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Abstract

Genetic surveillance of seasonal influenza is largely focused on sequencing of the haemagglutinin gene. Consequently, our

understanding of the contribution of the remaining seven gene segments to the evolution and epidemiological dynamics of

seasonal influenza is relatively limited. The increased availability of next-generation sequencing technologies allows rapid

and economic whole-genome sequencing (WGS) of influenza virus. Here, 150 influenza A(H3N2) positive clinical specimens

with linked epidemiological data, from the 2014/15 season in Scotland, were sequenced directly using both Sanger

sequencing of the HA1 region and WGS using the Illumina MiSeq platform. Sequences generated by the two methods were

highly correlated, and WGS provided on average >90%whole genome coverage. As reported in other European countries

during 2014/15, all strains belonged to genetic group 3C, with subgroup 3C.2a predominating. Multiple inter-subgroup

reassortants were identified, including three 3C.3 viruses descended from a single reassortment event, which had persisted

in the population. Cases of severe acute respiratory illness were significantly clustered on phylogenies of multiple gene

segments indicating potential genetic factors warranting further investigation. Severe cases were also more likely to be

associated with reassortant viruses and to occur later in the season. These results suggest that WGS provides an

opportunity to develop our understanding of the relationship between the influenza genome and disease severity and the

epidemiological consequences of within-subtype reassortment. Therefore, increased levels of WGS, linked to clinical and

epidemiological data, could improve influenza surveillance.

DATA SUMMARY

1. Influenza genome sequences have been uploaded to the

GISAID EpiFlu database (http://platform.gisaid.org). Acces-

sion numbers are listed in Table S1 (available in the online

version of this article). These sequences are also available in

fasta format on figshare: https://doi.org/10.6084/m9.fig-

share.5687284.

2. Tree files containing the maximum clade credibility phy-

logenetic trees plotted in Figs 1, 3 and 4 are provided in the

following figshare fileset: https://doi.org/10.6084/m9.fig-

share.5433313.

3. Sample metadata consisting of GISAID ID, strain names,
sample ID, date of sampling, week of sampling, Health
Board, patient age, SARI status, sentinel surveillance status,
reassortant status and the inferred genetic lineage of each
gene segment as represented in Fig. 3 are available on fig-
share: https://doi.org/10.6084/m9.figshare.5427001.

INTRODUCTION

Influenza viruses are a major cause of human morbidity and
mortality worldwide, causing an estimated 250 000–500 000
deaths each year [1]. Influenza A virus (IAV) is an RNA
virus, consisting of eight gene segments: RNA polymerase
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subunits polymerase basic 2 (PB2), polymerase basic 1
(PB1) and polymerase acidic (PA), haemagglutinin (HA),
nucleoprotein (NP), neuraminidase (NA), matrix (M) and
non-structural protein (NS). Classification of IAVs into sub-
types is based on the combination of HA and NA they
possess. IAVs evolve rapidly by both mutation and reassort-
ment. Mutations conferring incremental selective advan-
tages result in the characteristic rapid antigenic drift of
IAVs, while the segmented nature of the genome allows
genomic reassortment when a cell is coinfected by two or
more strains. Inter-subtype reassortment occasionally gives
rise to viruses with pandemic potential [2], the most recent
of which emerged in 2009 [3]. Intra-subtype reassortment is
likely to occur much more frequently and play an important
role in increasing viral genetic diversity and adaptive poten-
tial [4].

Surveillance is required to ensure that vaccine components
reflect the antigenic characteristics of circulating IAV
strains [2]. The HA is the primary antigenic determinant
and consequently the chief focus of genetic surveillance,
with influenza viruses routinely characterized into genetic
groups based on amino acid residues of the HA protein,
as defined by the European Centre for Disease Prevention
and Control (ECDC) [5]. Consequently, there is relatively
little sequence data available for the remaining seven
segments.

The West of Scotland Specialist Virology Centre (WoSSVC)
is the Scottish influenza reference laboratory and is respon-
sible for characterizing several hundred IAV-positive clini-
cal specimens each year. Current characterization of IAVs
by the WoSSVC is based on Sanger sequencing of the HA1
region of the HA gene. Next-generation sequencing (NGS)
technology allows whole-genome sequencing (WGS) of
IAVs in a single reaction, permitting rapid and economical
sequencing with the potential for high throughput. In addi-
tion to viral characterization, WGS enables the detection of
reassortment events and antiviral resistance mutations any-
where in the genome.

The 2014/15 influenza season in Scotland was dominated by
influenza A(H3N2) [6], consistent with observations
throughout the rest of the northern hemisphere that season
[7]. All circulating influenza A(H3N2) viruses belonged to
genetic group 3C; however, multiple lineages co-circulated
throughout the season, with viruses of genetic subgroup
3C.2a predominating [7]. The majority of A(H3N2) viruses
characterized were antigenically dissimilar to the A/Texas/
50/2012-like vaccine virus (genetic group 3C.1), which may
have contributed to the unusually high excess mortality
observed during the 2014/15 influenza season [8].

The aim of this study was to assess the benefits of WGS
over current Sanger sequencing methods for IAV surveil-
lance and whether WGS can provide a greater understand-
ing of the evolutionary and epidemiological dynamics of
seasonal influenza. To this end, 150 influenza A(H3N2)
positive clinical specimens from the 2014/15 influenza

season in Scotland were sequenced using both methods.
Genetic data and linked patient data were analysed to inves-
tigate rates of reassortment and potential associations
between disease severity and phylogenies of each segment,
reassortment status, and other patient details including
location and age.

METHODS

Samples

All 150 samples were influenza A(H3N2) positive clinical

specimens submitted to the WoSSVC for routine influenza

characterization. Inclusion criteria for the study were all

samples collected between 1 August 2014 and 31 May 2015

which had previously been genetically characterized using

Sanger sequencing, providing enough material was avail-

able. Samples were received from 11 Health Boards

throughout Scotland and included throat swabs (n=85),

combined nose and throat swabs (n=15), gargle (n=14),

nasopharyngeal aspirate (n=11), sputum (n=6), nasal swabs

(n=5), tracheal aspirate (n=2), bronchoalveolar lavage (n=1)

and non-classified respiratory specimens (n=11). The sam-

ples selected for Sanger sequencing at WoSSVC included a

selection of sentinel surveillance samples collected from

general practice surgeries (n=16), samples from patients

with severe acute respiratory illness (SARI), as defined by

Health Protection Scotland (n=22), and 112 other clinical

cases.

IMPACT STATEMENT

Each year, seasonal influenza infects up to 20% of the

human population, and evolving viral properties necessi-

tate a global surveillance programme. The influenza

genome consists of eight gene segments, which allows

reassortment of viruses when cells are coinfected.

Genetic surveillance is primarily focused towards the

haemagglutinin gene, which encodes the principal target

protein of the immune response. Consequently, relatively

little is understood about the contributions of the other

seven gene segments and reassortment to viral evolu-

tion, epidemiology and clinical outcomes. We demon-

strate that whole-genome sequencing of influenza virus

can be performed economically directly from clinical

specimens and explore potential benefits over traditional

sequencing regimes focused on haemagglutinin. Multiple

reassortment events between genetic groups were iden-

tified, and we also observed a significant association

between the most severe cases of respiratory illness and

infection by these reassortant viruses. Furthermore, this

work provides a useful framework for how whole-

genome sequence data could be studied in combination

with epidemiological data to aid surveillance of seasonal

influenza.
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RNA isolation

Nucleic acid was extracted directly from clinical samples
using automated extraction methods. Swabs, gargles and
nasopharyngeal aspirates were extracted using the BioRobot
MDx (Qiagen) and sputum, tracheal aspirates and bron-
choalveolar lavage were extracted using the NucliSENS
easyMAG (bioM�erieux). The same aliquot of extracted
RNA was used for both Sanger sequencing and NGS.

Sequencing of influenza viruses

Sanger sequencing was performed as previously described
[9]. To prepare samples for NGS, RNA was reverse tran-
scribed and the entire genome of influenza was amplified in
a single RT-PCR reaction using the Uni/Inf primer set, as
described by Zhou et al. [10]. Amplification was performed
in 50 µl reactions containing 10 µl sterile water, 25 µl 2�
RT-PCR buffer, 0.8 µl Uni12/Inf1 (10 µM), 1.2 µl Uni12/
Inf3 (10 µM), 2 µl Uni13/Inf1 (10 µM), 1 µl SuperScript III
Platinum Taq High Fidelity DNA Polymerase (Invitrogen)
and 10 µl RNA. Thermocycling conditions were as follows:
42

�
C for 60min, 94

�
C for 2min; 5 cycles (94

�
C for 30 s,

44
�
C for 30 s and 68

�
C for 3min) followed by 31 cycles

(94
�
C for 30 s, 57

�
C for 30 s and 68

�
C for 3min), with a

final extension step at 68
�
C for 5min. DNA was diluted to a

concentration of 175 ng in a volume of 50 µl and sheared
acoustically using a Covaris S220 sonicator. NGS was per-
formed on the Illumina MiSeq as previously described by
Wilkie et al. [11], with the following modifications: DNA
was purified using 0.9 volumes of AMPure XP beads;
adapter-ligated DNA was amplified using six PCR cycles,
and libraries were sequenced as 150 bp paired-end reads.

Bioinformatics

Illumina adapter sequences were removed from the data,
and paired-end reads were trimmed using a Phred score of
30 and to a minimum length of 50 bp using Trim Galore!
(http://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/). Filtered reads were mapped to individual seg-
ments using the reference sequence A/Switzerland/
9715293/2013. Two reference-mapping software packages
were employed: Tanoti (http://www.bioinformatics.cvr.ac.
uk/tanoti.php) and Bowtie2 (http://bowtie-bio.sourceforge.
net/bowtie2/index.shtml); default settings were used for
both packages. Files were converted to BAM format using
SAMtools (http://samtools.sourceforge.net/), and consensus
sequences were obtained using DiversiTools (http://joseph-
hughes.github.io/DiversiTools/) using a majority rule and a
minimum depth of one. Genome coverage and mean depth
were greater using Tanoti; hence, all further analyses were
performed using consensus sequences obtained using this
tool. Consensus sequences have been uploaded to GISAID
(http://platform.gisaid.org). Accession numbers are listed
in Table S1.

Phylogenetic analysis

Consensus nucleotide sequences were aligned using MUSCLE

[12]. Viruses were characterized into A(H3N2) genetic
groups (subdivisions/subgroups) based on amino acid

residues of the HA protein [5]. Time-resolved phylogenetic
trees were reconstructed using BEAST v1.8.2 [13]. The gen-
eral time reversible model with a proportion of invariant
sites and a gamma distribution describing among-site rate
variation with four categories estimated from the data
(GTR +I+G4) was identified as the best model of nucleotide
substitution through comparison of Bayes factors [14].
Bayes factor analysis also determined that a relaxed (uncor-
related) molecular clock model [15], with branch rates
drawn from a lognormal distribution, and a minimally con-
strained Bayesian skyline demographic model [16] should
be used. Chains were run until convergence as identified
using Tracer v1.6.0 (available from http://tree.bio.ed.ac.uk/
software/tracer/), and, after removing 10% of trees as burn-
in, a sample of posterior trees was analysed using TreeAn-
notator v1.8.2 (available from http://beast.community/) to
identify the maximum clade credibility (MCC) tree. The
support for each node in the MCC tree is reflected by an
associated posterior probability. Phylogenetic trees were
visualised using the ggtree R package [17].

The positions of viruses of each genetic group were com-
pared on phylogenies of each segment. Inconsistent posi-
tioning of single viruses, or groups of viruses, on these
phylogenies was used to identify inter-subgroup reassor-
tants. In addition to inconsistent positioning on MCC trees,
posterior probabilities indicating high support for key nodes
supporting inter-subgroup reassortment were required, to
account for phylogenetic uncertainty. The rate of reassort-
ment was estimated by dividing the number of reassortment
events by the total number of viruses. Phylogenetic mapping
of reassortants was also performed computationally using
the Graph-incompatibility-based Reassortment Finder
(GiRaF) software v1.02 [18]. Posterior samples of phyloge-
nies generated for each segment using BEAST were thinned
(downsampled) to 1000 trees and analysed to identify both
inter- and intra-subgroup reassortment events. In principle,
every reassortment event must split all eight segments into
two subsets (retained and acquired segments); for some
reassortment events the phylogenetic signal may be too
weak for some segments to be assigned to one of the two
reassorting sets of segments. Following the advice of the
authors of the GiRaF software, a threshold of three pairwise
comparisons resulting in at least four segments being
placed confidently into either group was required. A confi-
dence level of >0.95 was required for each pairwise compari-
son between segments that contributed to the detection of a
reassortment event.

Bayesian Tip-association Significance (BaTS) analysis [19]
was used to detect significant phylogeny-trait correlations,
testing the null hypothesis that there is no correlation
between phylogeny and trait. Each gene segment was tested
for a phylogenetic association with severity of infection
(classified into SARI and non-SARI), patient age (catego-
rized into <1 year, 1–5 years, 6–15 years, 16–64 years
and �65 years), location by Health Board and genetic sub-
group. The association index (AI) was calculated for each
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tree in a posterior sample generated by BEAST (after
excluding the first 10% of tree states as burn-in) and com-
pared with a null distribution generated by random reas-
signment of traits to tips of the phylogeny performed 5000
times. The AI ratio was calculated by dividing the observed
AI by the null AI.

Logistic regression

Predictors of severe infection (defined by classification of a
SARI case) were investigated by logistic regression using R
v3.3.2 [20]. Sentinel surveillance samples were excluded
from this analysis; the remaining 134 samples included 22
SARI cases. Patient age measured in years, location by
Health Board, the week of sampling, genetic subgroup and
whether the virus was classified as a reassortant were tested
as explanatory variables. To identify the best combination
of explanatory variables, models were compared using
Akaike information criterion (AIC) and likelihood ratio
tests (LRT).

RESULTS

Next-generation sequencing of influenza A(H3N2)
directly from clinical specimens

The mean coverage across the entire influenza A(H3N2)
genome was 91%. Of the 150 viruses sequenced, complete
genome coverage was achieved for 71 viruses and genome
coverage of >90% was generated for 100 viruses. Complete
segment coverage was achieved for the two smallest seg-
ments, NS and M, in all 150 viruses. Segment coverage gen-
erally declined as the size of the segment increased;
however, average segment coverage of �80% was achieved
for all segments (Table 1).

Using NGS, the mean coverage of the HA gene was 1646
nucleotides, compared with an average length of 551
nucleotides when the HA1 region was sequenced using the
Sanger method. When sequences generated from Sanger
and NGS were compared, >93% of the viral sequences had
�2 amino acid differences in HA1, demonstrating a good
correlation in the sequences obtained using the two meth-
ods (full details of the number of discrepancies between
Sanger and NGS at both nucleotide and amino acid levels
are given in Table S2).

Influenza A(H3N2) characterization, epidemiology
and resistance using NGS data

Full segment coverage of HA was achieved for 90% of sam-
ples using NGS, and sufficient sequence data was available
to characterize all 150 samples into genetic groups accord-
ing to ECDC guidelines [5]. All viruses belonged to genetic
group 3C, of which 107 viruses (71%) fell into genetic sub-
group 3C.2a; five (3%) into subdivision 3C.3; six (4%) into
subgroup 3C.3a; and 32 (21%) within subgroup 3C.3b.
Nodes defining these four genetic groups on the HA phylog-
eny were associated with posterior probabilities exceeding
0.99, indicating strong support for the phylogenetic distinc-
tiveness of each (Fig. 1). As expected given the relatively
small number of genetic differences in sequences obtained
using NGS and Sanger sequencing, HA trees reconstructed
using each method were broadly similar in topology,
although a higher number of internal nodes were well sup-
ported (posterior probability >0.9) in the NGS HA tree (38
nodes) compared with the Sanger tree (24 nodes), indicating
greater resolution when using NGS data.

Viruses of each genetic group did not appear to cluster geo-
graphically or in time during the 10-month study period
(Fig. 2), indicating co-circulation of distinct A(H3N2) line-
ages throughout the 2014/15 influenza season. While several
A(H3N2) lineages did co-circulate, viruses of subgroup
3C.2a predominated both across the season as a whole and
in each week during the peak of the epidemic season
(Fig. 2a).

WGS enabled the presence or absence of drug resistance
mutations in both the NA and the matrix 2 (M2) proteins
to be determined. The S31N mutation in the M2 protein,
which confers amantadine resistance, was present in all 150
viruses, consistent with previous studies [21]. Substitutions
in NA resulting in resistance to neuraminidase inhibitors,
E119V, D151E, I222V, R224K, E276D, R292K and R371K
[22], were not detected (n=147).

Analysis of whole-genome sequence data and
identification of reassortments

The sequences of all eight segments were concatenated to
produce a single sequence for each virus and a whole-
genome phylogenetic tree was reconstructed. The

Table 1. Nucleotide coverage and depth of gene segments (n=150) of influenza A(H3N2) using NGS

Segment Size (nucleotides) Mean coverage Mean depth Number of samples with 100% segment coverage

PB2 2280 80% 1722 82

PB1 2274 83% 1047 74

PA 2151 89% 2226 105

HA 1701 96% 2108 135

NP 1497 94% 1844 126

NA 1410 98% 2303 142

M 982 100% 16 308 150

NS 838 100% 16 712 150

Whole genome 13 133 91% 3861 71
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concatenated genomes revealed a topology which was gen-
erally consistent with that of the phylogenetic tree generated
using the HA gene only, with posterior probabilities of 1.00
on the nodes defining each of the four clades corresponding
to genetic subgroups 3C.2a, 3C.3, 3C.3a and 3C.3b (Fig. 3).
The relatedness of genetic subgroup 3C.3a to the other

clades is resolved in the full genome phylogeny (posterior
probability=0.99) in contrast to the HA phylogeny (poste-
rior probability=0.52, Fig. 1). Furthermore, a higher number
of internal nodes possess posterior probabilities exceeding
0.9 (83 nodes), indicating greater phylogenetic resolution as
a result of WGS. The full genome phylogeny also suggested

Fig. 1. Phylogenetic tree of the haemagglutinin gene of influenza A(H3N2) viruses obtained from the 2014/15 influenza season. The

MCC, time-resolved phylogeny for consensus sequences of the HA gene obtained using NGS. Genetic group is indicated by colour

as follows: 3C.2a in blue, 3C.3 in orange, 3C.3a in pink and 3C.3b in green. Posterior probabilities associated with the nodes defining

each of the four genetic groups were >0.99 (n=150).
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the presence of some reassortant viruses, and to determine
the evolutionary relationships between gene segments, eight
individual phylogenetic trees were generated (Fig. 4). The
position of viruses of each genetic group were compared on
these phylogenies to identify inconsistencies arising from
inter-subgroup reassortment.

Generally, viruses belonging to the same genetic group, as
characterized by HA sequence, also clustered together on
phylogenies generated from each of the remaining seven
gene segments. This suggests an absence of reassortment in
the recent evolutionary history of the majority of viruses.
However, 13 viruses were identified to be inter-subgroup
reassortants (marked with triangles in Figs 3 and 4). A sche-
matic representation of the position in the phylogenies of

each of the eight gene segments is shown alongside the full
genome tree. Ten of the 13 inter-subgroup reassortants
were identified as descending from reassortment events
leading to individual viruses in this study. The remaining
three inter-subgroup reassortants, characterized as genetic
subdivision 3C.3, were inferred to descend from a further
inter-subgroup reassortment event. With these 11 reassort-
ment events, the rate of inter-subgroup reassortment is esti-
mated to be 7.3%.

Eight of these reassortment events were also detected using
GiRaF, an automated reassortment detection tool (the rate
of inter-subgroup reassortment is reduced to 5.3% if only
these events are considered). Of the remaining three reas-
sortment events (samples 17, 118 and 150), samples 17 and
118 were identified by GiRaF but below the detection
threshold chosen. Sample 118 was identified in one pairwise
comparison as a single reassortant virus by GiRaF and twice
as part of a reassortant clade, while sample 17 was identified
once as a single reassortant and once as part of a reassortant
clade. Uncertainty in the position of a virus on phylogenies
of some segments may hinder detection by GiRaF by erod-
ing confidence in inconsistencies; however, it may still be
possible to identify inter-subgroup reassortants as the
boundaries between genetic subgroups are identifiable.
Viruses placed confidently within clades corresponding to a
particular genetic subgroup on phylogenies of some seg-
ments and outside such clades on phylogenies of other seg-
ments can be considered inter-subgroup reassortments. For
example, sample 150 is placed confidently in the 3C.3 sub-
division on the HA tree (Fig. 1, posterior probability >0.99);
however, in each of the other segment phylogenies it falls
among 3C.2a viruses, and when the whole genome is con-
sidered it is placed among 3C.2a viruses with very high con-
fidence (Fig. 3, posterior probability=1). Together, these
posterior probabilities indicate support for inter-subgroup
reassortment status. The GiRaF analysis additionally identi-
fied two intra-subgroup reassortment events in branches
leading to two 3C.2a viruses and 18 3C.3b viruses,
respectively. If all ten reassortment events identified using
GiRaF (eight inter-subgroup and two intra-subgroup) are
considered, the overall rate of reassortment is estimated to
be 6.7%.

The group of three reassortant viruses belonging to genetic
subdivision 3C.3 formed a distinct clade in each of the indi-
vidual segment phylogenies; however, the position of this
clade in the overall topology varied. In seven of the eight
segment trees, these viruses were placed either outside the
clades of other subgroups or within the 3C.3b clade; how-
ever, in the M segment tree, the 3C.3 viruses cluster within
the 3C.2a viruses (posterior probability >0.99) (Fig. 4). The
M segments of these 3C.3 viruses were on average 10 and 14
nucleotides divergent from the M sequences of viruses
belonging to genetic subgroups 3C.3a and 3C.3b, respec-
tively, and differed by only four nucleotides on average
from the M segment of 3C.2a viruses. The three clinical
samples harbouring these viruses were collected between

Fig. 2. Circulation of influenza A(H3N2) viruses throughout the 2014/

15 influenza season. (a) The number and genetic group of viruses

received each week throughout the study period (n=150). (b) Health

Board from which the samples were collected. Genetic groups are

indicated by colour (3C.2a in blue, 3C.3 in orange, 3C.3a in pink and

3C.3b in green). AA, Ayrshire and Arran; BR, Borders; DG, Dumfries and

Galloway; FF, Fife; FV, Forth Valley; GGC, Greater Glasgow and Clyde;

GR, Grampian; HG, Highlands; LN, Lanarkshire; LO, Lothian; TA, Tay-

side. Each asterisk in (a) and (b) represents a case of SARI.
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November 2014 and April 2015, demonstrating that this
reassortant genotype has persisted in the population. To
compare these 3C.3 viruses detected in Scotland with those
observed in the rest of the United Kingdom, all UK whole-

genome sequences from the 2014/15 influenza season avail-
able on GISAID (www.gisaid.org) were characterized
genetically (n=171). Six of these viruses belonged to genetic
subdivision 3C.3. Consistent with the pattern observed in

Fig. 3. Phylogenetic tree of concatenated segments of influenza A(H3N2) viruses from the 2014/15 influenza season and schematic

showing individual gene segment lineages. The MCC, time-resolved phylogenetic tree was reconstructed for the whole genome of influ-

enza A(H3N2) by concatenating all eight segments (n=150). Tips are coloured by genetic group (as characterized by HA sequence)

as follows: 3C.2a in blue, 3C.3 in orange, 3C.3a in pink and 3C.3b in green; triangles mark those identified as inter-subgroup reassor-

tants (n=13). Sample numbers for these reassortants are also indicated; the three remaining unnumbered reassorted viruses make up

the 3C.3 clade. Posterior probabilities associated with the nodes defining each of the four genetic groups were 1.00. Each asterisk rep-

resents a case of SARI. To the right, a schematic representation of viral clustering of each gene segment is shown. Where samples

could not be confidently assigned to a genetic group phylogenetically for a particular segment, cells are coloured grey.

Goldstein et al., Microbial Genomics 2017;4
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the Scottish sequences, the M segment of these six viruses
clustered amongst viruses characterized as genetic subgroup
3C.2a (data not shown).

Analysis of virus phylogeny and trait correlations

To investigate predictors of a severe outcome in IAV infec-
tion, a logistic regression analysis was performed to analyse
association between SARI cases and patient age, location,
week of sampling, genetic subgroup and whether the virus
was classified as reassortant. Week of sampling was found
to be significantly correlated with severity of infection (LRT,
�
2=62.2, df=1, P<1�10�10), with SARI cases more likely to

occur later in the season (as seen in Fig. 2a). Severe cases
were also found to be more likely to occur when patients

were infected by a reassortant virus [LRT, �2=4.9, df=1,
P<0.05 for inter-subgroup reassortants (n=13) and �

2=6.1,
df=1, P<0.05 for reassortant viruses identified using GiRaF
(n=30)]. The odds ratio for the association between inter-
subgroup reassortants and SARI cases was calculated as 4.4
(95% confidence interval: 1.3–15.5), or 3.6 (1.3–9.7) when
reassortants identified using GiRaF were considered. Model
selection indicated that including reassortants identified
using GiRaF in addition to week resulted in an improved
model (�2=5.16, df=1, P<0.05); however, including inter-
subgroup reassortment status in addition to week did
not (LRT, �

2=0.7, df=1, P>0.4). Further investigation
showed that week of sampling was also correlated with
inter-subgroup reassortment status (LRT, �

2=7.3, df=1,
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Fig. 4. Phylogenetic trees of the eight individual gene segments of influenza A(H3N2) viruses from the 2014/15 influenza season. The

MCC, time-resolved phylogenetic trees for consensus sequences of each segment obtained using NGS (n=150). Genetic groups are indi-

cated on the tree by colour (3C.2a in blue, 3C.3 in orange, 3C.3a in pink and 3C.3b in green). The positions of novel inter-subgroup reas-

sortant viruses in each phylogeny are indicated by triangles and are identifiable by sample number; the three remaining unnumbered

reassorted viruses belong to the 3C.3 clade. Highly supported internal nodes of each phylogeny (posterior probability >0.9) are indi-

cated by filled diamonds.
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P<0.01); therefore, these could be confounding variables.
No other explanatory variables tested (patient age, location
or genetic subgroup) were found to be significant
(Table S3).

BaTS analysis was used to test for a phylogenetic association
with severity of infection, patient age, location and genetic
group. Severity of infection was found to be strongly associ-
ated with the NP phylogeny (AI ratio=0.76, P<0.01), and
slightly weaker correlations with the M, HA and NA phy-
logenies were also identified (P<0.05). Patient age was also
found to be clustered to a greater degree on the NP gene
phylogeny than expected by chance (AI ratio=0.90, P<0.05).
Location and genetic group were strongly associated with
phylogeny for all eight gene segments (P<1�10�10). These
correlations indicate strong geographic clustering not
apparent at the resolution of genetic subgroup (Fig. 2b) and
that, as expected, viruses of the same genetic group (charac-
terized by HA) tend to also have more similar sequences in
other segments. BaTS analysis results are shown in full in
Table S4.

DISCUSSION

The increased availability, and decreased costs and turn-
around times, both for sequencing and data analysis, of
NGS is revolutionizing microbiology. While Sanger
sequencing of the HA1 region remains the predominant
method used for IAV characterization globally, this study
demonstrates the applicability of NGS technology for influ-
enza surveillance, allowing WGS directly from clinical
specimens. The benefits of WGS over existing Sanger
sequencing protocols for IAV surveillance include: (1)
greater resolution for genetic characterization of IAV; (2)
the level of drug resistance mutations in the NA and M seg-
ments can be evaluated; (3) reassortment events can be
detected and analysed; and (4) mutations in any region of
the genome not yet understood to be important (e.g. viru-
lence factors) are available for retrospective analysis. Such
retrospective analysis of mutations in any region of the
genome other than HA1 is not available using current sur-
veillance methods.

We demonstrated effective WGS direct from clinical speci-
mens using only one nucleic acid extraction, one RT-PCR
and one NGS reaction. Many previous studies have propa-
gated patient isolates in cell culture prior to sequence analy-
sis [23]; however, the results presented herein suggest that
this additional step is unnecessary. In addition to the
reduced time and costs involved, direct sequencing methods
allow for analysis of non-culturable strains and avoid
unwanted mutations that have been shown to occur during
viral propagation [23–25].

Using NGS, complete coverage of the HA gene was achieved
for 90% of samples and was adequate to allow characteriza-
tion of 100% of samples into genetic groups. When
sequence data from Sanger and NGS were compared, high
amino acid sequence homology was observed, providing
further confidence that NGS could replace Sanger

sequencing for routine influenza surveillance. Since 2016,
ECDC guidelines have included HA2 residues for genetic
characterization of both influenza A(H3N2) and A(H1N1)
pdm09 [5]. This means additional Sanger sequencing reac-
tions are required, increasing time and costs, whereas
data for these HA2 residues are routinely available with
WGS, strengthening the case for NGS further.

The data presented reveal spatiotemporal co-circulation of
distinct viral lineages, supporting previous data suggesting
that co-circulation of different A(H3N2) subgroups is com-
mon during epidemics of seasonal influenza [26–29]. This
co-circulation facilitated inter-subgroup reassortment, esti-
mated to occur at a rate of 5.3–7.3% among the viruses
studied. This is consistent with previous data suggesting
that multiple reassortment events occur during an influenza
season [28–31]; reported rates of within-subtype reassort-
ment in seasonal A(H3N2) have ranged from 3 to 70% [29,
31]. The level of inter-subgroup reassortment has been sug-
gested to be an underestimate of true reassortment, as there
may be undetected reassortment of segments between
highly homogenous viruses of individual subgroups [32].
This was demonstrated here by the detection of additional
intra-subgroup reassortments using computational detec-
tion methods. The 3C.3 lineage also demonstrates that
inter-subgroup reassortment events can persist in the popu-
lation and spread geographically. A total of nine viruses
characterized as genetic subdivision 3C.3 (excluding novel
reassortments) were observed (three and six from the Scot-
tish and UK datasets, respectively) in 2014/15. In all of these
viruses, the M segment clustered with viruses from genetic
subgroup 3C.2a.

Persistence of intra-subtype reassortants has been demon-
strated previously [33]. The factors associated with such
persistence at a population level require further investiga-
tion; however, intra-subtype reassortment has been shown
to temporarily raise the amino acid substitution rates con-
tributing to an increased adaptive potential [34]. Specific
examples of adaptive intra-subtype reassortment include a
reassortment event between two antigenically distinct A
(H3N2) lineages in 2003 that caused a major change in anti-
genic phenotype reducing vaccine effectiveness [26], and
reassortment within A(H3N2) which has also led to the
global rise and spread of resistance to adamantane drugs
[35]. Increased WGS over consecutive influenza seasons
would allow for an increased understanding of the fre-
quency and timing of such intra-subtype reassortment and
the contribution to the evolutionary dynamics of seasonal
influenza.

Logistic regression analysis indicated that infection with
a reassortant virus may be a risk factor for a severe outcome.
It is possible that novel combinations of amino acids intro-
duced by reassortment disrupt inter-gene co-adaptations,
resulting in deviations from normal replication rates and
virulence levels. With more data from WGS attached to
patient information, this association could be investigated
further. Both inter-subgroup reassortants and SARI cases
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were found to be more likely to occur later in the influenza
season. It is possible that these correlations could result
from a bias away from sampling milder cases later in the
season. However, the distinct tendency for severe cases to
occur later suggests that increased surveillance later in the
season may be required to better understand the risk factors
associated with disease severity. While the majority of A
(H3N2) viruses circulating during the 2014/15 season were
antigenically dissimilar to the vaccine virus [7], logistic
regression did not show any relationship between genetic
subgroup and the likelihood of a severe outcome. Therefore,
there was no indication that subgroups varied in severity as
a result of differing antigenic novelty. In future studies inte-
grating sequence and patient data, it would be desirable to
include patient vaccination history in order to further inves-
tigate the relationship between virus sequence, antigenic
novelty and outcome of infection.

There are currently limited data in the literature regarding
risk factors associated with disease severity [36]. Broberg
et al. [37] recently recommended influenza sequence data to
be reported along with epidemiological data to allow for
greater definition of factors which may increase the risk of
severe influenza. BaTS analysis identified a significant asso-
ciation between phylogenies generated from the NP, M, HA
and NA gene segments and severe disease, with a particu-
larly strong signal for NP. While these results should be
interpreted with caution, they demonstrate the potential
power of WGS coupled with linked epidemiological data.
With more data, these correlations could be explored fur-
ther to identify particular mutations in these genes which
may be related to virulence.

In summary, this study demonstrates the benefit of NGS
technology to provide whole-genome sequence data for sur-
veillance of seasonal influenza viruses. The results of both
the logistic regression and BaTS analysis emphasize that
WGS coupled to linked patient data could be an important
tool for developing our understanding of the relationship
between the influenza genome and disease severity. More
generally, WGS provides the opportunity to further investi-
gate the epidemiological consequences of within-subtype
reassortment and both the intra- and inter-season evolu-
tionary dynamics of seasonal IAV at the whole-genome
level.
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