diversity,
striking a balance between computational cost and model
performance.
Utilizing the aforementioned protocol, we constructed

cluster data sets for the molecules in this study. The
Conformer Rotamer Ensemble Sampling Tool (CREST)60

was employed to generate cluster conformations using the
non-covalent interactions mode at the GFN2-xTB61,62 level of
theory. Given the high conformational flexibility of tetramine,
we focused on the simplest data model, generating only
monomer and dimer conformers within a 12 kcal mol−1 energy
window. This process yielded a diverse data set of 548
monomers and 4995 dimers, aligning with the target data set
size. For the conformationally rigid molecule 3-
oxabicyclo[3.2.0]hepta-1,4-diene, our initial protocol yielded
only one monomer configuration (due to the absence of
rotatable bonds) and 119 dimer structures, insufficient for
robust ML model training. Attempting to expand the data set
by widening the energy window was not effective, as it
predominantly resulted in disjointed monomers rather than
more diverse conformations. Consequently, to augment the
diversity and size of our data set�and to better capture a
broader spectrum of molecular orientations�we generated
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trimer conformers for 3-oxabicyclo[3.2.0]hepta-1,4-diene using
the CREST protocol and maintained a 12 kcal mol−1 energy
window. This approach generated 600 trimer configurations,
bringing the total data set size to a level suitable for effective
ML model training. For hydantoin, we applied the same
protocol to generate the cluster data set. However, due to its
conformationally restrictive nature�characterized by no
rotatable bonds�we obtained only 29 dimer and 368 trimer
configurations. Given hydantoin’s multiple hydrogen bonding
sites and the relatively small size of this initial data set, we
expanded the scope to include tetramer configurations within a
larger energy window of 24 kcal mol−1. This aimed to
comprehensively capture the complex intermolecular inter-
actions facilitated by multiple hydrogen bonding sites. This
expansion resulted in 1106 tetramer configurations, bringing
the combined data set to a reasonable size suitable for robust
ML model training.
Following conformer generation, we have the flexibility to

perform single-point energy computations on these conformers
using any highly accurate GTO-based method, such as DFT or
various post-Hartree−Fock approaches, which then serves as
the target level of theory for training our ML model. In this
study, we selected the PBE-D3BJ63,64 functional with the
Karlsruhe triple-ζ basis set (def2-TZVP)65,66 as the target level
of theory. This choice facilitated direct comparison with the
equivalent periodic PBE-D3BJ method applied to crystal
structures. In Section 3.2, we present results obtained using
other higher level quantum chemical methods, specifically the
B3LYP-D467−70 hybrid functional and DLPNO-MP231−34

correlated method. All single-point energy computations on
molecular clusters were conducted using the Orca 5.0.3
software.71

2.2. Molecular Crystal Structure Data Set. To assess the
efficacy of the trained ML model, we created a data set of
molecular crystal structures for the tetraamine using the
evolutionary algorithm (EA) within USPEX 10.5.072 (Univer-
sal Structure Predictor: Evolutionary Xtallography). Given the
computational expense of variable-cell relaxation processes
during the structure refinement phase of CSP, we utilized the
cost-effective xTB62 method, compatible with periodic
boundary conditions, integrated within the DFTB+73 program
package via the tblite project. We used a two-step variable-cell
relaxation protocol, starting with the GFN1-xTB74 method
until the maximum absolute force element reduced to 10−3 Ha
Bohr−1, followed by the GFN2-xTB method with the
corresponding convergence criterion of 10−4 Ha Bohr−1. The
application of a “k-point resolution” value of 0.06 × 2π Å−1 in
USPEX automatically generated an on-grid k-point mesh for
DFTB+, allowing simulations to be conducted beyond the Γ-
point. The structure evolutions were conducted over 25
generations with two molecules per unit cell (Z), utilizing
heredity, random generation from prespecified space groups,
topology-based structure generation,75 and rotational mutation
strategies.76 The search space for molecular crystals was
confined to the 22 most frequently encountered space groups
in the Cambridge Structural Database, with group numbers:
14, 2, 15, 19, 4, 61, 33, 9, 62, 1, 5, 60, 148, 29, 13, 12, 11, 7, 18,
88, 56, and 43. The EA within USPEX navigates the crystal
structure landscape based on fitness evaluations derived from
crystal structure energies. Our methodology enhances these
evaluations by integrating a ML model (viz., Allegro),
providing energy predictions with a higher level of theoretical
accuracy than achievable with the GFN2-xTB method alone.

To obtain accurate electronic energies (and hence, lattice
energies), the xTB-relaxed molecular crystal structures were
subjected to single-point energy calculations using the plane
wave projector-augmented-wave (PAW)77 DFT methodology.
In particular, we utilized the PBE functional augmented by
Grimme’s D364 dispersion correction with Becke−Johnson
(BJ) damping, a crucial aspect for accounting for van der Waals
dispersion interactions in organic molecular crystals. All
calculations were performed using the Quantum ESPRESSO
v.7.0 program suite.78,79 To strike a balance between
computation time and accuracy, we employed an energy cutoff
of 80 Ry for wave functions, and 480 Ry for charge density. We
used a Monkhorst−Pack80 k-point grid with a spacing of 0.06
× 2π Å−1 to ensure higher precision in the calculations. Core
electrons were accounted for using PAW pseudopotentials
from the pslibrary version 1.0.0.81

Building on the calculated DFT energies, the lattice or
binding energy (per molecule) of the molecular crystals within
the periodic boundary condition (PBC) formalism can then be
computed using the following equation

=E
E

Z
Elattice

cell
molecule (1)

where Ecell represents the total energy of the crystal unit cell, Z
is the number of molecules within the unit cell, and Emolecule
denotes the total energy of an isolated molecule in the gas
phase computed within a cubic unit cell with dimensions 20 Å.
2.3. Model Architecture and Training. In this study, we

utilize the Allegro56 architecture, a prime example of an
equivariant deep neural network55,82 designed for accurate
molecular property predictions. Allegro utilizes a unique
approach that eliminates the need for atom-centered message
passing,82−86 thus achieving scalability on par with strictly local
ML models (viz., Behler−Parinello neural networks,87 ACE,88
GAP,89 SNAP,90 DeepMD,91 Moment Tensor Potentials92)
while retaining the accuracy and transferability characteristic of
equivariant atom-centered message passing neural networks.
Allegro, an equivariant neural network, is explicitly constructed
from equivariant operations, ensuring the preservation of
known transformation properties of physical systems under
coordinate changes, thereby inherently enhancing its data
efficiency. In fact, Allegro surpasses existing models by
requiring up to 3 orders of magnitude fewer training data.55

This superior data efficiency paves the way for the creation of
accurate models using high-order quantum chemical theory as
a reference, enabling high-fidelity property predictions for
larger systems, thus making Allegro an optimal choice,
particularly in scenarios with limited data availability.
As demonstrated in various studies employing Allegro, a

modest radial cutoff of 4−6 Å has proven effective across a
wide range of chemical systems, including large biomolecules,
irrespective of molecular size, shape, or flexibility.56,93−95

Therefore, in the process of constructing the Allegro models,
radial cutoffs of 6.0 Å was judiciously chosen, which ensures
the comprehensive capture of neighboring π−π interactions, as
well as other extended noncovalent interactions between
molecules.56,93 A significant consideration during this process
was balancing complexity and transferability. Specifically, a
deeper architectural configuration with three layers was
employed to improve the model’s transferability to molecular
crystal structures. At the same time, it was critical to keep the
number of model weights within a modest range to mitigate
overfitting to the molecular cluster data. To this end, and to
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avoid proliferation of trainable parameters, we crafted the
Allegro model employing a modest, singular feature for both
odd and even irreducible representations of O(3) group and
lmax = 1. The 2-body latent multilayer perceptron (MLP) is
composed of four hidden layers of dimensions [8, 16, 32, 64],
utilizing Sigmoid Linear Unit (SiLU)96 nonlinearities. The
latent MLP, in turn, consists of four hidden layers with
identical dimensionality [8, 16, 32, 64], also employing SiLU
nonlinearity. The embedding weight projection was imple-
mented via a single matrix multiplication, with no additional
hidden layer or nonlinearity. The final edge energy MLP
comprises one hidden layer of dimension 16, with no
nonlinearity as well. All four MLPs were initialized in
accordance with a uniform distribution. The basis encoding
was accomplished using eight trainable Bessel functions,
complemented by a polynomial envelope function with an
exponent of 6. For a detailed overview of the Allegro
architecture, please refer Musaelian et al.56

Each Allegro model56 was trained on a curated molecular
cluster data set, partitioned into a 90−10% split for the training
and validation sets respectively, and reshuffled after each
epoch. The training was carried out on a single NVIDIA
GeForce GTX 1080 Ti GPU with a batch size of four.
Employing a joint loss function for energies and forces, we
utilized the mean absolute error (MAE or L1Loss) as the loss
function, with both energy and force terms receiving an equal
weight of 1. Optimization of the model parameters was
performed using the Adam97 algorithm in PyTorch,98 with
default parameters of β1 = 0.9, β2 = 0.999, and ϵ = 10−8

without weight decay. We initiated the optimization process
with a starting learning rate of 0.01, which was subsequently
adjusted via a ReduceLROnPlateau schedule. This scheme
reduced the learning rate by a factor of 0.75 whenever the
training loss plateaued within a user-specified threshold of 2.5
× 10−5 Ha. We employed an exponential moving average with
a weight of 0.99 to evaluate the validation set and for
determining the final model. Training was concluded when one
of the following conditions was met: a maximum of 1500
epochs were reached, or the learning rate dropped below 10−5.
Training and validation errors for the tested models are
provided in Table S1 of the Supporting Information.

3. RESULTS AND DISCUSSION
Given the divergence in the theoretical and mathematical
foundations of PW basis set-based DFT and atom-centered
basis set DFT�which uses GTOs�these can be considered
somewhat different levels of theory. This distinction means
that the absolute electronic energies for the molecular crystals
computed using PW PBE-D3BJ cannot be directly compared
with those predicted by the ML model trained on PBE-D3BJ/
def2-TZVP data. Yet, it is possible to make qualitative, and, to
some extent, quantitative comparisons between the lattice
energies of the crystal structures derived from these two
approaches. These lattice energies, indicative of the strength of
intermolecular and intramolecular interactions within the
crystal structures, allow for such comparisons due to the
cancellation of systematic differences in their calculation.
Therefore, we adopted the correlation between the ML-
predicted and the PW DFT-derived lattice energies of the
crystal structures as one of the metrics for evaluating the
performance of the ML model on the crystal structure data set.
The molecular crystal structure data for benzene-1,2,4,5-
tetrayltetramethanamine was generated adhering to the

protocol delineated in Section 2.3 and consists of 641
structures, inclusive of the isolated molecule (or monomer)
necessary for lattice energy computation using eq 1. The lattice
energies of these structures, spanning a broad range, reflect
diverse molecular orientations and configurations, affirming the
structural diversity of the crystal structure data set (see Figure
2). Furthermore, the crystal energy landscape showcases a wide
spectrum of densities, highlighting the comprehensiveness of
the data set.

We utilized the Allegro models, which were trained on
molecular cluster data, to predict single point absolute energies
of periodic molecular crystal structures. This approach
leverages Allegro’s atom-centric architecture, enabling compat-
ibility with both periodic and nonperiodic structures. Allegro
computes molecular energies by summing per-atom contribu-
tions, each decomposed into pairwise interactions with
neighboring atoms within a specified cutoff radius, thus
effectively capturing the local chemical environment. Sub-
sequently, these predicted energies were employed to compute
the corresponding lattice energies via eq 1. A graphical
comparison of the lattice energies computed with the PW
approach and those predicted by the Allegro model [with a
radial cutoff (rcutoff) of 6.0 Å] is displayed in the parity plots of
Figure 3. Upon evaluating the performance of the Allegro
model, we found substantial agreement between the PW
computed and Allegro predicted lattice energies. We quantified
the model’s accuracy by computing the square of Pearson
correlation coefficient (r2), 0.94. Additionally, a mean absolute
deviation (MAD) of 4.8 kJ mol−1 further underscore the
reliable predictive performance of the Allegro model in
comparison to the PW approach.
3.1. Lattice Energy Predictions through Δ-ML. Owing

to its design, the Allegro model features an inherently local
structure, preventing the explicit incorporation of long-range
energy terms or interactions during its construction. This
design feature enables Allegro to distinguish between short-
and long-range energy terms, an advantage that nonetheless
may limit its predictive accuracy in cases where system
properties are significantly influenced by long-range inter-

Figure 2. Crystal energy landscape of molecular crystal structures for
benzene-1,2,4,5-tetrayltetramethanamine curated using the USPEX
protocol, as detailed in Section 2.2, forming a diverse data set. The
displayed lattice energies of the crystal structures were calculated
employing the PW PBE-D3BJ functional.
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actions. Specifically, neglecting these interactions could notably
skew the quantitative assessment of lattice energies within
molecular crystal structures. A consideration of the optimal
ways to include these interactions within the framework of
local models like Allegro is, therefore, crucial.

To remedy this, we implemented a Δ-machine learning (Δ-
ML) scheme to account for the long-range interactions in the
molecular solid. In this scheme, the long-range interactions are
approximated by calculating the energy of the molecular crystal
structure at a more cost-effective baseline level of theory. The

Figure 3. Parity plots evaluating the Allegro model’s accuracy (rcutoff = 6.0 Å) in estimating the lattice energies of molecular crystal structures for
benzene-1,2,4,5-tetrayltetramethanamine. The y-axis, labeled “Lattice Energy (Allegro GTO PBE-D3BJ)”, represents lattice energies calculated
from crystal structures’ absolute energies as predicted by the Allegro model, which was trained using GTO PBE-D3BJ molecular cluster data. The
x-axis, labeled “Lattice Energy (Plane-Wave PBE-D3BJ)”, corresponds to values derived using the periodic PBE-D3BJ functional. Subfigure (a)
illustrates the correlation between PW DFT and Allegro computed lattice energies, highlighted by the best-fit line in red. Subfigure (b) shows the
density distribution of the data points, with a notable concentration near the identity line, indicating close agreement for the majority of data points.

Figure 4. Parity plots assessing the Δ-ML (or Δ-Allegro) model’s performance (rcutoff = 6.0 Å) in predicting the lattice energies of molecular crystal
structures for benzene-1,2,4,5-tetrayltetramethanamine. The y-axis, labeled “Lattice Energy (Δ-Allegro GTO PBE-D3BJ)”, displays lattice energies
derived from the absolute energies of crystal structures as computed by the Δ-ML method, utilizing eq 2. For this model, training involved the use
of energy differences between the GTO PBE-D3BJ and GFN2-xTB methods on molecular cluster data. On the x-axis, “Lattice Energy (Plane-Wave
PBE-D3BJ)” represents lattice energies obtained using the periodic PBE-D3BJ functional. Subfigure (a) portrays the relationship between the
lattice energies computed by PW DFT and those estimated by the Δ-Allegro scheme, with a best-fit line in red closely aligning with the identity line
(r2 = 0.96). Subfigure (b) depicts the data points’ density distribution, demonstrating that the majority are clustered near the identity line,
indicating strong agreement between the two methods.
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Δ-ML strategy is primarily aimed at learning the energy
difference between a high-cost target level of theory and a
lower-cost baseline level. This approach capitalizes on the
systematic nature of the error between the two theoretical
methods. Hence, with the energy determined at the baseline
theory, the energy at the high-cost level can be derived by
adding an ML-learned correction term. In this study, the
baseline level of theory is represented by the semiempirical
GFN2-xTB method and the high-cost target level of theory is
chosen as a DFT method. In terms of computational efficiency,
while a typical GGA periodic DFT method demands
approximately 3000 CPU-minutes, the GFN2-xTB approach
requires only around 0.1 CPU-minutes for a single energy (and
force) computation for a tetraamine crystal structure. This
difference starkly highlights the advantage of utilizing GFN2-
xTB within the Δ-ML scheme, especially when considering
computational resource allocation and time. Specifically, within
the Δ-ML framework, the energy (EΔML‑DFT) of a molecular
crystal structure at a high level of theory (DFT in this case)
can be computed as follows

= +E EML DFT PBC GFN2 xTB ML (2)

where

= E EML GTO DFT GFN2 xTB (3)

Here, EPBC‑GFN2‑xTB is the energy of the molecular crystal
structure computed using periodic GFN2-xTB in DFTB+,
following the settings outlined in Section 2.2 to account for
long-range interactions. The term ΔML signifies the “delta”
energy of the crystal structure as predicted by a ML model
trained on the energy differences between canonical GFN2-
xTB and the target level GTO-based DFT method for a

molecular cluster data set. In the context of the present study,
the same monomer and dimer data set was used to train the
Allegro model, with the aim of learning the energy differences
between GTO PBE-D3BJ and GFN2-xTB. While the Δ-ML
scheme shown employs DFT method for the sake of
consistency, any GTO-based method, such as MP2, CCSD(T),
etc., could be utilized in principle. This trained ML model can
then be deployed to make energy predictions on the data set
comprised of molecular crystal structures to obtain the ΔML
energy term in eq 2. With the long-range corrected absolute
energies derived from eq 2, the corresponding lattice energy of
the crystal structure can be computed using eq 1.
The lattice energies for benzene-1,2,4,5-tetrayltetramethan-

amine crystal structures were computed employing the same
Allegro architecture to quantify the improvements gained
through the Δ-ML scheme. For rcutoff = 6.0 Å Allegro model
(Figure 4), the inclusion of long-range corrections via the Δ-
ML approach enhanced both performance metrics, most
notably reducing the MAD to a mere 3.1 kJ mol−1 while
simultaneously boosting the correlation coefficient r2 to 0.96.
Moreover, the best-fit line, closely parallel to the identity line,
now demonstrates a robust alignment with the ground truth.
3.2. Lattice Energy Predictions at Higher Levels of

Theory. In earlier discussions, we emphasized the use of
molecular clusters computed using GTO methods for training
our Allegro-based ML models. Building upon this foundation,
we now integrate more sophisticated theoretical methods as
the training target for the ML model. This subsection outlines
the training of Allegro architectures using the monomer and
dimer molecular cluster data set, as introduced in Section 2.1,
but recalculated with more advanced theoretical methods,
specifically B3LYP-D4 and DLPNO-MP2, employing the

Figure 5. Crystal energy landscape of molecular crystal structures for benzene-1,2,4,5-tetrayltetramethanamine, as predicted by the Δ-ML (or Δ-
Allegro model) with a cutoff radius of rcutoff = 6.0 Å. The y-axis, labeled “Lattice Energy (Δ-Allegro)”, represents lattice energies derived from the
absolute energies of crystal structures as predicted by the Δ-ML scheme, employing eq 2. The Allegro model’s training utilized energy and force
differences between a GTO and the GFN2-xTB methods on the molecular cluster data set. (a) The Δ-ML predictions are shown for PBE-D3BJ
(green dots) and B3LYP-D4 (magenta dots) functionals as the target levels of theory. The observed minor divergence between the predicted lattice
energies with Δ-Allegro PBE-D3BJ and Δ-Allegro B3LYP-D4 models are consistent with the literature, which notes a slight overestimation of
hydrogen bond energies by the PBE functional in comparison to B3LYP, which has been reported to provide a more accurate estimation of relative
energies between molecular crystal structures. (b) The Δ-ML predictions are shown for DLPNO-MP2 (green dots) method and B3LYP-D4
(magenta dots) functional as the target levels of theory. The minor divergence observed in the lattice energy predictions between Δ-Allegro
DLPNO-MP2 and Δ-Allegro B3LYP-D4 models aligns with literature findings, which attribute a slight overestimation of lattice energies by the
MP2 method, particularly for π−π interactions.
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triple-ζ basis set def2-TZVP. The hybrid DFT functional
B3LYP, enhanced with Grimme’s D470 dispersion model, was
selected for its enhanced accuracy in electronic structure
calculations, especially for noncovalent interactions, which are
crucial for the accurate representation of molecular systems.
DLPNO-MP2, recognized for balancing accuracy with
computational efficiency, is particularly adept at capturing
hydrogen bond interactions and long-range dispersion forces,
which are sometimes inadequately addressed by density
functionals lacking nonlocal orbital contributions. Conse-
quently, our ML framework benefits from the flexibility to
select learning targets across a spectrum of accuracy levels,
enabling tailored approaches to specific interaction types.
Employing the Δ-Allegro model with the radial cutoff, rcutoff

= 6.0 Å, previously established as one of our most effective
models (see Section 3.1), we generated lattice energy
predictions for molecular crystal structures at B3LYP-D4
level of theory. These predictions exhibited a high degree of
correlation (r2 = 0.98) with those derived from the PBE-D3BJ
functional using the same Allegro model (Figure S1 in the
Supporting Information). This reflects a consistent energy
ranking of the crystal structures by both DFT functionals.
Additionally, Figure 5a presents the crystal energy landscape,
illustrating the lattice energy predictions for the test set of
crystal structures at both B3LYP-D4 and PBE-D3BJ levels of
theory. Importantly, the lattice energies computed using
B3LYP were characteristically lower in magnitude, aligning
with the literature that reports B3LYP’s tendency to under-
estimate hydrogen bond strengths compared to the PBE
functional; however, B3LYP offers more accurate estimations
of relative hydrogen bond energies.99 In addition, we also
present lattice energy predictions using the same Δ-Allegro
model, but applying DLPNO-MP2 theory, in Figure 5b. The
results show a slight overestimation of lattice energies relative
to those obtained with the B3LYP-D4 functional. This
outcome aligns with documented behavior of the MP2 method
for molecular systems, which is known to accurately predict
hydrogen bonding interactions but tends to overestimate other
long-range noncovalent interactions, particularly π-stacking
energies.100,101 Thus, the Allegro model adeptly mirrored the
characteristic energy profile of the B3LYP and DLPNO-MP2
methods, affirming its capability to capture and reproduce the
intrinsic theoretical properties of advanced electronic structure
methods. This divergence in predicted lattice energies
highlights the critical need for careful selection of reference
methods in the training of ML models, to ensure fidelity in the
replication of nuanced quantum mechanical effects.
3.3. Enhancing CSP with Allegro Model Integration in

USPEX. In our pursuit to advance the application of ML in
CSP, we have deployed trained Allegro models for energy
evaluations directly into the USPEX workflow. Specifically,
Allegro’s inference engine, while not directly applicable for
energy and force computations within USPEX, is designed to
be conducive to integration with LAMMPS.102 This
integration not only enables the seamless incorporation of
Allegro into the USPEX framework but also leverages
LAMMPS’ capabilities for molecular dynamics simulations,
and structure minimizations, consequently enhancing the
speed and accuracy of crystal structure predictions and
facilitating advanced computational operations within
USPEX. Consistent with the protocol delineated in Section
2.2 for crystal structure generation and prediction, a tertiary
computational phase has been introduced to the energy

evaluation process. Following structural relaxation via xTB
methods, the Allegro model�specifically, the Δ-Allegro model
trained on B3LYP-D4 molecular cluster data�calculates the
crystal’s energy. Utilizing eqs 1 and 2, Allegro predicted
absolute energy is converted into lattice energy, which then
informs the EA within USPEX to optimize the search for low-
energy crystal structures. Further insights drawn from the
crystal energy landscape presented in Figure 2 revealed a
propensity for the tetraamine to stabilize in configurations with
lower energies at higher densities. Prompted by this
observation, we embarked on a strategy to discover even
lower energy structures. We opted for a more compact
conformation of the tetraamine, illustrated in Figure S2 of the
Supporting Information, as the initial geometry for USPEX-
driven crystal structure predictions. This strategic choice is
predicated on the hypothesis that a constricted molecular
conformation could foster more efficient stacking of the rings.
Such an arrangement is likely to reinforce π−π interactions,
potentially giving rise to crystal structures with both higher
symmetry and density, thereby navigating us toward the energy
minima with greater precision. Notably, the identified lowest-
energy crystal structure closely matched the target reference
structure, with a root-mean-square deviation (rmsd15) of only
0.11 Å.
In the resultant crystal energy landscape, depicted in Figure

6, we observe a nearly linear relationship between the

predicted lattice energies by Allegro and the crystal density
in regions of higher density. This trend resonates with the
physical principles governing these structures: as density
escalates, unit cell volume diminishes, leading to increased
molecular symmetry and packing efficiency. Consequently, this
denotes heightened intermolecular noncovalent interactions

Figure 6. Crystal energy landscape of molecular crystal structures for
benzene-1,2,4,5-tetrayltetramethanamine, including those obtained
using the Allegro-enhanced USPEX protocol with the B3LYP-D4
functional as the target level of theory. Crystal structures, discussed in
Section 2.2, are marked with green dots, while magenta dots represent
newly generated crystal structures, which were derived using the
conformation from Figure S2 as the starting point within the USPEX-
based CSP framework. The y-axis, labeled “Lattice Energy (Δ-Allegro
GTO B3LYP-D4)”, represents lattice energies derived from the
absolute energies of crystal structures as predicted by the Δ-ML
method, employing eq 2. The Allegro model’s training utilized energy
and force differences between the GTO B3LYP-D4 and GFN2-xTB
methods on molecular cluster data.
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and, therefore, increased lattice energy. Moreover, at lower unit
cell volume, the crystal’s potential to adopt a variety of
configurations is markedly limited due to reduced spatial
degrees of freedom, which is reflected in the sparse distribution
of crystal structures in the areas of the plot characterized by
very high crystal density.

3 . 4 . L a t t i c e Ene r g y P r ed i c t i o n s o f 3 -
Oxabicyclo[3.2.0]hepta-1,4-diene and Hydantoin Crys-
tal Structures. In curating the training data set for 3-
oxabicyclo[3.2.0]hepta-1,4-diene and hydantoin clusters, we
adhered to the protocol outlined in Section 2.1, with
adaptations to accommodate the conformationally rigid nature

Figure 7. Parity plots evaluating the Allegro model’s accuracy (rcutoff = 6.0 Å) in estimating the lattice energies of molecular crystal structures of 3-
oxabicyclo(3.2.0)hepta-1,4-diene. The y-axis, labeled “Lattice Energy (Allegro GTO PBE-D3BJ)”, represents lattice energies calculated from crystal
structures’ absolute energies as predicted by the Allegro model, which was trained using GTO PBE-D3BJ molecular cluster data. The x-axis, labeled
“Lattice Energy (PW PBE-D3BJ)”, corresponds to values derived using the periodic PBE-D3BJ functional. Subfigure (a) illustrates the correlation
between PW DFT and Allegro computed lattice energies, highlighted by the best-fit line in red. Subfigure (b) shows the density distribution of the
data points, with a notable concentration near the identity line, indicating close agreement for the majority of data points.

Figure 8. Parity plots evaluating the Allegro model’s accuracy (rcutoff = 6.0 Å) in estimating the lattice energies of molecular crystal structures of
hydantoin. The y-axis, labeled “Lattice Energy (Allegro GTO PBE-D3BJ)”, represents lattice energies calculated from crystal structures’ absolute
energies as predicted by the Allegro model, which was trained using GTO PBE-D3BJ molecular cluster data. The x-axis, labeled “Lattice Energy
(PW PBE-D3BJ)”, corresponds to values derived using the periodic PBE-D3BJ functional. Subfigure (a) illustrates the correlation between PW
DFT and Allegro computed lattice energies, highlighted by the best-fit line in red. Subfigure (b) shows the density distribution of the data points,
with a notable concentration near the identity line, indicating close agreement for the majority of data points.
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of these molecules. These data set sizes are comparable to
those utilized in constructing the autoPES potentials for these
molecules, demonstrating the data efficiency of the equivariant
neural network approach.44 Following the methodology
described in Section 2.2, we then generated crystal structures,
with four and eight molecules per unit cell for 3-
oxabicyclo[3.2.0]hepta-1,4-diene and hydantoin, respectively.
For the 3-oxabicyclo[3.2.0]hepta-1,4-diene clusters, we

opted for a more compact Allegro model architecture,
incorporating two layers, to align with the data set’s
comparatively smaller size. This model effectively predicted
the crystal structure lattice energies, achieving a low error
margin of just 0.9 kJ mol−1 alongside a robust correlation
coefficient (r2) of 0.95 (Figure 7). Given the smaller
magnitude and range of lattice energies observed for this
molecule, relative to the tetramine, maintaining a minimal
MAD is crucial for accurately differentiating between different
crystal structures. For hydantoin, a deeper architecture
consisting of four layers was utilized to adequately learn the
wider variety of hydrogen bonding interactions between the
molecules. The lattice energy predictions from the ML model
demonstrated a high correlation (r2 = 0.93) with an MAD of
approximately 2 kJ mol−1 with respect to the PW DFT method
(Figure 8).
We seamlessly integrated the trained ML models with

USPEX to enhance our ability to efficiently search for low-
energy crystal structures, as detailed in Section 3.3. This
integration resulted in a denser population of crystal structures
in regions of low energy and high crystal density (Figure 9),
with some structures approaching the experimental structures
within 1 kJ mol−1, even using modest USPEX search criteria
(Section 2.2). Employing more stringent search parameters
(50 generations), although computationally demanding, ex-
plored a broader range of low-energy regions within the crystal
structure landscape. For hydantoin, the lowest-energy structure
obtained exhibited an rmsd15 of 0.52 Å compared to the
experimental structure (Figure 10), as calculated using the
Crystal Packing Similarity module in Mercury software. This
result demonstrates the effectiveness of our protocol in

correctly predicting the experimental crystal structure. In the
case of 3-oxabicyclo[3.2.0]hepta-1,4-diene, an extended
USPEX search did not initially yield a polymorph resembling
the experimental structure. However, when we provided the
experimental structure as a starting point to the USPEX search
algorithm, it was confirmed as the lowest-energy structure
(−53.04 kJ mol−1) within the search space. This validation
underscores the ML model’s ability to correctly rank the
relative energies of the discovered polymorphs, including the
experimental crystal structure. Given the inherent stochasticity
of the USPEX EA, further fine-tuning of search parameters
may be necessary for efficient identification of the experimental
crystal structure for 3-oxabicyclo[3.2.0]hepta-1,4-diene. Never-
theless, our Allegro ML models, being independent of the
specific search algorithm or package, can be readily integrated
with more advanced software for crystal structure exploration.

Figure 9. Crystal energy landscape of molecular crystal structures for (a) 3-oxabicyclo(3.2.0)hepta-1,4-diene, and (b) hydantoin, obtained using the
Allegro-enhanced USPEX protocol with the PBE-D3BJ functional as the target level of theory. The y-axis, labeled “Lattice Energy (Allegro GTO
PBE-D3BJ)”, represents lattice energies derived from the absolute energies of crystal structures as predicted by the ML model, employing eq 1. The
Allegro model’s training utilized energies and forces from the GTO PBE-D3BJ method on molecular cluster data.

Figure 10. Overlay of the experimental (element-specific colors) and
lowest-energy predicted (green) crystal structures for hydantoin. The
predicted structure, obtained using the Allegro model integrated with
the USPEX crystal structure search algorithm, exhibits an RMSD15 of
0.52 Å relative to the experimental structure.
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4. CONCLUSIONS
In this study, we demonstrated the applicability of an
equivariant neural network, Allegro, for predicting lattice
energies of molecular crystal structures�a novel endeavor
considering the model’s development without any a priori
knowledge of the crystal structures. The efficacy of Allegro was
not only showcased in bridging PW and GTO-based DFT
methods with ML but was also extended to higher levels of
theory, particularly B3LYP-D4 and DLPNO-MP2, for lattice
energy predictions. This marked a significant stride in
enhancing the model’s predictive accuracy, bringing it closer
to the sophistication required for real-world applications.
Through rigorous training on a carefully curated data set of
molecular clusters, calculated using GTO-based methods, we
accurately predicted the lattice energies of crystal structures,
involving the complex interplay of inter- and intramolecular
interactions. The significant correlation achieved between our
model predictions and plane-wave DFT lattice energies affirm
the robustness of our approach. Furthermore, our use of the Δ-
ML scheme to capture long-range interactions led to a notable
enhancement in predictive accuracy, aligning closely with the
lattice energy trends observed between GTO and PW
methods.
Our efforts resulted in the successful integration of the

Allegro model within the USPEX framework, advancing the
use of ML in CSP. By integrating Allegro with LAMMPS, we
leveraged the model’s predictive power to rapidly and
accurately calculate energies, thereby guiding the search for
low-energy crystal structures with improved efficiency and
precision. This approach ultimately facilitated convergence
toward the experimentally determined crystal structure. We
also show that although our proposed methodology was
demonstrated using DFT methods, our ML protocol is readily
adaptable to Post-Hartree−Fock methods as the target level of
theory, which promises greater predictive precision and
reliability. Looking ahead, our work sets the stage for
developing a sophisticated protocol based on equivariant
neural networks to facilitate relaxations of molecular crystal
structures during CSP, reducing our reliance on comparatively
rudimentary methods like force fields and semiempirical
approaches. Furthermore, we aim to evolve our approach by
creating neural networks capable of predicting higher-order
energy derivatives, which will enable us to calculate lattice free
energies, offering a more reliable metric for energy rankings of
crystal structures and enriching our understanding of their
stability under realistic conditions. Additionally, with the
advent of chemical foundation models, we anticipate achieving
heightened accuracy for CSP tasks while requiring minimal
training data for fine-tuning these models.103 Such an
integrated approach paves the way for transformative changes
in how computational chemists and materials scientists
approach the design and discovery of novel crystalline
materials.
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