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Abstract
Acquired Immunodeficiency Syndrome is a deadly viral disease caused by the Human Immunodeficiency Virus in vivo,

and its purpose is to destroy the immune system of the human body. The disease does not currently have a definitive

vaccine or treatment, but treatment with pharmaceutical interventions (antiretroviral therapy, or ART) can slow down the

progression of HIV. Daily use of prophylaxis measures may also have serious side effects for the patient, so the dosage and

regimen of drugs should be constantly controlled. The dynamic models formulated for HIV infection are nonlinear

differential equations. Therefore, nonlinear optimal control methods can be effective in increasing the efficiency of

treatment. In this study, a sub-optimal controller based on the state-dependent Riccati equation (SDRE) approach to the

dynamic model of HIV is introduced. One of the advantages of the SDRE approach is that the nonlinear properties of the

system are preserved in the design control procedure. Furthermore, the specific conditions of infected individuals can be

considered via choosing appropriate coefficients in the cost function and limiting the amount of drug administered. In the

procedure of control design, all the state variables must be available for feedback in order to use the SDRE controller. In

this regard, the Extended Kalman Filter observer is also implemented. The effect of different weighting matrices on these

states is examined. In addition, to assess the effectiveness of the proposed control strategy, the well-known performance

indicator root mean square error is also considered. Numerical simulations confirm the high efficiency and flexibility of the

proposed approach.

Keywords Sub-optimal control � Extended Kalman filter � Nonlinear system � Dynamic model of HIV virus �
State-dependent Riccati equation

1 Introduction

HIV is a virus that reproduces in the human body and

weakens the immune system so that the infected individual

has a hard time fighting off other viral diseases. HIV

infection spreads mainly from person to person via

unprotected sexual contact and sharing needles. In the

absence of effective treatment, the HIV infection gets

worse over time and eventually causes AIDS. The symp-

toms of HIV are classified into three stages: (1) acute HIV

infection symptoms, (2) clinical latency symptoms (chronic

HIV infection), and (3) AIDS symptoms. T-cells are a

subdivision of white blood cells that have a significant

functional role in the coordination of the body’s immune

system. CD4? T cells are known as ‘‘helper’’ cells that

trigger the body’s response to infections. In the acute phase

of the disease and without effective treatment, HIV can kill

CD4? T cells and overcome the immune system.

In epidemiology, mathematical models have a substan-

tial function in predicting the behavior of transmission

dynamics and evaluating control approaches for HIV,

Ebola, SARS, cancerous cells, influenza epidemics, novel

coronavirus disease (COVID-19), etc. Following the spread

of the human immunodeficiency virus, numerous models

have been suggested to investigate the dynamic behavior

and curb HIV/AIDS infection (Jacques et al. 2016; Adams

et al. 2005; Perelson et al. 1993; Wodarz and Nowak

2002). The immune system response is an effective tool in
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suppressing HIV disease in infected individuals. Hence, the

effects of this nonpharmaceutical intervention are incor-

porated (Adams et al. 2005; Perelson et al. 1993). A novel

mathematical model for HIV/AIDS by considering the

compartments, including aware and unaware individuals,

diagnosed and undiagnosed patients, and tracking infected

people, has been developed Ayele et al. (2021). Also, an

optimal control strategy using the forward-backward sweep

(FBS) approach has been implemented on the proposed

model in order to investigate the cost-effectiveness of the

combination of the control efforts.

Since HIV/AIDS is a highly contagious and deadly viral

disease, optimal control approaches have been proposed for

the optimal management of drug injections. For instance, the

Reverse Transcriptase Inhibitor (RTI) intervention as the

antiretroviral class of drugs for the management and treat-

ment of HIV is investigated (Wodarz and Nowak 2002;

Moysis et al. 2018). Furthermore, the Protease Inhibitor (PI)

method as a pharmaceutical intervention is considered

(Kirschner et al. 1997; Barry 2018). Zurakowski et al.

(2004) investigated the effects of target cells acting as hosts

of the HIV virus on the rapid convergence and reduction in

compromise to the immune system of infected individuals.

The effects of antiretroviral therapy (ART) and highly active

antiretroviral therapy (HAART) treatment are considered

and illustrated as control strategies by Habibah and Sari

(2018). The multi-drug dynamic approaches based on the

combination of RTI and PI protocols are discussed (Wein

et al. 1997; Adams et al. 2004). In this strategy, the dose of

either of these twomethods can be changed independently of

each other and can be either continuous or on-off. The

impacts of continuous drug-based measures using an exter-

nal feedback control term as a therapeutic drug regimen on

bolstering of the immune system components have been

extensively used byBrandt andChen (2001). Recently, silent

cure treatment, known as structured cessation therapy, has

received much attention in the medical literature (Thomas

et al. 2020). One advantage of this method is that it can

reduce the risk of HIV resistance to the current drug regimen.

However, it is not a safe method for the immune system and,

in some cases, may cause damage to CD4? T cells.

Various control strategies have been examined in order

to diminish the prevalence of infectious diseases and

reduce the disease-death rate. To pick the best drug-dosing

schedule, the nonlinear receding horizon control was used

to synthesize feedback into HIV drug treatment Hyungbo

et al. (2003). Lemos and Barao (2011) presented the

adaptive nonlinear control method that includes a combi-

nation of LQ control, exact linearization, and a joint con-

trol Lyapunov function in order to design the estimation

law for viral load in an HIV infection. A nonlinear robust

adaptive control approach in the form of antiviral treatment

and vaccination to decrease the number of susceptible

individuals and increase the population of recovered

humans against the flu is examined (Sharifi and Moradi

2017). Moreover, the analysis of the global stability for the

HIV dynamic model using the geometric approach and the

Lyapunov direct method based on the higher-order gener-

alization of Bendixson’s criterion is introduced by Buo-

nomo and Vargas-De-León (2012). Sweilam and Al-

Mekhlafi (2017), developed the fractional-order into the

HIV infection model in the sense of Caputo and charac-

terized the optimal control for the HIV disease via Pon-

tryagin’s maximum principle (PMP). The predictive

control approaches to ensure the stability and suppression

of the HID/AIDS infectious system are studied (Zur-

akowski and Teel 2006; Pinheiro et al. 2011; Alazabi et al.

2012). Based on gradient descent laws, a robust adaptive

sliding mode controller is presented by Mahmoodabadi and

Lakmesari (2021), for the antiretroviral therapy of HIV-1

infection. The proposed control approach is implemented

in two steps, including designing a sliding mode controller

for the HIV model and then adjusting the control param-

eters via the adaptive gradient descent laws. Taking into

account the uncertain parameters in the HIV model, Fatemi

and Mahmoodian (2021) have applied the error dynamic

shaping (EDS) approach to curbing system state variables

to track the desired trajectories. They also used the genetic

algorithm (GA) method to recognize the free control

parameters to reduce the dose of the drug prescribed to

manage HIV. Izadbakhsh et al. (2021) investigated the

novel adaptive observer-based robust controller to reduce

the number of infected CD4? T cells to zero asymptoti-

cally using Baskakov operators as a universal approximator

for modeling the uncertainties of the HIV model. The

results of this approach with the controller/observer based

on the radial basis functions neural network (RBFNN)

method have been compared.

The Linear Quadratic Regulator (LQR) procedure is an

accepted and well-known method for controller synthesis

of linear systems, although most mathematical models of

biological systems, including the dynamics of the HIV

virus and the immune response that will be addressed in

this study, are nonlinear. In this regard, one of the

emerging and effective approaches to synthesizing non-

linear sub-optimal controllers is the SDRE framework.

Basically, the state-dependent Riccati equation is a sys-

tematic procedure for designing a nonlinear feedback

controller in which the nonlinearities of the system are

considered in a linear-like form. However, the pseudo-

linearization method is not unidirectional and can be done

in other ways, which creates flexibility in the design of the

controller. The state-of-the-art Riccati equation methodol-

ogy has been previously applied to several fields of engi-

neering problems. For the first time, Banks et al. (2007)

investigated the concepts of asymptotic convergence of the
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estimator and compensated system. In addition, the inter-

polation numerical method is examined for the numerical

approximation of the solution to the SDRE for a wide range

of nonlinear problems.

A comprehensive survey of the application of the state-

dependent Riccati equation technique in various fields,

including robotics, aircraft, surface vessels, aerospace,

UAVs, and other nonlinear systems is investigated by

Nekoo (2019). In order to minimize the energy consump-

tion of the robot/prosthesis system, a nonlinear robust

optimal controller for an active transfemoral prosthesis

using sliding mode control and state-dependent Riccati

equation control is considered by Bavarsad et al. (2020).

The combination of the SDRE technique and sliding mode

control to optimize the energy and reduce the effects of the

model parametric uncertainties and ground reaction forces

as nonparametric uncertainties in the form of an estimator-

based nonlinear robust optimal controller for an active

prosthetic leg for transfemoral amputees is investigated

(Bavarsad et al. 2021b, a). Nasiri et al. (2021) applied a

novel combination of the SDRE approach and the Function

Approximation Technique (FAT) to the regulation and

tracking of flexible-joint manipulators in the presence of

uncertainties and disturbances as a function of time. A

novel robust state-dependent coefficient (SDC) control

considering the mismatched time-varying disturbances for

uncertain Electrical Flexible-Joint Robot (EFJR) is pre-

sented by Nasiri et al. (2020). The optimal control schemes

are implemented to minimize the average population of

cancer cells, reduce the side effects of chemotherapy,

enlarge the system’s domain of attraction, and reduce

treatment time for a nonlinear immune oncology system by

(Monfared et al. 2020, 2021). Shadi et al. (2021) investi-

gated the SDRE approach to curbing the prevalence of

Ebola disease by maintaining the nonlinear properties of

the system in comparison with the Terminal Synergistic

Control (TSC) method. The application of the SDRE

strategy in the Air-Handling Unit (AHU) to regulate and

circulate air in Heating, Ventilating, and Air Conditioning

(HVAC) systems while preserving the nonlinear properties

of the model is examined (Liavoli and Fakharian

2019, 2017), and the simulation results are compared with

the LQR method. Based on the SDRE approach and

pseudo-linearization technique, the tracking of reference

paths by preserving the nonlinear nature of the DC

microgrid system via optimal control is investigated by

Shahradfar and Fakharian (2021). The optimality of the

sliding mode control approach has been inspected through

its combination with the SDRE technique by Korayem

et al. (2019). For this aim, in the integral form of the

sliding surface, the state-dependent differential Riccati

equation (SDDRE) is applied. The resulting approach

(practically and theoretically) is implemented on the Scout

robot via the LabVIEW software. Since continuous mea-

surement of CD4? T cell numbers as the output of the HIV

dynamic model can be considered impossible, the state-

dependent impulsive observer, by considering the intra-

cellular delay, carries out state estimation of the HIV

model Kalamian et al. (2021). The presented impulsive

observer is designed via an extended pseudo-linearization

method.

The idea of using this method to control the HIV virus

was first used by Kwon (2005), in which the pseudo-lin-

earization is performed so that the coefficient matrix of the

state is actually equivalent to the matrix obtained by the

local linearization method. The use of output-based feed-

back controllers to control HIV seems to be necessary

given that only the variables of CD4? T state and viral

load are measured. Using a predictive controller with

output feedback is one of the methods used (Kwon 2005).

Also, Zhang et al. (2012) used a state-of-the-art Riccati

equation approach to design a system observer. Given that

both the control and the observer are based on this method,

it can be claimed that this method is highly compatible.

In this study, based on the state-dependent Riccati

equation method, a nonlinear state feedback controller to

managing HIV infection is illustrated. One of the greatest

benefits of the SDRE is the ability to consider patient’s

specific conditions by establishing appropriate weight

matrix coefficients in the cost function and restricting the

amount of drug administered to reduce the side effects.

Furthermore, another advantage of this technique is that the

state-dependent matrices can be formed in an infinite

number of procedures. To examine the dynamic behavior

of the HIV model, an ODE deterministic one-compartment

system with three state variables, including uninfected

CD4? T cells (T), CD4? T-infected cell particles ðT�Þ,
and free virus particles (v), is considered. Professional

equipment is required to measure the size of free virion

particles. In this regard, the extended Kalman filter can be

considered as a state observer for the nonlinear system to

estimate the immeasurable states. An SDRE-based optimal

control has been implemented in order to restrict the con-

centration of virions and infected cells. We will show that

the proposed approach fulfills the management problem of

drug intervention. The effects of several weighting matri-

ces on the SDRE execution have been examined. The

numerical simulations and comparison with the Linear-

Quadratic Regulator (LQR) method confirmed that the

proposed optimal control strategies provide flexibility for

drug administration.

The framework of this article is structured as follows.

The deterministic compartmental model for HIV is inves-

tigated in Sect. 2. Section 3 includes the HIV dynamic

model by considering treatment protocols as optimal con-

trol inputs. Section 4 contains the process of designing the
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control effort signal and obtaining it through the proposed

method. The extended Kalman filter as a nonlinear esti-

mator for some unknown variables is described in Sect. 5.

Section 6 examines the behavior of the system around

equilibrium points and then evaluates the numerical sim-

ulation results of the HIV model resulting from different

cases of selecting tuning coefficients of cost function.

Finally, the conclusion is presented in Sect. 7.

2 Dynamic Model of HIV

In this section, the deterministic model of HIV described

by Barão and Lemos (2007) is considered. This model can

well analyze the effects of this viral disease on the immune

systems of infected individuals by interpreting the inter-

action between compartments of healthy CD4? T cells,

CD4? T-infected cells, and the virus.

The CD4? T cells are produced and depleted at constant

rates of s and d, respectively. Also, the number of unin-

fected CD4? T cells will decrease at a rate corresponding

to the number of viral cells, which is determined by the b
constant. The variation rate of infected CD4? T cells is

affected by the infection of healthy CD4? T cells and the

natural death of infected cells at a constant rate of m2. The

change rate of virus cells from unhealthy CD4? T cells is

affected by a constant k rate and a constant death rate m1

(Landi et al. 2008; Craig et al. 2004; Barão and Lemos

2007).

Based on the aforementioned statements, the transmis-

sion dynamics of the HIV model are given as follows:

_T tð Þ ¼ s� dT tð Þ � bT tð Þv tð Þ
_T
�
tð Þ ¼ bT tð Þv tð Þ � m2T

� tð Þ
_v tð Þ ¼ kT� tð Þ � m1v tð Þ:

ð1Þ

where the numerical values and explanation of the afore-

mentioned parameters are mentioned in Table 1.

3 Dynamic model of HIV with Treatment

In this section, the preventive pharmaceutical measures in

order to suppress HIV replication are introduced. The pair

of time-varying control variables ðu1ðtÞ; u2ðtÞÞ is consid-

ered as RTIs and PIs, respectively. The HAART treatment

involves the use of several drugs with different antivirals

that keep the immune system functioning optimally and

suppress the viruses in vivo. Antiviral drugs are divided

into two major categories: RTIs and PIs, which target the

HIV replication cycle extracellularly. There are other dif-

ferent drugs, such as non-nucleoside reverse transcriptase

inhibitors (NNRTIs), nucleoside reverse transcriptase

inhibitors (NRTIs), and fusion inhibitors (FIs), but since

RTI and PI are more common, they are considered in this

study. RTIs prevent CD4? T cell infection, while PI

inhibits the production of new viruses. To fulfill this aim,

the proposed model, including the pharmaceutical mea-

sures, is rewritten as follows:

_T tð Þ ¼ s� dT tð Þ � 1� u1 tð Þð ÞbT tð Þv tð Þ
_T
�
tð Þ ¼ 1� u1 tð Þð ÞbT tð Þv tð Þ � m2T

� tð Þ

_v tð Þ ¼ 1� u2 tð Þð ÞkT� tð Þ � m1v tð Þ;

ð2Þ

where the terms 1� u1 tð Þð Þ and 1� u2 tð Þð Þ indicate the

efficacy of using RTI and PI therapies. The following

definition is considered to simplify the control design

framework:

x ¼
T

T�

v

0
B@

1
CA; u ¼

u1

u2

� �
:

According to the aforementioned notation, the HIV model

in (2) can be illustrated in the following affine form:

_x ¼ f xð Þ þ g xð Þu; ð3Þ

where the value of f xð Þ and g xð Þ will be determined in

Sect. 4.

Table 1 Interpretations and

values of HIV model parameters

Barão and Lemos (2007)

Parameter Specification Value Unit

t Time – Day

d Death rate of untreated CD4? T cells 0.02 1/day

k Virus production rate in infected CD4? T cells 100 1/day

s Production rate of healthy CD4? T cells 10 mm-3/day

b Infection rate of virus cells 2:4� 10�5 mm3/day

m1 Virus death rates 2.4 1/day

m2 Death rate of infected CD4? T cells 0.24 1/day
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4 Optimal SDRE Control

In general, the implementation of optimal control for

nonlinear systems is not straightforward like in linear

systems, because the Hamilton–Jacobi–Bellman (HJB)

equations do not have a closed solution. Although

approximate numerical methods can be used to solve these

equations, the point is that these methods are usually

approximate and may differ greatly from the actual solu-

tion if the degree of nonlinearity of the main system is

raised Monfared et al. (2020). On the other hand, approx-

imate responses result in a loss of optimality and may yield

a sub-optimal response.

The application of linear control methods in the treat-

ment of viral disease models will not be efficient because

the linearization of the nonlinear dynamic model will

impose a lot of modeling errors, and as a result, the con-

troller may not perform in the linearized region of the

system, which may lead to exacerbation of the disease. One

of the optimal controller design methods for nonlinear

systems is the state-dependent Riccati equation technique.

The state-dependent Riccati equation method, in addition

to satisfying the concept of stability and performance, also

guarantees robustness properties for a wide class of non-

linear systems. The theory of SDRE approach is discussed

in detailed by (Mracek and Cloutier 1998; Çimen 2008).

The SDRE method operates on a pseudo-linear structure of

a nonlinear system, and the related response is obtained

using the state-dependent Riccati algebraic equation at

each sampling time. In this regard, the nonlinear system is

considered as (3), where x 2 <n�n and u 2 <n�m are the

state and input variables of the system, respectively. Note

that in general, the relation f ð0Þ ¼ 0 is not true. In par-

ticular, the dynamic model considered in this paper does

not meet this requirement. Therefore, f(x) can be separated

into two terms:

a and f ðxÞ � a:

We can select a so that a ¼ f ð0Þ; then, the system (3) can

be rewritten in the following linear-like form:

_x ¼ A xð Þxþ aþ B xð Þu; ð4Þ

where AðxÞxþ a ¼ f ðxÞ and BðxÞ ¼ gðxÞ. In (4), A xð Þ 2
<n�n and B xð Þ 2 <n�m are the matrices of state-dependent

coefficients in pseudo-linear form. Obviously, in the

pseudo-linearization procedure, obtaining the linear-like

representation of a nonlinear system is not unique, and

A(x) and B(x) matrices are functions of the states of the

system Itik et al. (2010).

The ultimate goal is to obtain the sub-optimal controller

such that it minimizes the following cost function for the

HIV model:

J ¼ 1

2

Z 1

0

x� yð ÞTQðxÞ x� yð Þ þ uTRðxÞu
� �

dt; ð5Þ

where QðxÞ� 0 and RðxÞ[ 0 are state-dependent coeffi-

cient matrices and symmetric. In the cost function (5), the

variable y demonstrates the disease-free state for the

infectious individual. In this study, the constraints on the

states and inputs of the HIV infectious model are consid-

ered and must be met during the controller design process.

Proper weighting coefficient selection for Q(x) and R(x)

can play a fundamental role in satisfying constraints and

developing control problem. On the other hand, these

constraints can be applied to the Hamiltonian equation (Itik

et al. 2010; Shadi et al. 2021). For the proposed optimal

control problem, the Hamiltonian equation is as follows:

H x; u; kð Þ ¼ 1

2
x� yð ÞTQ x� yð Þ þ uTRðxÞu

� �
þ kT AðxÞxð

þaðxÞ þ BðxÞuÞ � ŵT umax � uð Þ � �wT u� uminð Þ;
ð6Þ

where k is an adjoint (costate) variable. In (6), �w and ŵ are

the non-negative m-dimensional punishment vectors that

can be used to introduce bounded control input into the

problem and must meet the following constraint:

ŵT umax � uð Þ ¼ �wT u� uminð Þ ¼ 0:

The corresponding necessary conditions of Pontryagin’s

maximum principle used in solution process are as follows:

_x ¼ oH

ok
¼ A xð Þxþ aþ B xð Þu; ð7Þ

_k ¼ � oH

ox
¼ �Q x� yð Þ � d A xð Þð Þ

dx

� �T

k� d B xð Þuð Þ
dx

� �T

k

� d a xð Þð Þ
dx

� �T

k;

ð8Þ

0 ¼ oH

ou
¼ B xð ÞTk� �wþ ŵþ RðxÞu: ð9Þ

Using (9) yields the optimal control in the following form:

uðtÞ ¼ �R�1ðxÞ BT xð Þk� �wþ ŵ
� �

: ð10Þ

By implementing the LQR control theory, the adjoint

variable k can be obtained as follows:

k ¼ b xð Þ þ P xð Þx: ð11Þ

In (11), the symmetric matrix P xð Þ 2 <n�n is state depen-

dent. Considering the constrained control input, the sub-

optimal control can be obtained as follows:

u tð Þ ¼ min max ~uðtÞ; uminð Þ; umaxð Þ; ð12Þ

where the constants umin and umax denote the minimum and
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maximum boundaries of the control effort, respectively,

and

~u tð Þ ¼ �R�1ðxÞBT xð Þ P xð Þxþ b xð Þð Þ: ð13Þ

The function b xð Þ is given by:

b xð Þ ¼ AT xð Þ � P xð ÞB xð ÞR�1BT xð Þ
� ��1

Qy� P xð Það Þ;
ð14Þ

where the symmetric and positive definite matrix P(x) is

calculated by solving the algebraic Riccati equation Çimen

(2008):

AT xð ÞP xð Þ þ P xð ÞA xð Þ � P xð ÞB
xð ÞR�1BT xð ÞP xð Þ þ Q xð Þ ¼ 0:

ð15Þ

The asymptotic local stability of the above system can be

illustrated in the form of the following theorem.

Theorem 1 Itik et al. (2010) Suppose the following system

_x ¼ f xð Þ þ g xð Þu;

where f(x) and of xð Þ=oxi ði ¼ 1; . . .; nÞ are continuous for

all x in xk k\r and r[ 0, and f(x) can be presented in

linear-like form, f ðxÞ ¼ AðxÞx. In addition, suppose that

A(x) and B(x) are continuous and the system defined in (4)

is stable and even (A(x), Q) in a zero-order neighborhood

X 2 Br 0ð Þ. In this case, the system will be locally

asymptotically stable via optimal control (13).

The SDRE approach is applied to the system via the

LQR controller at each time point. Therefore, the cost

function is minimized at each time instance.

5 Kalman Filter

Kalman filtering is an algorithm for estimating unknown

variables based on measurements taken over time. In

general, Kalman filter has two steps, update and predict.

First, the estimated state from the previous time instant is

used to generate an estimate of the state at the present time,

and then, the current prediction is combined with current

observation information to correct the state estimate. The

Kalman filter has demonstrated its efficiency in various

applications.

5.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is an approximate filter

for nonlinear systems based on first-order linearization.

The application of the Kalman filter to state estimation

problems for linear systems with unknown parameters is

well known and widely developed. The extended Kalman

filter consists of linearizing the nonlinear system along a

nominal state trajectory and approximating the probability

density function (PDF) as Gaussian in the posterior (Kwon

2005; Kalamian et al. 2021).

Consider the nonlinear system as follows:

_xðtÞ ¼ f ðxðtÞ; uðtÞÞ þWðtÞ
zðtÞ ¼ hðxðtÞÞ þ VðtÞ;

where f and h are two differentiable functions. Besides,

W(t) represents the vector of process noise that is supposed

to be zero-mean white Gaussian, with the covariance ~QðtÞ,
i.e., WðtÞ�N ð0; ~QðtÞÞ, and V(t) is the observation noise

vector that is supposed to be zero-mean white Gaussian,

with the covariance ~RðtÞ, i.e., VðtÞ�N ð0; ~RðtÞÞ.
Define the Jacobian matrix as follows:

FðtÞ ¼ of

ox
jx̂ðtÞ;uðtÞ;

HðtÞ ¼ oh

ox
jx̂ðtÞ:

The following equations constituent of the EKF:

dx̂ðtÞ
dt

¼ f ðx̂ðtÞ; uðtÞÞ þ ~KðtÞ zðtÞ � hðx̂ðtÞÞ½ �; x̂ð0Þ ¼ x0

d ~PðtÞ
dt

¼ FðtÞ ~PðtÞ þ ~PðtÞFTðtÞ

þ ~QðtÞ � ~KðtÞ ~RðtÞ ~KTðtÞ; ~Pð0Þ ¼ w;

where x̂ðtÞ and ~PðtÞ are the predicted state and predicted

estimate covariance, respectively. For the EKF, the gain
~KðtÞ obtained as follows:

~KðtÞ ¼ ~PðtÞHTðtÞ ~R�1ðtÞ:

Figure 1 depicts the suggested control system strategy,

which includes the EKF estimator.

6 Simulation

In this section, the dynamic behavior of the HIV infection

near equilibrium points is investigated. The equilibrium

points of the system (1) without considering the inputs are

obtained as follows:

_T tð Þ ¼ 0 ) s� dT � bTv ¼ 0

_T
�
tð Þ ¼ 0 ) bTv� m2T

� ¼ 0

_v tð Þ ¼ 0 ) kT� � m1v ¼ 0:

ð16Þ

In the absence of infection in the population, i.e., T� ¼
v ¼ 0, the disease-free equilibrium point of the nonlinear

dynamic model of HIV is given as follows:
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s

d
0

0

0
BB@

1
CCA; ð17Þ

and while v 6¼ 0, the endemic equilibrium point is

eE ¼ m1m2

kb
;
s

m2

� m1d

kb
;

ks

m1m2

� d

b

� �
¼ 240; 21:6667; 902:778ð Þ:

ð18Þ

The first equilibrium point is proportional to the disease-

free equilibrium point, whereas the second one corresponds

to the state when the patient enters the latent period of

illness. In the first phase of the illness, when a person

becomes infected with HIV, the concentration of viruses

and infected CD4? T cells is extremely small (close to

zero), and the number of healthy CD4? T cells is in normal

condition. Figure 2 depicts the transient time response to

the model (2) over time when u1ðtÞ ¼ u2ðtÞ ¼ 0. As can be

observed, the dramatic increase in the concentration of

virions and infected cells is clear, together with a signifi-

cant decrease in the number of healthy CD4? T cells.

In order to carry out the feedback control design, the

current value of the state variables is required. In this study,

it is assumed that the first two state variables of the system

are available. In other words, the third state variable that

expresses the number of viruses is measured at any given

moment, so the output of the system is determined as

follows:

z ¼ 0 0 1ð Þxþ m tð Þ ¼ Cx tð Þ þ m tð Þ; ð19Þ

where z represents the number of viruses. It is assumed that

the process noise W(t) is equal to zero, and the number of

free virus particles is measured, in the presence of the

white Gaussian noise mðtÞ with the covariance ~RðtÞ.

6.1 Evaluation of the Sub-optimal Control
Approach for Injection of Drugs

In this subsection, the impact of nonpharmaceutical inter-

ventions using the sub-optimal control mechanism is

investigated. Based on (2) and according to the notations

that are provided in Sect. 3, the matrices A(x) and B(x) can

be chosen as follows:

AðxÞ ¼
�d 0 bx1
bx3 � m2 0

0 k � m1

2
64

3
75 and BðxÞ ¼

bx1x3 0

�bx1x3 0

0 � kx2

2
64

3
75:

The main aim is to seek control efforts u1ðtÞ
ð0	 u1 	 1;RTIsÞ and u2ðtÞ ð0	 u2 	 1; PIsÞ that minimize

the cost functional (5) subject to reach the following dis-

ease-free equilibrium point:

e0 ¼ T0; T
�
0 ; v0ð Þ ¼ 500; 0; 0ð Þ: ð20Þ

In order to design the optimal control process, it is

assumed that the infected individual is currently at the

Fig. 1 Proposed control system

approach including the EKF

estimator
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Fig. 2 Time response of HIV-infected system without drug therapy
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onset of disease progression. In this regard, the initial

conditions of the HIV model for numerical simulation

are given as follows:

T 0ð Þ ¼ 240;

T� 0ð Þ ¼ 23;

v 0ð Þ ¼ 935:

ð21Þ

For the carry out of optimal control design, the weighting

matrix coefficients of the cost functional (5) are chosen as

follows:

Q ¼
1 0 0

0 1 0

0 0 1

2
64

3
75; R ¼

1 0

0 1

� �
: ð22Þ

In the presence of pharmaceutical intervention, Fig. 3

depicts the behavior of the dynamic model of HIV

infection. In this case, by selecting the constant

weighting matrices Q and R as (22), the number of

healthy CD4? T cells increases from the corresponding

initial value of 240 cells/mm3 and, as expected, tends an

optimal value of 500 cells/mm3 over time. Furthermore,

the concentration of infected CD4? T cells and virus

cells starts at 23 cells/mm3 and 935 cells/mm3 and

eventually attains an optimal value of 2:65� 10�6 cells/

mm3 and 9:22� 10�5 cells/mm3, respectively. Figure 4

demonstrates how a combination of preventive measures

ðu1ðtÞ; u2ðtÞÞ affects HIV replication suppression. In

order to minimize the objective functional (5), the opti-

mal control u2ðtÞ is maintained at the maximum level of

100% for about 55 days before relaxing to the minimum

in the final time. The sizes of CD4? T-infected cell

particles ðT�Þ and free virus particles (v) are diminished

when the sub-optimal strategies are in place. It can be

inferred that the combination of both control efforts is

significantly effective in mitigating the HIV life cycle.

Here, the influence of various values of Q and R

matrices on the behavior of the HIV model under sub-

optimal control is investigated. First, suppose that the Q

matrix is larger than the R matrix. For instance, Q ¼
100� Ið3�3Þ and R ¼ Ið2�2Þ. In this case, Figs. 5 and 6

illustrate the dynamic response of the HIV model under

pharmaceutical interventions and the dose of drug injected

over time, respectively. Figures 7 and 8 depict the behavior

of the optimality system in the case of R matrix that is

much larger than the Q matrix.

Comparing Figs. 4, 5, 6 and 7, it can be seen that the

convergence occurs later when the matrix Q is much larger

than the matrix R, and the convergence error is very low.

This is because that the input cost is much lower than the

cost of the system states.
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Fig. 3 Time response of dynamic HIV states under optimal control

when Q and R are both identity matrices (vertical axis plotted

logarithmically)
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Fig. 4 Evolution of drug injection dose (control efforts) over time
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input applied when the Q matrix is much larger than R
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6.2 Implementation of the Optimal Observer
to Estimate the Dynamic States of HIV
Disease

In this subsection, to estimate the unknown variables of

the HIV model, we intend to evaluate the performance of

the developed Kalman filter. It is assumed that at any

given time, some states of the system are measured and

that the measured data contain additive white Gaussian

noise. In this regard, we investigate the power output of

noise in three modes: weak, medium, and strong. It can

be said that in the case of white Gaussian noise with a

mean of zero, the covariance matrix ~R can be an

appropriate criteria for the noise magnitude. Therefore,

the three cases with the covariance of the noises ~R ¼ 1,
~R ¼ 10, and ~R ¼ 50 are considered. In this approach,

both the sub-optimal controller and the optimal observer

are applied simultaneously to the system. The HIV

model and optimal observer are equipped with initial

conditions as follows:

T 0ð Þ ¼ 240; T̂ 0ð Þ ¼ 800

T� 0ð Þ ¼ 23; T̂
�
0ð Þ ¼ 400

v 0ð Þ ¼ 935; v̂ 0ð Þ ¼ 800;

ð23Þ

where the initial conditions of the HIV model are selected

as (21), and the initial conditions of the estimated system

are chosen based on speculation.

In order to evaluate the performance of the proposed

optimal observer, Fig. 9 depicts the response of the opti-

mality model and estimation of the state variables of the

HIV model when system states are unavailable and the

output measurement is associated with a noise ~R ¼ 1. As

shown, the dynamic states are able to converge to the

desired values during the time period. Furthermore, Fig. 10

demonstrates the error between system states and the

estimation of the state variables for ~R ¼ 1. The estimation

error, in this case, tends to be negligible after a short period

of time (approximately twenty-two days) and, due to the

noise of the measurements, it will be accompanied by a

small amount of noise.

In Figs. 11, 12, 13 and 14, the transient response of the

system states, their estimation, and the corresponding

estimation error for medium and strong noise are presented.

As expected, the estimation error increases with increasing

noise intensity, or in other words, the output noise

covariance matrix.

To evaluate and analyze the performance of the pro-

posed control approach, two well-known performance

indicators, namely root mean square error (RMSE) based
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Fig. 6 Evolution of the drug injection dose (control inputs) over time

when the Q matrix is much larger than the R matrix
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when R matrix is much larger than Q matrix
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Fig. 9 States of the HIV model and corresponding estimations for the

identity weighting matrices (22) based on the state matrix A(x) and
~R ¼ 1
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Fig. 10 Time response error graph of estimation of HIV dynamic

states in the presence of measured noise ~R ¼ 1
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Fig. 11 States of the HIV model and corresponding estimations for

the identity weighting matrices (22) based on the state matrix A(x) and
~R ¼ 10
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Fig. 12 Time response error graph of estimation of HIV dynamic

states in the presence of measured noise ~R ¼ 10
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on steady-state error and control effort signal, are consid-

ered as follows:

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ZT

0

ðxiðtÞ � x̂iðtÞÞ2dt

vuuut ; i ¼ 1; 2; 3 ð24Þ

RMSUj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ZT

0

ðujðtÞÞ2dt

vuuut ; j ¼ 1; 2: ð25Þ

The results of the aforementioned numerical indicators for

different cases are tabulated in Table 2.

6.3 Comparison of SDRE and LQR Approaches
in HIV Suppression

In this subsection, in order to compare the advantages of

the proposed technique with the well-known Linear

Quadratic Regulator (LQR) approach, we examine the

system behavior under both of the mentioned optimal

control methods. To realize the initiative, based on the

notation x1 ¼ T , x2 ¼ T�, and x3 ¼ m, the HIV model (2) is

linearized around the equilibrium points as follows:

A ¼
�bx�3 � d 0 � bx�1

bx�3 � m2 bx�1
0 k � m1

2
64

3
75; B ¼

bx�1x
�
3 0

�bx�1x
�
3 0

0 � kx�2

2
64

3
75;

ð26Þ

where the matrices A and B are the state transition matrix

and input matrix, respectively. According to the numerical

values of the model parameters presented in Table 1, at the

disease-free equilibrium point (20), we have:

Aje0 ¼
�0:02 0 � 0:012

0 � 0:24 0:012

0 100 � 2:4

2
64

3
75; Bje0 ¼

0 0

0 0

0 0

2
64

3
75:

ð27Þ

The eigenvalues of Aje0 can be obtained as

ð�0:020; 0:218;�2:858Þ. This means that the system is

unstable at this equilibrium point. Similarly, for the ende-

mic equilibrium point (18), we obtain:
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Fig. 13 States of the HIV model and corresponding estimations for

the identity weighting matrices (22) based on the state matrix A(x) and
~R ¼ 50
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Fig. 14 Time response error graph of estimation of HIV dynamic

states in the presence of measured noise ~R ¼ 50

Table 2 Numerical indicators of RMSEi, RMSUi

Parameter RMSE1 RMSE2 RMSE3 RMSU1 RMSU2

~R ¼ 1 0.1437 0.0330 0.0353 0.4234 0.1648

~R ¼ 10 0.3429 0.2876 0.1137 0.4232 0.1646

~R ¼ 50 0.9354 0.3731 0.8709 0.4233 0.1648
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AjeE ¼
�0:04167 0 � 0:00576

0:02167 � 0:24 0:00576

0 100 � 2:4

2
64

3
75;

BjeE ¼
5:2 0

�5:2 0

0 � 2167

2
64

3
75;

ð28Þ

where the eigenvalues of AjeE can be calculated as

ð�0:0199þ 0:0658i;�0:0199� 0:0658i;�2:6418þ
0:0000iÞ. So the system is stable at endemic equilibrium

point. In fact, the equilibrium point eE corresponds to the

phase at which the patient is asymptomatic. The main goal

at this step is to design an optimal controller to enhance

healthy CD4? T cells to a normal level and reduce infected

CD4? T cells and viral load as much as possible.

The linear quadratic regulator was chosen because this

method is able to overcome disturbance and can be tracked

optimally without a concern about controllability matrix

rank reduction. The weighting matrices of the optimal

approach can be chosen to be either a function of state

variables or constant. So, the weighting coefficients are

considered as follows:

R ¼ diag 10; 10ð Þ;Q ¼ diag 102; 102; 102
� �

:

Figure 15 shows that after about 45 days of drug admin-

istration, the behavior of the HIV model under the pro-

posed SDRE method was able to converge to the desired

number of healthy CD4? T cells in the normal situation. In

addition, at the onset of treatment, the concentration of

virions and infected CD4? T cells is reduced dramatically.

The results of applying the LQR controller in a similar

situation are presented in Figure 16.

By qualitatively comparing Figs. 15 and 16, it can be

observed that the convergence rate of the system states to

the disease-free equilibrium in the LQR method is slower

than the proposed SDRE approach.

7 Conclusion

Recent developments in the state-dependent Riccati equa-

tion (SDRE) technique as a systematic approach in the field

of optimal control design for nonlinear systems are quite

apparent. In this paper, a nonlinear sub-optimal control

method based on the SDRE to suppress the viral evolution

in vivo and break the cycle of HIV replication via the

medication regimen is presented. In order to examine HIV

remission, the effects of multiple pharmaceutical inter-

ventions, such as Reverse Transcriptase Inhibitors (RTIs)

and Protease Inhibitors (PIs) treatments, as the optimal

control efforts are investigated. The significant advantage

of this control approach for drug regimen management is

that once the concentration of CD4? T-infected cell par-

ticles ðT�Þ and free virus particles (v) is decreased to the

lowest levels, drug dosage can be diminished as far as

possible. According to this, the side effects of medications

for the patient are reduced in the long run. In the proposed

control design process, the nonlinearity of the system is

preserved. Also, the effect of weight matrices is examined.

It can be seen that if the Q matrix is larger than the

R matrix, convergence occurs later, but the convergence

error is smaller and vice versa. Epidemiologically, some

system states are not available for controller design. In this

regard, the extended Kalman filter-based method as a

nonlinear state observer for estimating the unavailable state

variables has been developed. Based on the obtained results

from the numerical simulations and comparison with the

Linear-Quadratic Regulator (LQR) method, the speed of

convergence, efficiency, and flexibility of the proposed
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Fig. 15 Time response of the HIV model during drug therapy under

the SDRE control approach
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control method in suppressing the spread of the disease are

clearly evident.
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