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Abstract: Transcription factors (TFs) and their complex interplay are essential for directing spe-
cific genetic programs, such as responses to environmental stresses, tissue development, or cell
differentiation by regulating gene expression. Knowledge regarding TF–TF cooperations could
be promising in gaining insight into the developmental switches between the cultivars of Bras-
sica napus L., namely Zhongshuang11 (ZS11), a double-low accession with high-oil- content, and
Zhongyou821 (ZY821), a double-high accession with low-oil-content. In this regard, we analysed
a time series RNA-seq data set of seed tissue from both of the cultivars by mainly focusing on the
monotonically expressed genes (MEGs). The consideration of the MEGs enables the capturing of
multi-stage progression processes that are orchestrated by the cooperative TFs and, thus, facilitates
the understanding of the molecular mechanisms determining seed oil content. Our findings show
that TF families, such as NAC, MYB, DOF, GATA, and HD-ZIP are highly involved in the seed
developmental process. Particularly, their preferential partner choices as well as changes in their
gene expression profiles seem to be strongly associated with the differentiation of the oil content
between the two cultivars. These findings are essential in enhancing our understanding of the genetic
programs in both cultivars and developing novel hypotheses for further experimental studies.

Keywords: Brassica napus; MEGs; seed oil content; oil synthesis; transcription factor cooperation

1. Introduction

Oil crops have been gaining great economic importance in agriculture as well as in the
trade world during the past years [1,2], and the consumption of vegetable oil is anticipated
to double by the year 2030 [3]. Brassica napus L. (rapeseed or canola) is the third largest
source of oilseed crop, which is widely cultivated across the globe [4–6]. The seeds of
B. napus are rich in oil content and fatty acids, which include primarily oleic and linoleic
acid [7]. However, erucic acid and glucosinolates are anti-nutritive compounds that are
present in the B. napus seeds that are not desirable for human consumption or as fodder for
animal consumption [8,9]. Therefore, enhancing the seed quality with improved oil content
has become the major selective trait for rapeseed breeding programs due to the growing
global demand for oil production, for their use as bio-fuel, animal fodder, and vegetable
oil [10–12].

The seeds of B. napus are an excellent reservoir of triacylglycerol (TAG), the primary
storage form of oil that is essential for the seedling growth followed by seedling germi-
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nation [13–18]. Recent studies have proposed that the oil content of the seeds could be
enhanced by varying the expression levels of individual or a combination of genes en-
coding transcription factors/enzymes that are associated with TAG metabolism [14,19].
To this end, transcriptome studies have been extensively carried out in order to understand
the underlying molecular mechanism regulating the seed oil content of B. napus [20–23].
For this purpose, Xiao et al. [24] identified candidate genes that are involved in regulating
the oil content by combining genome-wide association studies and transcriptome analysis
in B. napus. They performed a comparison study between two extremely high-oil-content
lines and one extremely low-oil-content line and identified differentially expressed genes
(DEGs) between the lines, contributing to seed oil content. On the other hand, Qu et al. [25]
analysed the metabolic profiles of genes that are involved in the flavanoid synthesis in
both yellow- and black-seeded rapeseed accessions at the early, middle, and late stages
of seed development, and compared the transcriptional differences between them by
RNA-sequencing. Moreover, Niu et al. [26] performed pairwise comparisons and also
identified DEGs regulating seed size, colour, and oil content in Brassica rapa, by taking
the seven developmental stages of the seeds into account. In this regard, a recent study
conducted by Lu et al. [27] integrated genome-wide association studies and transcriptome
analyses, and mainly focused on the identification of DEGs that are related to environ-
mental adaptation, oil content, seed quality, and ecotype improvement for two cultivars of
B. napus: a double-low accession with high-oil-content and a double-high accession with
low-oil-content. Several of the aforementioned studies specifically focused on the Gene
Ontology (GO) categories and pathway enrichment anaylses based on the identified DEG
sets, while primarily investigating the biological functions of the DEGs regarding seed
oil content.

However, today it is well known that transcription factors (TFs) and their complex
interplay ccontrol gene expression. Until now, several studies showed that TFs in plants
are key regulatory elements controlling the expression of several genes, thereby regulating
a variety of essential biological processes, like growth, tissue development, differentiation,
metabolism, homeostasis, and adaptation to the environment [28–34]. Especially in terms
of developmental switches and specifying cellular fate in eukaryotes, the orchestration of
cell differentiation changes its direction, depending on the specific gene regulatory events
that are governed by TFs and their preferential partner choices (for a review see [35]).
Thus, the knowledge regarding TFs and their cooperations could provide new insight into
the genetic programs regulating various biological processes.

Despite the rich literature on TFs and their cooperations, today there is still a need to
unravel the complex interplay of transcription factors orchestrating the seed oil content
in B. napus. For this purpose, in this study we analysed a time series RNA-seq data set
of seed tissue of two B. napus cultivars: Zhongshuang11 (ZS11), a double-low accession
with high-oil- content and Zhongyou821 (ZY821), a double-high accession with low-oil-
content. Unlike the previous studies [24–27], we investigated the genes with monotonic
expression patterns, known as Monotonically Expressed Genes (MEGs), in order to capture
the multi-stage progression during seed development. The consideration of the MEGs
is promising for capturing the multi-stage progression processes that are directed by the
combinatorial interplay of the TFs [36] and, thus, facilitates the understanding of the
molecular mechanisms determining the seed oil content. We computationally identified
the interplay between the TFs for both cultivars in order to decipher the gene regulatory
mechanisms controlling the specific expression pattern of MEGs. Our results show that
a vast majority of the TFs are overlapping in both cultivars, while few TFs changes their
partners, which could be controlling the switches of developmental programs regarding
the oil content of both cultivars.
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2. Results and Discussion
2.1. Identification and Analysis of MEGs

Analysing the time series data set of B. napus seeds from the two cultivars ZS11 and
ZY821, we have obtained the MEGs for each cultivar, which are monotonically expressed
either in ascending or descending patterns during the seed development. Table 1 provides
the numbers of MEGs obtained for each cultivar and the obtained MEGs are listed in
Supplementary Table S1. Table 1 shows that there is a comparatively large number of
MEGs (both ascending and descending MEGs) for the ZS11 cultivar in comparison to these
of the ZY821 cultivar.

Table 1. Numbers of significant Monotonically Expressed Genes in ascending and descending order
for the seeds of two cultivars of B. napus namely ZS11 and ZY821.

ZS11 ZY821

Ascending Descending Ascending Descending

Genes 4310 2344 1734 1021

Further analysis of the MEGs reveals that, while the vast majority of MEGs are
primarily unique to a particular cultivar, only a small number of genes are overlapping
between the gene sets of ZS11 and ZY821 (see Figure 1).

Figure 1. Venn-diagram of the MEGs expressed in ascending and descending orders for the seeds of two cultivars ZS11 and
ZY821. (ZS11_Inc: Ascendings MEGs for ZS11; ZS11_Dec: Descending MEGs for ZS11; ZY821_Inc: Ascendings MEGs for
ZY821; ZY821_Dec: Descending MEGs for ZY821) (visualised with http://bioinformatics.psb.ugent.be/webtools/Venn/).

Moreover, we performed a gene set enrichment analysis [37] while using the MEGs to
obtain deeper insight into their crucial biological functions and clustered these functions
based on the GO terms.

The GO enrichment results regarding the MEGs of ZS11 cultivar revealed that the
ascending MEGs are significantly enriched mainly in the term “fatty acid metabolism”
(see Figure S1), which is highly associated with oil content. Other enriched GO terms,

http://bioinformatics.psb.ugent.be/webtools/Venn/
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including “sucrose biosynthetic process”, “glycerophospholipid synthetic process”, “sph-
ingolipid metabolic process”, and “galactose metabolic process” are greatly relevant to
fatty acid synthesis and accumulation processes. In contrast, for the descending MEGs of
the ZS11 cultivar (see Figure S2) , the GO term “protein phosphorylation” is significantly
enriched that represents particularly the inverse correlation of oil and protein levels [38]
in rapeseed. The GO terms indicate that the increasing pattern of MEGs in fatty acid
metabolism could contribute to seed oil content of the rapeseed in ZS11 cultivar.

On the other hand, the enrichment analysis of ascending MEGs that were obtained
for ZY821 cultivar showed that several significantly enriched GO terms are linked to
the “thiamine metabolism”, which is associated with the adaptation to biotic and abiotic
stress [39] (see Figure S3). Reversely, for the descending MEGs, GO terms that are related
to biological processes, such as “lipid metabolism”, “carbohydrate metabolism”, “GDP-
mannose metabolism”, and “sulphur compound metabolism” show that genes that are
involved in multiple metabolic processes are following the decreasing pattern in the seeds
of ZY821 cultivar during the germination process, especially of lipids (see Figure S4). These
results imply that the seeds of ZY821 cultivar might be involved in stress responses while
diminishing the other metabolic processes, especially those that are related to oil synthesis.

2.2. Cooperative TFs Regulating Seed Developmental Processes of ZS11 and ZY821

For the better understanding of the transcriptional regulation underlying oil synthesis
in the seeds of B. napus and, thereby deciphering specific regulatory programs differ-
entiating between double low and double high cultivars of B. napus, we analysed the
promoter regions of the MEGs of both cultivars of B. napus. Consequently, we identified
cooperative transcription factors (TFs) using the algorithm of PC-TraFF, similar to our other
studies [40–43]. The obtained cooperative TF pairs are depicted as cooperation networks
in which the elliptical nodes represent the individual TFs, whereas the edges (grey lines in
the cooperation networks) represent the cooperation between the TFs (see Figures 2 and 3).
The cooperation networks comprise 42 and 54 cooperative TF pairs for ZS11 and ZY821,
respectively. The overlapping TFs between the two cooperation networks are shaded in
orange and TFs of the cooperation network unique to a particular cultivar are shaded in
yellow. Remarkably, a brief analysis of the cooperation networks reveals that there are only
five and 17 TFs unique to ZS11 and ZY821, respectively.

2.3. Cooperation Network of ZS11 and ZY821

Taking a closer look into the cooperation networks of ZS11 and ZY821 reveals that
the majority of the single TFs are overlapping in the networks of both cultivars, while a
few of them change their partners. Among several transcription factors in the cooperation
networks of ZS11 and ZY821, a majority of them belong predominantly to five TF families:
NAC, MYB, DOF, GATA, and the HD-ZIP family. Hence, in our further analysis, we mainly
focused on the members of these TF families and their preferential partner choices in order
to explain, in detail, their relevance for fatty acid synthesis, transport, and accumulation
in the seed tissue of B. napus in the two cultivars. The expression profiles of transcrip-
tion factors that are present in the cooperation networks are provided in Supplementary
Information Figures S1– S36.

2.3.1. NAC Family of Transcription Factors

The NAC family members NAC92 and ANAC050 are found with different partners in
the cooperation networks of ZS11 and ZY821 (see Figures 2 and 3). This family encodes
NAC (NAM, ATAF1, -2, and CUC2) domain transcription factors that are exclusively found
in plants and well-studied for their functioning in abiotic stress responses [44–48] and
defense mechanisms [44,45,48]. In Figure 2, we observed that, while NAC92 cooperates
with the transcription factors BIM1 and WRKY48, the factor ANAC050 cooperates with
AT3G24120. Particularly, NAC92 has been reported in several plant species in controlling
the age-dependent senescence and seed germination processes [49]. Therefore, it could play
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a crucial part in determining the seed oil content, as senescence directly affects the quality
of seeds. On the other hand, ANAC050 has been studied in transcriptional repression and
flowering time control [50] and, thus, its cooperation with AT3G24120 (see Figure 3) could
potentially play negative roles in fatty acid accumulation.

Figure 2. Cooperation network of TF pairs identified for the double low accession ZS11 cultivar. The orange shaded nodes
represent the overlapping TFs between ZS11 and ZY821, whereas the yellow shaded nodes represent the TFs that are unique
for the ZS11 cultivar.

Moreover, when considering the orthologous genes of NAC92 in B. napus, we identi-
fied four gene IDs (BnaA04g09470D, BnaA07g14730D, BnaC04g31690D, and BnaC06g12550D)
while using the Ensembl plant database [51,52]. The gene expression values of these genes
show different patterns in both cultivars, as shown in Figure 4. Especially, BnaC06g12550D
is clearly showing an increasing trend after 10 days of flowering in ZS11 (time point 2 in
Figure 4), while its expression level, together with that of BnaA04g09470D, is decreasing
in ZY821 during the late stage (day 45 after flowering) of seed development. However,
the analysis of ANAC050 orthologous genes in B. napus reveals that their expression
patterns are similar in both of the cultivars (see Supplemetary Information Figure S1).

2.3.2. GATA Transcription Factors

Another interesting family of transcription factors observed in the networks of ZS11
and ZY821 is the GATA family of transcription factors (namely GATA8, GATA12, and
GATA15), which contain type-IV zinc finger motifs. GATA transcription factors have been
identified in the regulatory regions of the light-responsive genes [53], especially genes that
are associated with photosynthesis e.g., the chlorophyll a/b binding protein [54,55]. They
play a pivotal role as regulators that are involved in the nitrogen assimilation process in
plants [56,57]. Additionally, few members of the GATA family have also been identified as
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a differentially expressed TF family while comparing high- and low-yielding oil palm [58],
which could also explain their major role in rapeseed. In particular, we identified GATA8
with its cooperation partner ARR14 for both cultivars, while GATA12 as well as GATA15
with their cooperation partners ARR11 and ARR14, have only been found for the ZS11
cultivar (see Figures 2 and 3). This finding suggests that, during the seed germination
processs, these three GATA family members form dimers with ARR family TFs, which play
essential roles in stress responses (involving triacylglycerol) [59]. These TF cooperations
in the seed tissue of ZS11 might be directing the regulatory processes that are involved in
fatty acid synthesis and accumulation processes.

Figure 3. Cooperation network of TF pairs identified for the double high accession ZY821 cultivar. The orange shaded
nodes represent the overlapping TFs between ZS11 and ZY821, whereas the yellow shaded nodes represent the TFs that are
unique for the ZY821 cultivar.

Furthermore, we observed a strong increment in the expression levels of BnaA07g16490D
and BnaA09g34590D until day 15 after flowering in the ZS11 cultivar in comparison to ZY821
while taking the expression profiles of five GATA8 orthologous genes (BnaA07g16490D,
BnaC08g25560D, BnaC04g25920D, BnaC06g15420D, and BnaA09g34590D) into account (see
Figure 5). Interestingly, in both cultivars, the gene expression values of all five orthologous
genes abruptly decreases during the late stage of seed development. Similar patterns of
the changes in the expression values during the seed development have been obtained for
GATA12 and GATA15 orthologous genes (see Supplementary Information Figures S2 and S3).

2.3.3. DOF Family of Transcription Factors

Importantly, we identified several DOF family members (DOF2.5, DOF5.7, DAG2,
CDF2, AT2G28810, AT3G52440, OBP4, ADOF1, AT1G47655) in the cooperation networks
of ZS11 and ZY821 (see Figures 2 and 3). This family of transcription factors, encoding zinc
finger protein, is specific for plants, and it is not found in other eukaryotes [60]. They have
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been found to be particularly implicated in controlling seed germination, seed storage,
and the mobilisation of proteins and fatty acids [61]. Interestingly, DOF2.5/DAG2 acts
as a positive regulator of seed germination [62]. Although the functions of DOFs are not
well-characterised with regard to seed oil content in Arabidopsis, the soybean genes GmDof4
and GmDof11 are shown to increase the seed oil content by directly inducing the acetyl CoA
carboxylase and long-chain-acyl CoA synthetase synthesis genes [63] that are involved
in fatty acid synthesis and metabolism [63,64]. Likewise, the overexpression of GhDOF1
(Gossypium hirsutum) leads to increased lipid levels of cotton [65].

Figure 4. Expression values of NAC92 orthologous genes. Time points 1 to 4 represents day 7, day 10, day 15, and day 45
after flowering.

In the cooperation network for ZS11 (see Figure 2), there is unique cooperation be-
tween the TFs DOF5.7 and ID1. On the other hand, the factor DOF5.7 with its cooper-
ation partners OBP4 and AP3 have been found to be unique for the network for ZY821
(see Figure 3). Furthermore, we found that the factor DAG2 cooperates with AT1G47655
and ADOF1 (see Figure 3). Given the importance of the DOF family of TFs in influencing
the oil content, these preferential partner choices of DOF5.7 could be playing important
roles in differentiating the regulatory processes in the seeds of the ZS11 and ZY821 cultivars.

Further, regarding the expression profiles of DOF5.4 orthologous genes (BnaA06g24490D,
BnaA02g43890D, BnaA09g07030D), although BnaA06g24490D is absent for ZS11 in early stages
(<day 10)), its gene expression value is strongly increasing until day 15 after flowering and
decreasing after day 15 in both of the cultivars (see Figure 6). The expression profiles of other
DOF family members are given in the Supplementary Information Figures S4–S8.

2.3.4. HD-ZIP Family of Transcription Factors

Multiple transcription factors from the cooperation networks, including HDG1, HDG11,
ANL2, ATHB-6, ATHB-13, ATHB-40, and ATHB-53, belong to the homeodomain zipper
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family (see Figures 2 and 3). From this family of proteins, GL2 was the first identified
protein that is responsible for the outgrowth of trichome in the epidermis [66] and for con-
tributing to seed oil content in Arabidopsis [67]. Additionally, other members of this family
have similar functions that are associated with the epidermis [68]. Moreover, the factor
ANL2 is implicated in the regulation of anthocyanin accumulation in the shoot and also in
the development of root [69]. Several studies have reported the functioning of the HD-ZIP
family of transcription factors in the cuticle development. HDG11 has been implicated
as a positive regulator of drought stress tolerance [70]. Furthermore, the overexpression
of OCL1 in maize belonging to HD-ZIP family highly influenced the expression levels of
various genes that are associated with lipid metabolism [71]. Regarding the functioning
of ATHB-6, it has been reported as a regulator of ABA hormone responses and it is also
regarded as a target of protein phosphatase ABI1, which is a negative regulator of TAG
accumulation and ABA signalling [72–74]. Moreover, ATHB-53 is regarded as an auxin-
inducible protein and it plays a prominent role in the auxin/cytokinin pathway during root
development [75]. However, several members of this family are related to the epidermis
development [68], which is also an integral part of the seed coat.

Figure 5. Expression values of GATA8 orthologous genes. Time points 1 to 4 represents day 7, day 10, day 15, and day 45
after flowering.

We identified four unique HD-ZIP family members (ATHB-13, ATHB-18, ATHB-40
and ATHB-53) for the ZY821 cultivar while comparing the cooperation networks of the ZS11
and ZY821 cultivars (see Figures 2 and 3). Interestingly, our comparitive analysis reveals
that the transcription factors ANL2 and ATHB-6 cooperate with the same partners in both
networks. Figures 7 and 8 show the changes in the expression levels of the orthologous
genes of both TFs. When considering the expression profiles of ANL2 orthologous genes
(BnaA03g27000D, BnaC03g31960D), the gene expression values of both genes show higher
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expression levels until day 15 after flowering and they are decreasing after day 15 in ZS11.
Whereas, the ANL2 orthologous gene is expressed at high expression levels in an early
stage and is declined afterwards during subsequent stages (see Figure 7). In contrary
to ANL2, the ATHB-6 orthologous genes (BnaA09g42630D, and BnaC08g35090D) show
higher expression levels in ZS11 in the early stage (day 7) and lower expression level in
ZY821. Intriguingly, these expression levels are continuously decreasing in ZS11 during
the seed developmental stages. On the other hand, BnaA09g42630D and BnaC08g35090D
are antagonistically expressed to each other in the ZY821 cultivar.

Figure 6. Expression values of DOF5.7 orthologous genes. Time points 1 to 4 represents day 7, day 10, day 15, and day 45
after flowering.

2.3.5. MYB Family of Transcription Factors

In both cooperation networks, we identified the transcription factors MYB1, MYB4,
MYB24, MYB46, MYB55, MYB65, MYB77, MYB113, and FaEOBII, which belong to the MYB
superfamily. A large number of MYB TFs play central roles in a variety of physiological
processes, especially growth, development, synthesis of secondary metabolites, metabolism,
and responses to biotic and abiotic stresses [76–80].

Interestingly, the factor MYB24 cooperates with MYB46, MYB55, and MYB65 during
seed development in both of the cultivars. Taking its unique cooperations into account,
MYB24 forms dimers with F3A4.140 and AT1G76870 in the ZS11 cultivar (see Figure 2).
On the other hand, MYB24 is interacting with MYB1 in ZY821 (see Figure 3). Regarding
the function of MYB1, it has been characterised as a pivotal positive regulator of the
anthocyanin synthesis in onion, thus representing an important player in the flavanoid
synthesis pathway on the transcriptional level [81].

A similar role has been studied for MYB113 in purple cauliflower [82] and for FaEOBII
in the phenypropanoid pathway in strawberries [83]. Likewise, MYB4 has been reported in
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Arabidopsis for its dual role in the flavanoid biosynthetic pathway, describing the precise
regulation of anthocyanin and phenylalanine synthesis [84]. The role of flavonoid snythesis
pathway genes in contributing to seed colour that differentiates between high-oil content
and low-oil content accessions has been well-reported in [26]. More importantly, the tran-
scription factor MYB46 functions as a master regulator in the secondary wall synthesis,
regulating the genes that are involved in the synthesis of three major components (cellulose,
hemi cellulose, and lignin) of secondary cell walls [85]. Therefore, it is a modulator in the
regulation of defense responses to the fungus Botrytis cinerea [86].

Figure 7. Expression values of ANL2 orthologous genes. Time points 1 to 4 represents day 7, day 10, day 15, and day 45
after flowering.

The gene expression analysis of MYB1 and MYB4 orthologous genes show that the
corresponding expression levels are clearly different between ZS11 and ZY821 cultivars.
In particular, there is a remarkable increase in the expression level of the MYB1 orthologous
genes BnaC03g63160D during the late stage after flowering in the ZY821 cultivar (>day 15)
(see Figure 9). Another interesting pattern has been observed for the MYB4 orthologous
gene BnaA08g16990D: While its expression level increases until day 15 after flowering in
ZY821 cultivar, it sharply decreases at the late stage (day 45) (see Figure 10).

2.3.6. Other Transcription Factors

There are other crucial transcription factors, like CAMTA2 and CAMTA3, found for
both cultivars or ARR11 as well as ID1 found only for the ZS11 cultivar. The roles of
these TFs are well studied in biotic and abiotic stress responses [59,87–89]. For example,
CAMTA2/3 are calmodulin binding transcription factors linking calcium signalling to the
induction of defense response genes during abiotic and biotic stress conditions [87–89].
They are involved in low temperature and freezing tolerance in Arabidopsis [87]. Further,
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the factor ARR11, encoding the Arabidopsis response regulator 11, is implicated for its
essential role in mediating abscisic acid and cytokinin signalling pathways and tolerance to
drought, thereby it is involved in the generation of drought stress responses [59]. Figure S5
in Supplementary Information gives the expression profile of ARR11. In contrary, the ID1
(Indeterminate Domain) transcription factor found in the cooperation network of ZS11
(see Figure 2) encodes a zinc finger, which has been reported in the regulation of seed
development in maize [90,91]. In Arabidopsis, it is regarded to activate or inhibit seed
germination, with respect to gibberellic acid [90]. Because there is a close association
between the stress responses and the contribution of triacylglycerol, which is a major lipid
reserve [92], this could explain the contribution of TFs to multiple processes, including
fatty acid accumulation, seed germination, and the generation of stress responses.

Figure 8. Expression values of ATHB-6 orthologous genes. Time points 1 to 4 represents day 7, day 10, day 15, and day 45
after flowering.



Int. J. Mol. Sci. 2021, 22, 1033 12 of 19

Figure 9. Expression values of MYB1 orthologous genes. Time points 1 to 4 represents day 7, day 10, day 15, and day 45
after flowering.

Figure 10. Expression values of MYB4 orthologous genes. Time points 1 to 4 represents day 7, day 10, day 15, and day 45
after flowering.
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3. Materials and Methods

Our analysis follows the structure, as presented in Figure 11.

3.1. B. napus Data Set and Data Preparation

In this study, we use a publicly available time series transcriptomic data set of the
seeds that were obtained from two B. napus cultivars with different seed oil content, namely
Zhongshuang11 (ZS11), a double-low accession with high-oil-content, and Zhongyou821
(ZY821), a double-high accession with low-oil-content. The RNA-sequencing of the seeds
from both cultivars at four different time points, namely day 7, day 10, day 15, and day
45 after flowering, with two biological replicates each were generated by Lu et al. [27].
The raw sequencing data are available from the BIG Data Center under the BioProject
accession code PRJCA001246. Readers who are interested in learning more about this data
set are kindly referred to the original study [27].

Figure 11. Flowchart of analysis. (a) Processing of the RNA-Seq dataset; (b) identification of Monotonically Expressed Genes
using the MFSelector approach [93]; (c) promoter analysis (TSS: transcription start site); (d) identification of cooperative
transcription factors (TFs) using the PC-TraFF approach [42]; and, (e) Expression pattern analysis of TF genes.

Following the original study [27], we mapped the filtered reads to the B. napus ref-
erence genome version 4.1 (obtained from [94] and available under https://wwwdev.
genoscope.cns.fr/brassicanapus/data/) while using STAR 2.4.4a [95]. We then obtained
the gene counts from the aligned sequence reads by applying the htseq-count program [96].
In total, the data set comprises raw count values for 80,927 genes and 16 samples (four
time points with two biological replicates each for two cultivars). Finally, the raw counts
were normalized while using the R function voom with normalization method “cyclicloess”
of the package limma (version 3.40.6) [97] in order to obtain the counts-per-million (CPM)
normalized values.

3.2. Identification of Monotonically Expressed Genes

By applying the MFSelector (monotonic feature selector) approach [93] to the time
series data set obtained from RNA-seq consisting of four time points, we identified Mono-
tonically Expressed Genes (MEGs), whose expression patterns are closely linked to the

https://wwwdev.genoscope.cns.fr/brassicanapus/data/
https://wwwdev.genoscope.cns.fr/brassicanapus/data/
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development of the seeds over time in both cultivars. The underlying algorithm of MFSe-
lector compares the expression values of each gene observed for all of the samples between
time points in order to assess whether these values follow a strong monotonic pattern.
In addition, a permutation test is performed to determine the significance level of these pat-
terns. Consequently, it provides two sets of MEGs with corresponding p-values: while the
first set contains the genes with significantly monotonically increasing patterns, the second
set only includes genes with significantly monotonically decreasing expression values.

In MFSelector, the parameters permut, svdetimes, and svdenoise have to be speci-
fied in order to define the level of stringency for monotonicity. Following our previous
study [36], we chose permut = 100, svdetimes = 100, and svdenoise = 0.1. Finally, we consid-
ered, in our further analysis, only the genes as significant MEGs that have a FDR ≤ 0.1 and
sample variance for discriminating error value ≤1.

3.3. Gene Ontology Enrichment Analysis

While using PlantGSEA (http://systemsbiology.cau.edu.cn/PlantGSEA/) [37], we
performed the gene set enrichment analysis in order to obtain GO (Gene Ontology) terms
on “biological process” regarding the ascending and descending set of MEGs for both ZS11
and ZY821 cultivars. Fisher’s exact test was applied and a GO term was considered to be
statistically significant if its corresponding FDR value ≤0.05. The enriched GO terms were
visualised as tree map while using REVIGO [98].

3.4. Identification of Transcription Factor Cooperations

For the identification of transcription factors (TFs) that cooperatively bind to promoter
regions of genes, we applied the PC-TraFF approach [42]. The PC-TraFF is an information
theory based methodology that applies the pointwise mutual information (PMI) metric
in order to quantify the cooperation level of TFs, according to the co-occurrence of their
binding sites in the promoters of the MEGs [42]. Its underlying algorithm consists of six
phases and it requires the following input parameters:

• Promoter sequences: Similar to our study [28], we extracted, for each MEG, its cor-
responding promoter sequence ranging from −500 bp to +100 bp regions relative
to a transcription start site while using the reference genome version 4.1 and gene
annotation given in [94].

• Transcription Factor Binding Site (TFBS) detection: For the detection of putative TF-
BSs in the promoter sequences, we employed the MATCH™ program [99] with
a non-redundant plant position weight matrix (PWM) library from the JASPAR
database [100].

• Pre-defined distances: For the identification of the regular cooperative binding pattern
of TFs, the underlying PC-TraFF algorithm requires the pre-defined minimum and
maximum distance thresholds between TFBSs. In our analysis, we used the recom-
mended values of a distance ≤20 for the maximum and ≥5 for the minimum distance.

Consequently, the algorithm of the PC-TraFF approach assigns each TF-pair (Ta and
Tb) a PMI (Ta; Tb)-score and it transforms the PMI (Ta; Tb)-score into the z-score as a final
step. A cooperation between any Ta and Tb is considered to be significant if they have a
z-score ≥ 3.

3.5. Expression Pattern Analysis of TF Genes

Following the analysis strategy of Zeidler et al. [43], we analysed the changes in the
expression values of TF genes during the seed developmental stages to gather knowledge
on the combinatorial gene regulation underlying the differentiation of the oil content
between the two cultivars. For this purpose, we determined, for each TF, whose gene
symbol is often defined in Arabidopsis thaliana or Zea mays, its orthologous genes in B. napus
while using the Ensembl plant database [51,52].

http://systemsbiology.cau.edu.cn/PlantGSEA/
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4. Conclusions

Transcriptional regulation in plants plays a pivotal role in governing a variety of
physiological processes. In oil crops, like B. napus, a deeper knowledge regarding TFs and
their combinatorial interplay sheds light into the regulatory mechanisms that underlie seed
oil content, particularly in the accumulation of fatty acids. In our study, by analysing a
RNA-seq data set of seed tissue from two B.napus accessions, a double-low accession with
high-oil-content and a double-high accession with low-oil-content, we identified several
TFs and their preferential partner choices, which are likely to influence the quality of seed
oil content. Interestingly, some of the TFs have the same cooperation partners in both
cultivars, whereas the gene expression patterns of their orthologous genes clearly show
distinguishing patterns between the cultivars during the seed development process. To the
best of our knowledge, this is the first study performing a systematic analysis to decipher
the complex interplay of the TFs that are linked with developmental switches resulting in a
higher oil content. Our findings could be promising for deepening the existing knowledge
on the transcriptional regulation governing seed oil content notwithstanding the absence of
experimental validation. Therefore, further progress from the molecular plant biology end
is needed, not only to validate the functions of these TFs, but also for a future perspective
on generating novel hypotheses in genetic programs that involve seed oil improvement.

Supplementary Materials: The following Figures are available online at https://www.mdpi.com/
1422-0067/22/3/1033/s1.
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