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MOTIVATION Array-based platforms have been used extensively to evaluate human DNAmethylation, but
DNA methylation profiling of model systems has been limited to next-generation sequencing-based ap-
proaches. Commercial release of a murine DNA methylation array is of interest to the epigenetics commu-
nity, but the performance of this platform versus existing sequencing-based methodologies has not been
evaluated previously. In this resource article, we attempt to provide insight into the performance of MMB
in a real-world setting.
SUMMARY
Researching the murine epigenome in disease models has been hampered by the lack of appropriate and
cost-effective DNA methylation arrays. Here we perform a comprehensive, comparative analysis between
theMouseMethylation BeadChip (MMB) and reduced-representation bisulfite sequencing (RRBS) in twomu-
rine models of colorectal carcinogenesis. We evaluate the coverage, variability, and ability to identify differ-
ential DNA methylation of RRBS and MMB. We show that MMB is an effective tool for profiling the murine
methylome that performs comparably with RRBS, identifying similar differentially methylated pathways.
Although choice of technology is experiment dependent and will be predicated on the underlying biology be-
ing probed, these analyses provide insights into the relative strengths and weaknesses of each approach.
INTRODUCTION

DNA methylation is the covalent modification of DNA to

include a methyl group (CH3). This is a common epigenetic

alteration that can govern chromatin accessibility, transcrip-

tion factor activity, gene regulation, and transcript expression.

DNA methylation is deposited by DNA methyltransferase

(DNMT) enzymes and removed by ten-eleven-twelve (TET) en-

zymes. Most DNA methylation occurs in the context of CG di-

nucleotides (CpG [cytosine-phosphate-guanine]), with the

cytosine nucleotide becoming methylated. Deregulation of

the DNA methylation landscape is linked to several diseases.
Cell Report
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The CpG island methylator phenotype, which describes the

widespread accumulation of DNA methylation at CpG islands,

occurs in several forms of cancer, including colorectal and

gastric cancers and glioma (Fennell et al., 2019; Zouridis

et al., 2012; Noushmehr et al., 2010; Liu et al., 2019). DNA

methylation dysregulation also occurs in heart disease

(Navas-Acien et al., 2021; Serra-Juhé et al., 2015), Alzheimer’s

disease (Levine et al., 2015; Mastroeni et al., 2010), and rheu-

matoid arthritis (Nakano et al., 2013).

These associations have been borne out by studies

utilizing increasingly accessible genome-wide DNA methylation

technologies. In the late 1990s and early 2000s, PCR-based
s Methods 2, 100323, November 21, 2022 ª 2022 The Author(s). 1
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Figure 1. Global methylation profiles of the

cohort as captured by MMB and RRBS

Methylation values from single CpG sites were

collapsed to a mean value across all samples. The

height of the density plot represents a function de-

picting the number of CpGswith a given level of DNA

methylation. Entire datasets are presented at the top

and only sites that are covered by MMB and RRBS

at the bottom.
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methodologies were the primary modality of choice for investi-

gating DNA methylation alterations. These approaches are

limited in throughput and, thus, stymie discovery-based investi-

gations. In 2006, Illumina released the GoldenGate BeadArray

methylation assay, a microarray-based approach that allowed

simultaneous assessment of the DNA methylation state of

�1,500 CpG sites located in the proximal promoters of �370

genes (Bibikova and Fan, 2009). The BeadArray platform has

evolved over the past 15 years to include more than 850,000

CpG sites in its latest rendition, the EPIC array (Pidsley et al.,

2016). The EPIC array and its predecessor, the 450K array,

have been used extensively to characterize the DNAmethylation

landscape of normal and pathological states. This has led to

several paradigm-shifting publications (Wockner et al., 2014;

Hinoue et al., 2012; Horvath 2013; Nazor et al., 2012). These

technologies are limited to human samples, and, thus, experi-

mental biologists seeking to understand themechanisms behind

these associations using animal models must resort to other

methodologies.

Transgenic murine models are an important tool for under-

standing the effects of certain genes on DNA methylation. A

typical experiment might include knocking out a gene of interest,

observing a phenotype, and assessing the underlying DNA

methylation profile of a given tissue. To achieve the latter,

sequencing-based approaches, such as whole-genome bisulfite

sequencing (WGBS) (Lister et al., 2009) or reduced-representa-

tion bisulfite sequencing (RRBS), are usually employed (Gu

et al., 2011).WGBS, when performedwith sufficient depth, cover

more than 99% of CpGs in the murine methylome but currently

costs several thousands of dollars per sample. RRBS involves

enzymatic digestion by MspI, which cuts DNA at CCGG motifs

(Gu et al., 2011) and, thus, generates smaller fragments that

map to CpG-dense regions of the genome, reducing sequencing

library size and, ultimately, sequencing costs at the expense of

coverage of CpGs in other regions (Gu et al., 2011). Inclusion

of an enzyme digestion and size selection step also creates tech-

nical variability in the specific CpGs captured in each library

preparation.

Illumina recently developed a mouse DNA methylation micro-

array based on the BeadArray technology. This array captures

more than 285,000 CpG sites. These sites are curated to include
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proximal promoter regions and other

regulatory regions of the murine methyl-

ome. In this study, we generate DNA

methylation data from transgenic Kras

and Braf mutant animals using RRBS and

the Mouse Methylation BeadChip (MMB).
In human colorectal cancer, BRAF and KRASmutation are asso-

ciated with DNA methylation dysregulation (Fennell et al., 2019;

Hinoue et al., 2012; Weisenberger et al., 2006). Therefore, trans-

genic murine models recapitulating these mutations are ideal

models for examining DNA methylation profiling technologies.

We performed a comprehensive comparative analysis to criti-

cally appraise this new platform and provide insights into the

benefits and limitations of each technology.

RESULTS

Coverage of MMB and RRBS
We first sought to examine the coverage of both platforms. After

filtering, 264,145 CpGs were captured by MMB, of which

207,468 were captured in all samples (no sample-level filtering).

For RRBS, at our threshold of 103 coverage, we captured

1,487,242 individual CpG sites. We also examined the number

of CpGs covered at sequencing depths from 53 to 403 (Fig-

ure S1). As expected, there was a decrease in the number of

CpGs captured with increasing sequencing depth filtering.

These data indicate that the depth to which the library is

sequenced is an important factor in RRBS experimental design.

For MMB and RRBS, DNA methylation profiles followed the

bimodal distribution expected in DNA methylation data. MMB

data contained a greater proportion of intermediately methylated

CpG sites (Figure 1). When we compared only sites that were

covered by both platforms, the global DNA methylation patterns

were consistent between MMB and RRBS (Figure 1).

Next we examined the coverage of CpG islands (CGIs) by each

technology. In this study, we adopted the UCSC definition of a

CGI, which describes islands as having more than 50%GC con-

tent, a length of more than 200 bp, and a ratio of observed to ex-

pectedCGdinucleotides of greater than 0.6. Using these criteria,

we identify 17,017 CGIs in the murine genome. RRBS covered

13,778 CGIs (�80% of all annotated islands) with at least one

CpG site. The median number of CpG sites covered per CGI

was 41. MMB covered a similar number of CGIs (13,365), but

the median number of CpGs per CpG island on the array was

only 2. CpGs covered in RRBSwere enriched for CGIs compared

with those on MMB, with 48.9% of RRBS CpGs residing in CGIs

versus 11.5% on MMB. These data indicate that the breadth of



Figure 2. Intra-CGI variability differs between CGIs

(A) Variance of DNAmethylation across CGIs containingmultiple CpG sites. The histogram represents the distribution of the log10(variance) betweenCpG sites in

all CGIs with more than 1 CpG. DNA methylation was measured by RRBS. Each dot and line represents methylation in an individual sample.

(B–H) Representative DNA methylation profiles of CGIs with low variance (B) through CGIs with extreme intra-island variability (H). Each line represents a single

sample across an entire CGI, and each dot represents a single CpG site. Line and dot colors represent mouse age groups.
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the array, at the level of CGIs, is similar to RRBS, but the intra-is-

land coverage is substantially lower.

We also compared the genomic distribution of CpGs on MMB

with RRBS. Although RRBS had a comparative enrichment for 5

untranslated regions (UTRs), transcription start sites (TSSs), and

exonic regions, the array had greater coverage of intronic re-

gions (p < 0.0001; Figure S2A). In overlapping sites, we saw a

similar distribution of DNA methylation in these regions (Fig-

ure S3). When considering both technologies in totality, although

patterns of DNA methylation in each genomic region were

similar, RRBS tended to have a greater proportion of completely

hypomethylated TSSs and 50 UTRs. The breadth of DNA methyl-

ation in intergenic siteswas higher inMMB,which is likely a result

of the curated nature of the probe locations on the array.

Both technologies covered repetitive elements such as long

and short interspersed nuclear elements (LINEs and SINEs,

respectively) and long terminal repeats (LTRs). 36,405 and

252,752 CpGs mapped to annotated repetitive elements for

MMB and RRBS, respectively. Mean methylation at repetitive el-

ements was similar for both platforms, especially in CpGs that

are common to both platforms (Figure S2B).

To examine the breadth of coverage of MMB and RRBS in

regulatory regions, we downloaded candidate cis-regulatory

elements (CREs) from the murine ENCODE project. These ele-

ments are subdivided into promoter-like, proximal enhancer-

like, distal enhancer-like, CTCF-only, and DNase-H3K4me3.

The murine ENCODE project describes 23,762 promoter like

signatures (PLSs), 72,964 proximal enhancer like signatures

(pELSs), 209040 distal enhancer like signatures (dELSs),

23836 CTCF-only, and 10,383 DNase-H3K4me3 regions.

MMB has probes that cover 2.4% of PLS (571 regions), 6.8%

of dELS (4927 regions), 0.73% of pELS (1542 regions), 0.88% of

DNase-H3K4me3 regions (211 regions), and 5.12% of CTCF-

only sites (532 regions). In total, MMB has probes that cover

7,783 independent candidate cis-regulatory regions.

By comparison, at 103 coverage, the RRBS consensus data-

set contained CpGs that mapped to 57,068 unique candidate
cis-regulatory elements, including 60.9% of PLS (14,480 PLS re-

gions), 29.4% of pELS (21,450 regions), and 8.8% of dELS

(18,356 regions).

AlthoughRRBScovered agreater number of cCREs, therewas

a significant bias toward coverage of proximal sites compared

with thegenomicdistribution of cCREs (p<0.0001 for all proximal

elements versus genome; Figure S2C). In contrast, representa-

tion of cCREs on the array was more reflective of the genome,

with a small enrichment for dELS and depletion for pELS

elements (p = 0.0091 and p = 0.0034, respectively; Figure S2C).

Appropriate subsampling of CpGs in CGIs can capture
most intra-CGI variability
RRBS captures significantly more CpG sites per CGI. We sought

to determine whether capturing these CpG sites yielded addi-

tional insight into the DNA methylation profile of the CGI or

whether they were methylated similarly and provided redundant

information. To better understand the variability within CGIs, we

first calculated the variance of methylation across CGIs in each

sample and then calculated the mean variance at each CGI

across the entire dataset (Figures 2 and S5). The positive skew

in the distribution of mean variances indicates that most CGIs

are relatively stable, with little variability in DNA methylation be-

tween CpGs residing in the same island. Figures 2B–2I depict

CGIs with increasing intra-island variability. We hypothesized

that CGI length and ratio of CGI length to number of CpG sites

may influence intra-island variability, with longer CGIs and those

represented by fewer CpGs being more variable. To test this, we

regressed the variance of each island against the length (base

pairs) and the ratio of CGI length to number of CpG sites

(CpG:CGI length ratio). Although CGI length and CpG:CGI length

ratio were highly significantly associated with increased intra-is-

land variability (1.75 3 10�6 and 2 3 10�16, respectively), the R2

was low (R2 z 0.01), indicating that most of the variability is

ascribed to other factors.

Next we examined the effect of DNA methylation level on the

stability of DNA methylation across the island. DNA methylation
Cell Reports Methods 2, 100323, November 21, 2022 3



Figure 3. RRBS and MMB DNA methylation measurements are highly correlated
Comparative analyses revealed significant genome-wide concordance of DNA methylation between MMB and RRBS.

(A) Representative DNA methylation measurements as captured by the MMB and RRBS in CpG sites that were common to both platforms.

(B) Pearson’s R2 values for same-sample, whole-methylome comparisons on RRBS and MMB.

(C) Distribution of the difference between the mean MMB beta value and the mean RRBS methylation percentage at individual CpG sites.

(D) Correlation of DNA methylation between MMB and RRBS (Rsq) versus the average beta value for the same CpG. CpGs were binned in increments of 0.05.
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was most consistent across CGIs when islands were nearly

entirely methylated or demethylated (Figure S4). We quantified

this statistically by calculating the absolute difference between

average methylation across the island and hemimethylation

(50%). As distance from hemimethylation increased (toward

0% or 100% methylation), variability across the island signifi-

cantly decreases (p = 2 3 10�16, R2 z 0.76).

To identify whether most of the variability between CpGs in an

island could be captured by a smaller subset of CpGs, we per-

formed variable clustering. Variable clustering captures subsets

of highly correlated variables, and identifies if most of the vari-

ance within a cluster can be explained by a single variable. The

average CGI in our RRBS dataset contained 52.59 CpG sites,

and 13.4 variable clusters. We calculated how much of the total

variability within a CGI could be explained by capturing only data

from representative CpGs from variable clusters within an island.

Using data from only the most representative CpGs of variable

clusters within a CGI, we can recapitulate an average of 64.6%

of the variability within a CGI and reduce the size of the total da-

taset pertaining to CGIs from 702,978 CpGs to 179,166 CpGs.

We observed that CGIs with low variability have a lower per-

centage of variance explained by variable clusters (Figure S4)

and require a greater number of clusters to explain the variance
4 Cell Reports Methods 2, 100323, November 21, 2022
across the CGI. This is likely due to the small variance, most of

which is produced by noise rather than biological signal. In

contrast, highly variable CGIs, which reflect biological variability

across the island, can be well explained by capturing several

CpGs (Figure S4). These data indicate that highly variable CGIs

can be accurately summarized by profiling a subset of carefully

selected CpGs within the CGI.

Base-resolution methylation profiling via MMB versus
RRBS
We sought to assess the correlation between methylation values

attained at base resolution using MMB and RRBS. After

coverage filtering (>10 reads per CpG), our RRBS experiment

covered 1.48 3 106 CpG sites. 25,548 filter-passing CpGs

were covered by MMB and RRBS, representing 12.3% and

2.44% of CpGs covered by MMB and RRBS, respectively. We

extracted methylation values for these CpG sites from both plat-

forms and computed a sample-wise correlation analysis. In

CpGs covered by both assays, we observed high concordance

between both platforms (Pearson’s R2 > 0.95 in all samples; Fig-

ure 3). The average absolute difference between measurements

obtained on MMB and RRBS was small, with DNA methylation

measurements of more than 98% of overlapping probes with



Figure 4. MMB detects significantly more differential DNA methylation with age

(A) Overlap between genes common to both platforms and identified as significantly age associated in wild-type samples by RRBS, MMB, or both.

(B) Significant differential methylation with age detected by RRBS and MMB.
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an absolute methylation difference of less than 20% between

platforms (Figure 3C).

Next we examined correlations between methylation values

obtained on MMB and RRBS at individual CpG sites. There

was substantial inter-CpG variability in the correlation between

MMB and RRBS (Pearson’s R2 range, 0–0.98). We hypothesized

that the correlation between readouts obtained on each platform

may be weakest at measurement extremes (fully [un]methyl-

ated). To examine this hypothesis, we calculated the average

beta value obtained by MMB for each probe and binned them

in beta value increments of 0.05. We observed that correlations

between MMB and RRBS followed a unimodal distribution

centered around an average beta value of �0.4 (Figure 3D).

Differential DNA methylation analysis of common CpGs
Most studies attempt to identify differential DNAmethylation be-

tween experimental groups. We next sought to examine the abil-

ity of both technologies to identify differential methylation with

age and by sample group. It is well established that methylation

at specific loci shifts in accordance with advancing age (Fennell

et al., 2021; Horvath 2013; Teschendorff et al., 2013). For an age-

associated differential DNA methylation analysis, we regressed

the beta values (or percentage of methylated reads) against

age (days) for CpGs that were assayed with both technologies.

The Illumina methylation array vastly outperformed RRBS in

this respect, identifying statistically significant age-associated

DNA methylation alterations in 3,274 of 25,396 overlapping

CpGs (Figures 4A and 4B). In contrast, RRBS identified a mere

278 of 25,396 CpGs. 92.4% of CpGs that were identified as

changing with age by RRBS were also detected by MMB. These

data indicate that, although both approaches can detect differ-

ential methylation with age, MMB is more sensitive and able to

detect more subtle age-associated DNA methylation events.

We also performed differential DNA methylation analysis be-

tween Kras or Braf mutant animals and their wild-type counter-

parts at 8 and 14 months. In keeping with our aging analysis,

MMB detected significantly more statistically differentially meth-

ylated loci (Table 1). Most of the differences detected by MMB

were small. By applying the common |D| 0.2 beta value threshold

for calling differential methylation, the discrepancies in differen-
tial methylation calling on the two platforms shrank substantially

(Table 1), indicating that MMB may be more suited for detecting

more subtle DNA methylation alterations.

MMB is more precise than RRBS
We hypothesized that the within-group variation in detected

methylation may be smaller on the MMB platform compared

with RRBS, improving our ability to detect more subtle age and

genotype-associated changes. To explore this, we analyzed

within-group variance on each platform at single-CpG resolu-

tion. For each experimental group and for most CpG sites (Fig-

ure 5), we observed substantially less variability between sam-

ples on MMB. For Braf and Kras mutant samples at 8 months,

variability was significantly greater on the RRBS platform

compared with MMB, with 3,277 (Braf mutant animals) and

2,815 CpGs (Kras mutant animals), having a greater intra-group

variability on RRBS compared with MMB. In contrast, the RRBS

was less variable than MMB at 74 and 75 CpGs, respectively.

The same trend was observed at 14 months (Figure 5). These

data support the hypothesis that RRBS-generated DNA methyl-

ation data are more variable than MMB and, thus, are limited in

detecting smaller DNA methylation changes.

To investigate whether sequencing coverage was influencing

variability on RRBS, we regressed the mean coverage of each

CpG site in the consensus dataset against the within-group vari-

ance for each experimental group (Figure S6). For all experi-

mental groups, we observed that, asmean sequencing coverage

increased, there was a congruent decrease in the within-group

variance. These data indicate that the variability is most likely

technical rather than biological.

Detection of common pathway alterations
Gene promoter and pathways analysis is commonly used to

identify processes that are driving phenotypes of interest. We

sought to assess whether each technology could independently

identify differentially methylated promoters and pathways in our

Braf and Kras mutant murine models. We performed differential

methylation analysis on each platform, using the entire quality-

filtered dataset (rather than just CpGs shared by each technol-

ogy) in each case, to emulate the situation where the investigator
Cell Reports Methods 2, 100323, November 21, 2022 5



Table 1. Number of differentially methylated CpG sites between

8- and 14-month-old Braf and Kras mutant animals versus wild-

type animals, as assessed by RRBS and MMB, in CpG sites that

were common to both techniques

Group

8 months (FDR) 8 months (FDR and |D| b > 0.2)

RRBS MMB p value RRBS MMB p value

KRAS 260 4,949 <0.0001 246 401 <0.0001

BRAF 577 5,154 <0.0001 577 841 <0.0001

Group

14 months (FDR) 14 months (FDR and |D| b > 0.2)

RRBS MMB p Value RRBS MMB p Value

KRAS 1,046 6,921 <0.0001 947 870 0.07

BRAF 1,620 6,887 <0.0001 1,467 1,447 0.72
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has chosen a particular technology from the outset. In keeping

with earlier analyses, we considered CpGs to be differentially

methylated when the false discovery rate (FDR) was less than

0.05 and there was an absolute difference in DNA methylation

of 0.2 (MMB) or 20% (RRBS) (Table S1). Both technologies de-

tected a large number of significant DNA methylation alterations

under each condition versus wild-type animals. Because of the

higher number of CpGs, RRBS detected more differentially

methylated CpG sites than MMB in most comparisons (Table 2).

The proportion of differential methylation compared with the to-

tal number of CpGs captured by each technique was between

1% and 3%.

Because thesemodels represent intestinal oncogenes that are

usually associated with the CGI methylator phenotype, we next

segregated the data by whether the CpG resided in a CGI. As

outlined earlier, 727,509 (48.9%) and 30,385 (11.6%) CpGs

reside in CGIs in our RRBS and MMB datasets, respectively.

On both platforms, we observed the expected pattern of

distribution of hyper(hypo)methylation events (Figure S7), with

hypermethylation concentrated in CGIs and hypomethylation in

non-island-associated genomic regions.

Next we performed Gene Ontology analysis on hypermethy-

lated promoters in 14-month-old Braf and Kras mutant mice on

MMB and RRBS. For each comparison, we observed an enrich-

ment for hypermethylation at promoters encoding genes

involved in differentiation and development (Figure 6), consistent

with our prior work. We observed substantial overlap in the Gene

Ontology processes identified by MMB and RRBS) (64.4% and

51% forBraf and Kras, respectively), and�65%of the top 50 en-

riched terms for both models were identified by RRBS and MMB

(Figure 6). These data indicate that both technologies can reli-

ably detect differentially methylated pathways that are relevant

to the disease model.

DISCUSSION

DNA methylation is an important epigenetic modification that

can govern chromatin state and gene transcriptional programs.

Several diseases alter the DNA methylation landscape (Robert-

son 2005), and understanding the basis of these modifications

is important for understanding disease etiology. Murine models

are ideal for investigating disease, but genome-scale DNA

methylation analyses have been limited to bisulfite-based
6 Cell Reports Methods 2, 100323, November 21, 2022
sequencing approaches, such as WGBS, which is prohibitively

expensive, and RRBS, which has a coverage bias for CGI-asso-

ciated CpGs. Here we compared a new array-based DNA

methylation analysis tool, MMB, with RRBS. We report that

MMB performs comparably with RRBS. MMB produces precise

measurements of DNAmethylation and is able to detect disease-

specific DNA methylation alterations.

Both techniques capture a similar number of CGIs, but MMB

has significantly fewer CpGs per island. There is some evidence

that suggests a high level of correlation between the DNA

methylation of CpG sites within a CGI, especially when the CGI

is small (<400 bp) (Zhang et al., 2015). However, most of this

research is confined to humans, and it is not clear whether this

was also true in murine models. Here we sought to assess

whether increased intra-CGI coverage by RRBS might contain

biologically relevant DNA methylation or whether additional

CpG coverage within an island is redundant, with DNA methyl-

ation of a few CpGs being sufficient to infer DNA methylation

of the entire island. This is an important distinction, given that

the CGIs are typically only represented by one or two probes

on MMB. Here we report that most CGIs had relatively low

intra-island methylation variability. As the mean methylation of

a CGI approached 50%, we observed significant variability in

DNA methylation between CpGs within the island, and, thus, it

is important to consider the validity of generalizing MMB data

generated from a small number of probes to the entire CGI at in-

termediate levels of DNA methylation.

In sequencing experiments, investigators are often faced with

the coverage versus cost trade-off, where increased coverage

and sequencing depth are associated with readouts that are

more reliable but can dramatically increase the overall cost of

the experiment. In this study, we considered 103 coverage to

be an appropriate cutoff for calling DNAmethylation fractions, al-

lowing us to profile �1.5 million CpG sites. As we increase our

coverage stringency, we obtain more accurate methylation frac-

tions that converge on the methylation readout obtained for the

same sites on MMB. If the CpG sites of interest are covered by

MMB, this technology may offer a more precise readout that is

more cost effective than deep sequencing of bisulfite

sequencing libraries. As little as 100 ng is sufficient for generating

RRBS libraries. In contrast, MMB requires more than 250ng. In-

vestigators should keep these factors in mind when considering

which technology to use. Ultimately, the underlying biological

processes being probed and the resources of the laboratory

will guide these decisions.

One common application is differential methylation analysis.

Here the question is whether there is a statistically significant

difference in DNAmethylation at a given site between two exper-

imental groups. Small, consistent differences can often yield sig-

nificant p values but have little biological relevance. We and

others also apply a D methylation cutoff, usually 0.2 for methyl-

ation arrays or 20% for methylation sequencing . One of our

key findings here is that, although MMB can detect substantially

more differential methylation between experimental groups at a

purely statistical level, this difference is negligible when we apply

an absolute methylation change cutoff. For most animal experi-

ments, investigators will be far more interested in large changes

in DNA methylation at a given locus; thus, these data should



Figure 5. MMB-derived DNA methylation data are less variable than RRBS

Shown is the log(variance ratio) of CpG sites common to both platforms by experimental group. CpGs with a log(variance ratio) of less than 0 have lower within-

group variability on the MMB andmore than 0 on RRBS. For all experimental groups, most CpGs have lower within-group variability on MMB. Log(variance ratio)

was calculated by F tests.
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provide confidence that both methods, when covering the locus

of interest, will detect these alterations. For more niche applica-

tions where subtle changes in DNA methylation are of interest

(for example, when profiling a locus that is methylated in a sub-

population of cells in bulk samples), MMB may be more appro-

priate. Epigenetic age is another common analysis. Although

we did not assess epigenetic age in this study, we did identify

many age-associated loci on MMB. The low technical variability

and the sheer number of age-associated loci in our experiment

indicate that MMB data will be well suited for this application.

MMB consistently captures the same loci and does not suffer

from variable dropout, which affects RRBS-based epigenetic

age predictions.

The expertise and availability of bioinformatics infrastructure

and support should be considered when choosing an approach.

RRBS is a sequencing-based approach and, therefore, will

generate millions of sequencing reads that must be prepro-

cessed, aligned, and methylation called. This process is compu-

tationally intensive and requires specialized bioinformatics

expertise. MMB data can be processed entirely in the R environ-

ment, with several well described R packages facilitating array
Table 2. Differential DNA methylation in Braf and Kras mutated inte

Mutation Direction

8 months

RRBS

Braf hypermethylated 11,253 (0.76%)

hypomethylated 13,908 (0.93%)

Kras hypermethylated 5,288 (0.36%)

hypomethylated 2,127 (0.14%)

The entire probe set was included in the analysis of MMB and all CpGs with

entially methylated CpGs and the proportion of differentially methylated Cp
processing (Xu et al., 2016; Aryee et al., 2014; M€uller et al.,

2019). In contrast, RRBS data, as with all large sequencing ex-

periments, must first be processed using command-line tools,

presenting an additional technical barrier for inexperienced

users. It is not possible to process these data on standard com-

puters, and access to compute infrastructure is required. MMB

generates a comparably smaller amount of data and can be pro-

cessed on high-end desktop computers. Basic array analysis

and processing are more accessible to non-bioinformatically

trained scientists and can also be performed on platforms with

graphical interfaces (i.e., Galaxy). The availability of specialized

expertise and infrastructure is an important element that should

be considered when choosing a technology.

In our final analysis, we performed a side-by-side differential

methylation and pathways analysis on both platforms to confirm

that similar biological signatures would emerge with both tech-

niques. We have shown previously that Brafmutation in humans

and mice results in widespread accumulation of DNA methyl-

ation at CGIs (Fennell et al., 2019, 2021; Bond et al., 2018). We

have also shown that Kras mutation can generate a similar but

distinct methylator phenotype. Using RRBS and MMB, we
stine as detected by MMB and RRBS

14 months

MMB RRBS MMB

4,423 (1.7%) 46,757 (3.14%) 6,276 (2.41%)

9,423 (3.61%) 16,399 (1.1%) 7,808 (2.99%)

1,962 (0.75%) 30,625 (2.06%) 3,729 (1.43%)

2,263 (0.87%) 5,597 (0.38%) 3,312 (1.27%)

more than 103 coverage for RRBS. Data represent the number of differ-

Gs compared with all CpGs covered.

Cell Reports Methods 2, 100323, November 21, 2022 7



Figure 6. RRBS and MMB detect similar pathway-level differential methylation alterations

Top: Gene Ontology enrichment analysis for differentially hypermethylated promoters detected in Braf or Kras mutant 14-month-old mice versus wild-type lit-

termates as captured by RRBS and MMB. Hypergeometric test for overrepresentation was used to generate p values, which were subsequently adjusted using

the FDR method. Bottom: overlap of Gene Ontology terms determined by analysis of MMB and RRBS data.
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recapitulated these signatures, validating the animal models and

the approaches used to assess DNA methylation.

Here we comprehensively evaluated the performance of the

Illumina Mouse Methylation Array in comparison with RRBS in

two models of murine colorectal carcinogenesis using matched

samples. In CpG sites that are covered by both platforms, we

report high correlation between DNA methylation profiles. MMB

could detect a greater number of statistically differentially methyl-

atedsites thanRRBS;MMBwasable todetectsmallermethylation

alterations because of the increased precision of DNAmethylation

readouts, especially in regions that are poorly covered by RRBS.

However, this difference was not significant when we imposed a

minimummethylation change threshold, as is common in the liter-
8 Cell Reports Methods 2, 100323, November 21, 2022
ature. MMB is a valuable addition to the toolbox of experimental

epigeneticists that performs comparably with sequencing-based

methodologies. MMB is highly suited to applications requiring

highly precisemethylation calls and detection of small methylation

differences between experimental groups.

Limitations of the study
Our approach in this study does bear some limitations. We

compared RRBS with the new MMB. RRBS predominantly as-

sesses DNA methylation in CGIs, and therefore we did not cover

many of the non-island-associated CpGs on the MMB and were

not able to make direct comparisons at these loci. WGBS

assesses the whole methylome for DNA methylation, and future
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work should evaluate how MMB performs in comparison with

WGBS.

We also used the beta value difference threshold of 0.2, which

has been established empirically for human methylation arrays.

Appropriate thresholds are likely to vary in mouse models and

will vary depending on the specific biology being assessed.

For example, in our study, we assessed non-neoplastic tissue,

which is relatively homogeneous and has little within-group vari-

ability, providing additional confidence when calling differential

methylation at smaller beta value thresholds. In contrast,

cancerous tissues are likely to be more heterogeneous and

therefore may warrant a higher threshold.

We also did not assess the effect of SNPs on MMB probe

behavior, but Zhou et al. (2022) published work describing the

design and annotation of MMB. Probes on the array were de-

signed to exclude any that harbored a SNP within 10 bp of the

30 end of the probe sequence in any of the 15 inbred mouse

strains selected for assessment.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

AllPrep DNA/RNA/Protein Mini Kit Qiagen 80004

Ovation� RRBS Methyl-Seq Tecan Life Sciences 0553–32

Infinium Mouse Methylation BeadChip Illumina Inc. 20041559

Zymo EZ-96 DNA Methylation kit Zymo D5001

Deposited data

Reduced Representation Bisulphite Sequencing Data ArrayExpress and Zenodo E-MTAB-12214

https://doi.org/10.5281/zenodo.7102827

Mouse Methylation BeadChip Data ArrayExpress and Zenodo E-MTAB-11985

https://doi.org/10.5281/zenodo.7102827

Experimental models: Organisms/strains

model organism: Villin-CreERT2: Tg(Vil1-cre/ERT2)23Syr mice The Jackson Laboratory JAX stock #020282

model organism: BRAF V637: Braftm1Mmcm mice The Jackson Laboratory JAX stock #017837

model organism: KRASG12D�LSL: Krastm4Tyj mice The Jackson Laboratory JAX stock #008179

Other

Code Zenodo https://doi.org/10.5281/zenodo.7102827
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Lochlan

Fennell (lochlan.fennell@monash.edu).

Materials availability
This study did not generate any unique reagents.

Data and code availability
d All raw sequencing and microarray data has been deposited to ArrayExpress and will be publicly available as of the date of

publication. Accession numbers are listed in the key resources table. Raw and processed data has also been deposited to Zen-

odo and the corresponding DOI is listed in the key resources table.

d Code to process sequencing and microarray data has been uploaded to Zenodo. The corresponding DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal models
The BrafV637 CA (FBV background) and KRASG12D-LSL (C57/BL6J background) murine models were used for this study. The BrafV637 CA

model is a cre-recombinase dependent conditionally activated model that facilitates the expression of the oncogenic Braf V637E

allele. The V637E allele is analogous to the human V600E mutation.

TheKRASG12D-LSL conditionally activatedmodel similarly expresses the oncogenic allele upon exposure to cre-recombinase. Both

models were independently crossed with animals bearing the Villin-CreERT2 transgene (C57BL6J background). Villin-CreERT2 animals

express the CreERT2 fusion gene under the guise of the Villin promoter, which is only active in the lower gastrointestinal tract. A single

IP injection (75mg/kg) of tamoxifen facilitates the translocation of CreERT2 to the nucleus, where it induces recombination of the tar-

geted alleles. We injected animals with tamoxifen at weaning and sacrificed them at two, eight and fourteen months of age. We also

sacrificed age-matched littermates as wild type controls. We did not actively select animal sex, and animals were house in standard
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conditions. The Samples investigated in the study table is a description of the animals used throughout the study. All animal exper-

iments were approved by the QIMR Berghofer Animal Ethics Committee (P2178).

METHOD DETAILS

Sample collection and processing
Non-neoplastic tissue from the proximal small intestine was dissected at necropsy and cryopreserved in liquid nitrogen. DNA and

RNA was extracted from fresh-frozen tissue samples using the AllPrep DNA/RNA/Protein minikit (Qiagen, USA) as per the manufac-

turer’s instructions. The same DNA extraction was used for both RRBS and MMB.
Samples investigated in the study

Sample Group Age (months) n (MMB) n (RRBS)

Wild-type 2 4 4

Wild-type 8 6 6

Wild-type 14 6 6

Kras mutant 2 3 3

Kras mutant 8 3 3

Kras mutant 14 3 3

Braf mutant 2 3 3

Braf mutant 8 3 3

Braf mutant 14 3 3
Reduced representation bisulphite sequencing and data processing
We generated single base resolution DNA methylation data using the Ovation RRBS Methyl-Seq System 1–16 (Tecan Life Sciences)

with 100ng of input DNA. This approach employs the MspI restriction enzyme to digest DNA at the CCGG motif, which is highly en-

riched in CpG dense regions of the genome. This generates a library of small (>300bp) fragments that are rich in CpG content.

Sequencing libraries are generated from these fragments, bisulphite converted and sequenced. For this study, we sequenced these

libraries to a target depth of 30 million single end 100bp reads per sample on an Illumina NovaSeq instrument.

Data were processed as per Fennell et al. (2021). Briefly, sequencing reads were inspected for quality using FastQC (v0.11.7).

Reads were trimmed to remove sequencing adaptors and poor quality bases using TrimGalore (v0.6.6, (Krueger et al., 2021)). Reads

were then aligned to the murine methylome (mm10) using Bismark (v0.20.0) and methylation calculated from alignments using the

methylation_extractor and bismark2bedGraph functions of Bismark (v0.20.0, (Krueger and Andrews, 2011)). Data were imported

into the R environment using the methylKit package (v1.14.2, (Akalin et al., 2012)). Using methylKit, CpG sites covered by < 10 reads

in any sample were discarded to generate a consensus dataset. We also performed analyses at various levels of coverage to deter-

mine how many CpGs are lost when coverage requirements increase.

Mouse Methylation BeadChip
Genome-wide DNA methylation was performed using the Illumina Infinium Mouse Methylation BeadChip (Illumina, San Diego, CA,

USA) following the standard manufacturer’s protocol. 500ng of high-quality genomic DNA was bisulfite converted using the Zymo

EZ-96 DNA Methylation kit (Zymo Research, Irine, CA, USA). Bisulfite converted samples were then amplified, fragmented, purified

and hybridized onto the Mouse Methylation BeadChip according to the manufacturer’s standard protocol. The arrays were washed

and scanned using the Illumina iScan System. Mouse Methylation BeadChips were processed at Australian Genome Research Fa-

cility (AGRF), Melbourne. For analysis, idat files were imported into R using EnMix (v1.25.1, (Xu et al., 2016)). Data was normalized

using the preprocessENmix function, which models background noise using out of band intensities on Infinium type I probes and

corrects for probe type dye biases using the RELIC method. Data was subsequently filtered by detection P and for sex chromo-

somes. For detection P filtering, wemasked values that had a detection p > 0.05, and removed the probe entirely if >50% of samples

had a detection p > 0.05.

Data annotations
To annotate CpGs with respect to whether they reside in CpG islands, we downloaded the mm10 cpgIslandExt table from the UCSC

table browser. The cpgIslandExt table contains annotations of CpG islands, where a genomic region is a CpG island if it meets the

following criteria: having >50% GC content, a length of >200bp and a ratio of observed to expected CG dinucleotides of >0.6. We

assigned each CpG island a unique identifier, and examined overlaps between CpGs onMMB and RRBS using the intersect function

of bedtools (v2.29.0, (Quinlan and Hall, 2010)).
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Annotations of candidate regulatory elements were downloaded from the murine ENCODE project web portal (Mouse ENCODE

Consortium et al., 2012). These annotation tracks were generated by the ENCODE consortia through evaluation of ChIP-Seq data

pertaining to histone modifications, and DNase-hypersensitivity sequencing. These annotations included promoter-like (PLS; within

200bp of TSS, ++ DNase accessibility and H3K4me3 signal), proximal enhancer-like (pELS; within 2000bp of TSS, ++ DNase

accessibility and H3K27ac signal, lowH3K4me3 if < 200bp to TSS), distal enhancer-like (dELS; >2000bp from TSS, ++DNase acces-

sibility and H3K27ac signal), CTCF-only (high DNase and CTCF, low H3K27ac and H3K4me3) and DNase-H3K4me3 (>200bp from

TSS, ++ DNase accessibility and H3K4me3 signal). We examined overlaps between CpGs and candidate regulatory elements using

the intersect function of bedtools (v2.29.0).

Repetitive elements were annotated using RepeatMasker. Briefly, pre-computed annotations for the mm10 genome were

downloaded from the RepeatMasker web interface (RepeatMasker open-4.0.5 - Repeat Library, 20140131, Dec 2011 annotations).

Bedtools was used to find the overlap between these repetitive elements and CpGs in the RRBS and MMB datasets.

Gene promoter annotations were generated using the annotatePeaks function of the HOMER tool (v4.8, (Heinz et al., 2010)) and the

mm10 reference genome. CpGs that were subsequently annotated as promoter and ascribed to a gene were used for downstream

gene promoter analysis.

QUANTIFICATION AND STATISTICAL ANALYSES

To identify a subsets of similarly methylated CpGs in each CpG island we used the Cluster Variables procedure in JMP (v16, SAS

Institute, Care NC, USA). The algorithm starts with a set of variables and splits them into clusters comprising highly correlated vari-

ables, and identifies a single representative variable which explains the largest proportion of the variance in the cluster. To evaluate

the variability of DNA methylation at single CpG sites within experimental groups we used the F-test method as employed in the

matrixStats R Package (v0.61.1). This method tests whether the variances across two groups are equal. Data is presented as the

log(variance) ratio, with <0 being representing less within group variability on MMB and >0 representing greater within group

variability on MMB.

To assess the degree of correlation between MMB and RRBS we first generated a consensus dataset that contained DNAmethyl-

ationmeasurements of the sameCpG on both platforms. For each sample, we then performed linear regression analysis on the entire

consensus data set, comparing measurements on MMBwith measurements on RRBS. For differential methylation analysis we used

the Limma R package (v3.14, (Ritchie et al., 2015)), considering only samples assayed with both approaches. For gene ontology

enrichment analysis we used theClusterProfiler R package (v3.16.1, (Wu et al., 2021)). In comparing the number of differentially meth-

ylated CpGs or gene ontology terms, we the X2 method with Yates correction. Statistical methods are referred to in figure legends,

table captions or in text as appropriate.
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