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Simple Summary: Osimertinib is a third-generation EGFR tyrosine kinase inhibitor and the stan-
dard of care therapy for non-small cell lung cancer patients harboring EGFR-activating mutations.
However, even for patients treated with osimertinib, resistance inevitably occurs leading to disease
progression. Here, we utilized two osimertinib-resistant cell lines and investigated their RNA profiles.
We found that Ras-related protein Rab-32 (RAB32) and thrombospondin 1 (THBS1) were upregulated
and associated with resistance in osimertinib-resistant cells as well as in liquid biopsies from patients
with disease progression following osimertinib treatment. Moreover, we found RAB32 and THBS1 to
be mechanistically linked to activation of the focal adhesion pathway where combination of osimer-
tinib with a FAK inhibitor resulted in a synergistic suppression of viability of osimertinib-resistant
cells. Our findings propose a potential therapeutic strategy for overcoming acquired resistance to
osimertinib in non-small cell lung cancer.

Abstract: Treatment with the tyrosine kinase inhibitor (TKI) osimertinib is the standard of care for
non-small cell lung cancer (NSCLC) patients with activating mutations in the epidermal growth
factor receptor (EGFR). Osimertinib is also used in T790M-positive NSCLC that may occur de novo or
be acquired following first-line treatment with other EGFR TKIs (i.e., gefitinib, erlotinib, afatinib, or
dacomitinib). However, patients treated with osimertinib have a high risk of developing resistance to
the treatment. A substantial fraction of the mechanisms for resistance is unknown and may involve
RNA and/or protein alterations. In this study, we investigated the full transcriptome of parental and
osimertinib-resistant cell lines, revealing 131 differentially expressed genes. Knockdown screening
of the genes upregulated in resistant cell lines uncovered eight genes to partly confer resistance
to osimertinib. Among them, we detected the expression of Ras-related protein Rab-32 (RAB32)
and thrombospondin 1 (THBS1) in plasmas sampled at baseline and at disease progression from
EGFR-positive NSCLC patients treated with osimertinib. Both genes were upregulated in progression
samples. Moreover, we found that knockdown of RAB32 and THBS1 reduced the expression of
phosphorylated focal adhesion kinase (FAK). Combination of osimertinib with a FAK inhibitor
resulted in synergistic toxicity in osimertinib-resistant cells, suggesting a potential therapeutic drug
combination for overcoming resistance to osimertinib in NSCLC patients.
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1. Introduction

Lung cancer has one of the highest mortality rates of solid cancers, accounting for
nearly one-fifth of all cancer-related deaths globally. Lung cancer is divided into the
two major histological subgroups consisting of small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC), with the latter representing the higher incidence of all
lung cancer cases. Patients diagnosed with advanced NSCLC are systemically treated
with chemotherapy, immunotherapy, and targeted therapy, depending on the genetic
background of the disease [1].

Activating mutations in the kinase domain of the gene encoding the epidermal growth
factor receptor (EGFR) resulting in a constitutively active receptor, promoting sustained
tumor cell growth and metastasis, account for up to 15% of NSCLC cases of the adenocarci-
noma type in Caucasians, while the prevalence may be up to four times higher in Asians [2].
NSCLC patients with mutant EGFR are eligible for targeted therapy, with tyrosine kinase
inhibitors (TKI) targeting activated EGFR. There are multiple EGFR TKIs available includ-
ing first-generation EGFR TKIs, erlotinib and gefitinib, as well as second-generation EGFR
TKIs, afatinib and dacomitinib.

Erlotinib and gefitinib are ATP-competitive inhibitors that are reversible inhibitors.
Afatinib and dacomitinib are both covalent inhibitors, irreversibly binding to the kinase
domain of EGFR [3–8]. Although all these compounds display a favorable clinical outcome
compared to chemotherapy, therapy resistance is to be expected. Acquired resistance to
first/second-generation EGFR-TKIs is most commonly mediated by a secondary mutation
in the EGFR gene, resulting in a T790M substitution that occurs in approximately 60% of
NSCLC patients upon progression on first-line treatment [9].

Osimertinib is a third-generation EGFR TKI targeting NSCLC with most activating
EGFR variants as well as the resistance mutation T790M, which render refractoriness to first-
and second-generation EGFR TKIs. Due to the fact of its activity against the EGFR T790M
variant, osimertinib was approved in 2017 for clinical use as a second-line therapy after the
failure of first-line EGFR TKIs. Moreover, multiple clinical trials reported nearly doubled
median progression-free survival times in NSCLC patients with activating mutations in
EGFR receiving osimertinib compared to patients receiving erlotinib or gefitinib, resulting
in the Food and Drug Administration’s (FDA) and European Medicine Agency’s (EMA)
approval of osimertinib as a first-line treatment in 2018 [10–15].

However, even for patients treated with osimertinib, resistance inevitably occurs,
leading to disease progression. Resistance mechanisms include additional mutations in the
EGFR kinase domain, such as C797S, as well as genetic aberrations in MET; HER2; BRAF;
PIK3CA; KRAS; CCND1; CCND2; CCNE1; CDK4; CDK6. Approximately half of all resistant
cases are of unknown molecular origin and may involve driver alterations in the RNA
and/or protein landscape [16–18].

Here, we took a systematic approach to investigate whether specific alterations in
the transcriptome of osimertinib refractory NSCLC could be directly linked to osimertinib
resistance and whether such alterations could be therapeutically targeted in vitro.

2. Material and Methods
2.1. Cell Culture

EGFR mutant parental (P) cell lines (i.e., NCI-H1975P and HCC827P) and osimertinib-
resistant (OR) cell lines (i.e., NCI-H1975OR and HCC827OR) were cultured in RPMI-1640
medium, supplemented with 10% supplemented fetal bovine serum (FBS) at 37 ◦C, 5% CO2.
Cells were passaged when reaching 80% confluency. Along with numerous other molecular
alterations, NCI-H1975P harbors the activating L858R mutation and the T790M gatekeeper
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mutation in the EGFR kinase domain, and HCC827P harbors an activating deletion in exon
19 (E746_A750del) in the EGFR kinase domain [19].

2.2. Chemicals and Antibodies

Osimertinib was purchased from Selleckchem (S7297), and FAK inhibitor 14 and
FAK autophosphorylation inhibitor from Abcam (ab144503). The following antibodies
were obtained from Cell Signaling Technology: anti-FAK (#3285), anti-Phos-FAK (Tyr397)
(#3283), anti-paxillin (#2542), anti-Phos-paxillin (Tyr118) (#69363), anti-thrombospondin-
1 (D7E5F) (#37879), anti-AKT3 (#4059), anti-COL5A1(#37304), anti-E-cadherin (#3195),
anti-PARP (#9542), anti-caspase-3 (#9662), anti-cleaved PARP (Asp214) (#5625), anti-N-
cadherin (D4R1H) (#13116), anti-E-cadherin (24E10) (#3195), anti-vimentin (D21H3) (#5741),
anti-rabbit IgG HRP-linked (#7074P2), and anti-mouse IgG HRP-linked (#7076P2).

The anti-CADM1 (PA3-16744) and anti-BICC (PA5-116342) were purchased from
Thermo Fisher. The anti-IGFBP7 (ab74169) and anti-PTPRM (ab231607) were purchased
from Abcam. The anti-β-actin (A2228) and anti-RAB32 (HPA025731) were purchased from
Sigma-Aldrich.

2.3. Cell Viability Assay

NCI-H1975P, HCC827P, NCI-H1975OR, and HCC827OR cells were plated at a density
of 10,000 cells/mL in 96-well plates in the presence of 1, 10, 100, or 1000 nM osimertinib or
in DMSO (control). After 72 h post-plating, the cell viability was measured in a luminometer
through a CellTiter-Glo cell viability assay according to the manufacturer’s instructions
(Promega Cat. #G7571). The final DMSO concentration in osimertinib-treated and control
cell cultures was 0.1%.

2.4. Wound Healing Assay

The migratory ability was measured using a wound healing assay. NCI-H1975P,
HCC827P, NCI-H1975OR, and HCC827OR cells were seeded at a density of 2 × 105 cells/mL
in a 24-well plate. Cells were grown to near confluent monolayers in medium containing
10% FBS. Perpendicular wounds were scratched using a sterile 10 µL pipette tip. The
cells were then washed twice with warm PBS, and the scratched areas were assessed using
computer-assisted microscopy. The cells were incubated in RPMI-1640 media + supplements
until the cells covered the wound. The migration areas were calculated and quantitated
using ImageJ software.

2.5. Western Blot

NCI-H1975P, HCC827P, NCI-H1975OR, and HCC827OR cells were lysed in M-PER
Mammalian Protein Extraction Reagent (Thermo Fisher Scientific, Waltham, MA, USA,
#78501). The protein concentrations were assessed using the Pierce BCA Protein Assay
kit (Thermo Fisher Scientific, #23225). Cell lysates were electrophoresed in Invitrogen
NuPAGE precast gels (Thermo Fisher Scientific, #EA0378BOX) and then transferred to
polyvinylidene difluoride membranes using the iBlot gel transfer system (BIO-RAD Labora-
tories, Hercules, CA, USA). After blocking using Intercept® (PBS) Blocking Buffer (LI-COR
Biosciences, Lincoln, NE, USA), membranes were probed with primary antibody overnight
at 4 ◦C, washed with PBS containing 0.1% Tween-20, and then incubated with an appropri-
ate secondary antibody. The protein bands were visualized by SuperSignal West Femto
Maximum Sensitivity Substrate (Thermo Fisher Scientific), and images were captured using
an iBright imaging systems (Thermo Fisher Scientific). The protein bands were quantified
using ImageJ 1.53a, Rasband, W.S., National Institutes of Health, Bethesda, MD, USA,
https://imagej.nih.gov/ij/ (accessed on 22 May 2022), 1997–2018.

2.6. Transcriptome Analysis

For transcriptome analysis, biological duplicates of NCI-H1975P, NCI-H1975OR,
HCC827P, and HCC827OR cells were trypsinized and washed in PBS followed by to-
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tal RNA extraction using the mirVana miRNA isolation kit with phenol (ThermoFisher
Scientific, #AM1560) according to the manufacturer’s instructions. Extracted total RNA dis-
played RNA integrity numbers in the range of 9.4 to 10.0 for the four cell lines. A volume of
3 µL of eluted total RNA was pre-amplified for six cycles before being loaded onto Clariom
D Pico Assay human transcriptome arrays (ThermoFisher Scientific, #902925). Expressed
transcripts were normalized using the Signal Space Transformation (SST-RMA) normal-
ization method. Hierarchical clustering analysis, volcano plot analysis, and differential
gene expression analysis were performed using the Transcriptome Analysis Console (TAC)
4.0.2 software (ThermoFisher Scientific, Waltham, MA, USA). Differential gene expression
was defined as >2-fold expression, p < 0.05, and a false discovery rate (FDR) < 0.05 in
progression versus the baseline of disease samples.

2.7. Functional Enrichment Analysis and TCGA Co-Expression Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed
for common genes using the Database for Annotation, Visualization, and Integrated Discov-
ery (DAVID) (https://david.ncifcrf.gov, (accessed on 1 April 2021)) with p < 0.05 and more
than 5 genes. The cBioportal was used to investigate the co-expression of RAB32 and THBS1
mRNA from 586 primary tissues of lung adenocarcinoma in the TCGA, Firehose Legacy
study. There was no information available regarding EGFR-TKI treatment of these tumors.
Spearman and Pearson tests were used to evaluate the correlation of gene expression.

2.8. siRNA Library Screen and Knockdown

NCI-H1975P, HCC827P, NCI-H1975OR, and HCC827OR cells were transfected with a
customized siRNA library (Thermo Fisher Scientific). The siRNA library included siRNAs
targeting 24 genes in a 96-well plate with three independent siRNAs for each gene. As
negative and positive controls, silencer select negative control and silencer select GAPDH
were employed (Table S1).

NCI-H1975P, HCC827P, NCI-H1975OR, and HCC827OR cells were transfected in
a 96-well plate at a density of 10,000 cells/mL by Lipofectamine RNAiMAX reverse-
transfection (Thermo Fisher Scientific, #13778030). At 72 h post-transfection, cells were
scored for viability through the CellTiter-Glo Cell Viability Assay (Promega). The effect
on cell viability was normalized to the silencer Select Negative Control #1. Eight selected
genes were transfected with specific siRNAs of each gene for 72 h, including siIGFBP7,
siCADM1, siCOL5A1, siAKT3, siPTPRM, siBICC1, siRAB32, and siTHBS1 in HCC827OR
and NCI-H1975OR cells.

The transfection was performed with Lipofectamine RNAiMAX (Thermo Fisher Scien-
tific) in accordance with the manufacturer’s protocol. The specific siRNAs targeting eight
gene candidates were purchased from Thermo Fisher Scientific (Table S1).

2.9. RNA Isolation and Quantitative Real-Time PCR (RT-qPCR)

Total RNA was extracted from NCI-H1975OR and HCC827OR cells using a RNeasy
Mini Plus Kit (Qiagen, Hilden, Germany, #74134) in accordance with the manufacturer’s
instructions. Complementary DNA (cDNA) was synthesized from total RNA using a high-
capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific Waltham, MA, USA).
RT-PCR was performed with a High Capacity cDNA Reverse Transcription Kit (Applied
Biosystem by Thermo Fisher Waltham, MA, USA) on a CFX96 Touch Real-Time PCR
detection system (BIO-RAD, Hercules, CA, USA) in accordance with the manufacturer’s
instructions. The GAPDH gene was used for normalization. The specific primer pairs used
for RT-PCR were purchased from IDT.

2.10. Patient Cohort and Sample Preparation

A total of 17 patients were included in the study. All patients were enrolled in
the multicenter phase II TREM study and diagnosed with EGFR T790M-mutant NSCLC
with a treatment history involving disease progression on minimum one first- or second-

https://david.ncifcrf.gov
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generation EGFR TKI. All patients were treated with osimertinib. Blood samples were
drawn at treatment start and at disease progression. Plasma was separated through
centrifugal isolation, 2000× g for 15 min and aliquoted to fresh 1 mL tubes. Samples were
stored at −80 ◦C. The regional ethical committee approved sampling for this study (Dnr.
2016/710-31/1).

2.11. Exosome RNA Extraction

Seventeen exosomal RNA sample pairs (i.e., baseline and progression) were isolated
at the Karolinska Institute. A volume of 1 mL plasma/sample point was centrifuged at
16,000× g for 10 min followed by processing using the ExoRNeasy serum plasma midi kit
(Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions, and the
RNA was eluted in 14 µL Rnase-free water. RNA samples (i.e., baseline and progression)
were subjected to the RT-PCR protocol described above.

2.12. Ethics Statement

The study received ethical approval from the institutional review board at Karolinska
University Hospital (registration number: 2016/944-31/1) and the Oslo North Regional
Ethics Board (2015/181). Additional approval by Stockholm Medical Biobank was received
(Bbk-01605). Written consent was provided by all patients. The study was conducted
in accordance with the Declaration of Helsinki and the ICH Guideline for Good Clinical
Practice and according to regulatory requirements.

2.13. Statistical Analysis

In this study, we used unpaired Student’s t-tests to compare the significant difference
in two groups including cell viability, wound healing, quantitative Western blots, and
relative mRNA expression levels. GraphPad Prism 9 software was used to carry out
statistical analyses of the seventeen RNA sample pairs (i.e., baseline and progression), and
paired Student’s t-test to calculate the significant differences between groups. The data are
expressed as the mean ± SEM and statistical significance as p-values: * p < 0.05, ** p < 0.01,
and *** p < 0.001.

3. Results
3.1. Characterization of Parental and Osimertinib-Resistant NSCLC Cell Lines

We utilized two EGFR-mutation-positive NSCLC cell lines, NCI-H1975 and HCC827,
previously generated for refractoriness to osimertinib [20]. First, we examined their mu-
tational status in the EGFR kinase domain through DNA Sanger sequencing, which dis-
played an identical genetic background between parental and resistant cell line pairs (data
not shown).

We further determined the sensitivity of the cell lines to osimertinib. The viability of
both parental cells was significantly diminished by >10 nM osimertinib for 72 h. In contrast,
osimertinib-resistant cells were unaffected by 10 nM osimertinib treatment and largely
tolerated up to 1000 nM osimertinib for 72 h (Figure 1A,B).

To determine the potential impact of osimertinib on apoptosis, we treated HCC827P,
NCI-H1975P, HCC827OR, and NCI-H1975OR cells with 1000 nM osimertinib for 24 h
followed by Western blot analysis of cleaved caspase-3 and PARP. We found that osimertinib
effectively increased the levels of cleaved caspase-3 and PARP in parental cells, whereas
minor changes were observed in resistant cells (Figure 1C).
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Figure 1. HCC827OR and NCI-H1975OR cells were resistant to osimertinib: (A) cell viability curve
analysis of HCC827P and HCC827OR in increasing concentrations of osimertinib; (B) cell viability
curve analysis of NCI-H1975P and NCI-H1975OR in increasing concentrations of osimertinib, where
the y-axis displays the percentage of cell viability in comparison to DMSO; (C) HCC827OR, HCC827P,
NCI-H1975OR, and NCI-H1975P were cultured and exposed to DMSO or 1000 nM osimertinib (OR)
for 24 h, the cells were harvested for detection of apoptosis using Western blot with anti-cleaved
caspase-3, anti-caspase-3, anti-cleaved PARP, and anti-PARP antibodies. β-Actin was used as the
loading control. Full Western blot images can be found at Figure S5. Statistical significance was
calculated through an unpaired two-tailed t-test. *** p < 0.001.

3.2. Osimertinib-Resistant Cells Acquired an Enhanced EMT Phenotype

To explore the phenotypic changes in osimertinib-resistant cells, we compared the
expression of epithelial-to-mesenchymal transition (EMT) markers in osimertinib-resistant
cells lines to their parental counterparts. Resistant cells displayed a unique spindle cell-like
morphology that was not observed in the parental cells (Figure 2A). Western blot analysis
showed that the expression of E-cadherin was significantly decreased in resistant cells,
whereas the expression of vimentin and N-cadherin increased in resistant cells (Figure 2B,C).
Moreover, we examined cell motility in parental and osimertinib-resistant cells using a
wound healing assay (Figure 2D) and found that resistant cells exhibited a faster wound
healing capacity (Figure 2E), suggesting the acquisition of an EMT phenotype in osimertinib-
resistant cells.
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Figure 2. Acquisition of EMT phenotypes with enhanced cell motility in osimertinib-resistant cells.
(A) Phase-contrast micrographs show parental cells (i.e., HCC827P and NCI-H1975P) and osimertinib-
resistant cells (i.e., HCC827OR and NCI-H1975OR). Parental cells showed an epithelial appearance,
whereas osimertinib-resistant cells displayed an elongated morphology. (B) Western blot analysis of
EMT markers (i.e., E-cadherin, vimentin, and N-cadherin) in parental and osimertinib-resistant cells.
(C) The band density of Western blot analysis from EMT markers was measured using ImageJ and
normalized to β-actin. Error bars represent the mean ± SD from three independent experiments. (D)
A wound healing assay was performed to measure cell motility in parental and osimertinib-resistant
cells. (E) Relative wound closure was assessed and quantified using ImageJ software after 24 h of
seeding the cells. Error bars represent the mean ± SD; six random microscopic fields were counted
for each group from six independent experiments. Statistical significance was calculated through an
unpaired two-tailed t-test. * p < 0.05, ** p < 0.01, and *** p < 0.001. NS: Not significant.
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3.3. Transcriptome Profiling of Osimertinib-Resistant NSCLC Cells

We next sought to investigate the overall impact on the transcriptome landscape caused
by osimertinib in NSCLC cells. We subjected our cell line panel to whole transcriptome
analysis. A total of 1737 and 616 genes were differentially expressed in osimertinib-resistant
cells compared to their parental counterparts in HCC827OR/P and NCI-H1975OR/P,
respectively (Figure 3A,B and Table S2).
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Figure 3. Mapping of the transcriptome in osimertinib-resistant cells. (A) Clustered heatmap showing
a total of 1737 and 616 differentially expressed genes in osimertinib-resistant cell versus parental cells
(i.e., HCC827OR/P and NCI-H1975OR/P, respectively). Each cell line was analyzed in biological
duplicates. RNA expression is depicted on a scale from blue to red. (B) Volcano plot displaying
downregulated transcripts (green) versus upregulated transcripts (red). (C) Three-dimensional
principal component analysis (PCA) of the differentially expressed genes in HCC827P, NCI-H1975P,
HCC827OR, and NCI-H1975OR. (D) Venn diagram showing 131 overlapping genes in HCC827OR/P
and NCI-H1975OR/P.

When analyzing the differentially expressed genes through principal component
analysis (PCA), we uncovered cell-line dependent variance structures where resistant cells
clustered in a distinct fashion (Figure 3C). Venn diagram analysis revealed 131 genes to
be differentially expressed in both cell line pairs, of which 26 genes were upregulated,
54 downregulated, and 51 genes were expressed in opposite directions in two cell line pairs
in the resistant setting (Figures 3D and S1, Table S3).

3.4. siRNA Library Screening Analyses of Upregulated Genes in Osimertinib-Resistant Cells

In order to investigate whether differential expression would be indicative of a func-
tional role in conferring resistance to osimertinib, we investigated all the upregulated
genes through siRNA knockdown library screening, using three individual siRNAs of
each gene, followed by cell viability scoring (Figures 4, S2 and S3). We found that indi-
vidual knockdown of eight different genes resulted in a >25% reduction of cell viability
in osimertinib-resistant cells, insulin-like growth factor-binding protein 7 (IGFBP7), cell
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adhesion molecule 1 (CADM1), collagen-type V alpha 1 (COL5A1), v-akt murine thymoma
viral oncogene homolog 3 (AKT3), protein tyrosine phosphatase receptor type M (PTPRM),
BicC family RNA-binding protein 1 (BICC1), Ras-related protein Rab-32 (RAB32), and
thrombospondin 1 (THBS1) (Table 1) and confirmed their knockdown at the mRNA and
protein levels (Figure 5A,B).
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Figure 4. siRNA-library screening in HCC827OR versus HCC827 parental cells (HCC827OR/P) and
NCI-H1975OR versus NCI-H1975 parental cells (NCI-H1975OR/P). Knockdown of 24 upregulated
genes in HCC827OR/P (upper panel) and NCI-H1975OR/P (lower panel) using 3 sets of siRNAs for
72 h. Each bar visualizes cell viability for a given siRNA in comparison to cells transfected with a
scrambled negative control. siRNAs specific for the GAPDH gene were employed as positive controls.
Error bars represent the mean ± SD from three independent experiments. The cut-off of ∼25%
reduction of cell viability is indicated by a red dotted line. The eight red bars represent the selected
gene candidates with ∼25% reduction of cell viability in both HCC827OR/P and NCI-H1975OR/P
cell line pairs. The blue bars represent 16 out of 24 genes tested with less than 25% reduction of cell
viability in both cell line pairs.
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Table 1. Eight gene candidates based on siRNA library screening.

HCC827OR/P NCI-H1975OR/P

Gene
Symbol Description p-Value FDR Fold

Change

Cell Viability%
in

HCC827OR/P
p-Value FDR Fold

Change

Cell Viability %
in

NCI-H1975OR/P

IGFBP7 Insulin-like growth
factor-binding protein 7 3.17 × 10−11 0 88.52 43.12% 1.31 × 10−9 2.55 × 10−5 28.58 56.81%

CADM1 Cell adhesion molecule 1 0.0000704 0.0075 5.15 60.90% 4.63 × 10−8 0.0002 24.01 66.24%

COL5A1 Collagen, type V, alpha 1 4.85 × 10−9 0 17.97 61.22% 8.95 × 10−7 0.0017 6.5 34.08%

AKT3 v-akt Murine thymoma viral
oncogene homolog 3 0.0000884 0.0087 5.59 76.78% 7.43 × 10−5 0.0225 5.77 66.20%

PTPRM Protein tyrosine phosphatase,
receptor type, M 0 0.00006 10.6 61.58% 5.03 × 10−6 0.0046 5.43 65.46%

BICC1 BicC family RNA-binding
protein 1 0.0002 0.0129 4.89 51.75% 9.91 × 10−5 0.0259 5.3 49.36%

RAB32 RAB32, member RAS
oncogene family 0.0001 0.0115 3.47 49.18% 0.0002 0.035 3.32 58.71%

THBS1 Thrombospondin 1 0 0.00001 10.24 69.59% 4.88 × 10−5 0.0177 3.18 70.81%
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Figure 5. Suppression of specific siRNAs at mRNA and protein levels. Individual siRNAs tar-
geting eight different genes (i.e., IGFBP7, CADM1, COL5A1, AKT3, PTPRM, BICC1, RAB32, and
THBS1) were transfected in HCC827OR and NCI-H1975OR cells for 72 h. Knockdown efficiency was
confirmed on an mRNA level using RT-qPCR (A) and protein level using Western blotting (B).
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3.5. RAB32 and THBS1 Were Elevated in Expression in NSCLC Patients with Disease Progression
on Osimertinib

To validate the clinical relevance of our finding, we analyzed exosomal RNA from
plasmas sampled at baseline, and again at progression of disease from 17 EGFR-mutant
NSCLC patients enrolled in a multicenter phase II study (Table S4).

Among the eight genes impacting viability in osimertinib-resistant cells, we detected
mRNA expression of RAB32 and THBS1. The RT-qPCR results showed that the expression
of both genes were significantly upregulated in progression samples compared to the
baseline samples (Figure 6A). We further examined co-expression of RAB32 and THBS1
in lung adenocarcinoma cases from the cancer genome atlas (TCGA, Firehose legacy,
586 samples) and found that mRNA levels of RAB32 and THBS1 positively correlated with
each other (Figure 6B).
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Figure 6. Elevated expression of RAB32 and THBS1 in plasma sampled from patients with disease
progression on osimertinib. (A) Exosomal RNA extracted from the plasma of seventeen NSCLC
patients, sampled at baseline versus progression of disease. Gene expression of RAB32 and THBS1
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was assessed by RT-qPCR in 17 sample pairs, baseline and progression. Error bars represent the
mean ± SD, n = 17. Statistical significance was calculated through a paired two-tailed t-test. * p < 0.05.
(B) The association between RAB32 and THBS1 mRNA expression levels using a publicly available
lung adenocarcinoma study (TCGA, Firehose legacy, 586 samples). Significant correlation was
observed between the mRNA expression levels of RAB32 and THBS1.

3.6. RAB32 and THBS1 Are Mechanistically Linked to Focal Adhesion Kinase

When subjecting all the differentially expressed genes from our transcriptome profiling
for KEGG-term analysis, we uncovered multiple pathways associated with focal adhesion
(Figure 7A). We therefore hypothesized that RAB32 and THBS1 could confer resistance to
osimertinib through regulation of focal adhesion signaling.
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Figure 7. RAB32 and THBS1 were overexpressed and associated with focal adhesion signaling in
osimertinib-resistant cell lines. (A) KEGG-term analysis of 131 overlapping genes in HCC827OR/P
and NCI-H1975OR/P. Significant enrichment of KEGG pathways was defined as p < 0.05 and
more than five genes. (B) Expression of RAB32 and THBS1 protein levels was examined by West-
ern blotting in parental cells (i.e., HCC827P and NCI-H1975P) and osimertinib-resistant cells (i.e.,
HCC827OR and NCI-H1975OR). (C) Western blot analysis with Phos-FAK-Tyr397, FAK, Phos-Paxillin-
Tyr118, and paxillin antibodies was performed on protein lysates from HCC827P, NCI-H1975P,
HCC827OR, and NCI-H1975OR cells. (D) HCC827OR and NCI-H1975OR cells were transfected with
siRAB32, siTHBS1, or siCON for 72 h and subjected to Western blotting for Phos-FAK-Tyr397, FAK,
Phos-Paxillin-Tyr118, and paxillin. β-Actin was used as the loading control. (E) Serial concentration of
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focal adhesion kinase inhibitor (FAKi) was used to examine the inhibition of Phos-FAK-Tyr397 in
HCC827OR and NCI-H1975OR cells. (F) Cell viability in HCC827OR and NCI-H1975OR after DMSO
or (FAKi) (500 nM) and/or osimertinib (OR) (1000 nM) treatment. Error bars represent the mean ± SD,
n = 5 for HCC827OR and n = 6 for NCI-H1975OR. Statistical significance was calculated through an
unpaired two-tailed t-test. * p < 0.05, ** p < 0.01, and *** p < 0.001.

First, we confirmed RAB32 and THBS1 to be increased in expression in osimertinib-
resistant cells (Figure 7B). Moreover, we found that the expression of phosphorylated focal
adhesion kinase (FAK) (Tyr397) and phosphorylated paxillin (Tyr118) were elevated in
osimertinib-resistant cells (Figure 7C), and that RAB32 and THBS1 knockdown diminished
such phosphorylation events (Figure 7D). While osimertinib-resistant cells were completely
refractory to single FAK inhibition or single osimertinib treatment, combination of the
two drugs resulted in a significant reduction of cell viability in both of the resistant lines
(Figure 7E,F).

4. Discussion

By combining two systematic approaches, whole genome transcriptomics and siRNA
knockdown library screening, we identified multiple transcripts involved in osimertinib re-
sistance in vitro. Two transcripts encoding for the small GTPase RAB32 and the glycoprotein
thrombospondin-1 (THBS1) were further confirmed to be detected and upregulated in liquid
biopsies sampled at disease progression from EGFR-mutation-positive NSCLC patients
treated with osimertinib compared with liquid biopsies sampled at treatment baseline.

To our knowledge, this is the first report demonstrating a role of RAB32 and THBS1 in
acquired resistance to osimertinib. Mechanistically, we linked RAB32 and THBS1 to the
focal adhesion kinase (FAK) pathway and demonstrated that knockdown of either of these
transcripts blunts activation of FAK, implicating that their upregulation in osimertinib
refractory cells is necessary for FAK activation.

FAK, a nonreceptor tyrosine kinase, acts downstream of EGFR and has been demon-
strated to be activated in ligand-dependent EGFR signaling [21–23] and to sustain MAPK
and AKT signaling in conditions of EGFR inhibition in vitro [24].

Expression of THBS1 leads to increased binding to the calreticulin low-density lipopro-
tein receptor-related protein receptor complex, activation of ERK and PI3K, and the dis-
assembly of focal adhesions, a critical step to enable cell motility and migration [25–31].
This biological outcome is blunted in FAK knockout fibroblasts [32], indicating a direct
mechanistic link between THBS1 and FAK. THBS1 has been suggested to increase FAK
activation, possibly by inactivation of the small GTPase RhoA [32]. The mechanistic con-
nection between RAB32 and FAK remains elusive. RAB32 has been suggested to localize to
the ER and mitochondria [33] and to regulate apoptosis and autophagy [34,35]. In addition,
RAB32 has been reported to regulate cell size and proliferation, partly through interaction
with the mTORC1 complex [36]. Since mTORC1 is downstream of FAK, there are likely
additional functions of RAB32 in modulating FAK activity in osimertinib refractory cells.

We observed that knockdown of RAB32 or THBS1 was detrimental to osimertinib
refractory cells, even in the absence of osimertinib, while sparing parental cells. In contrast,
FAK inhibition had no impact on osimertinib refractory cells unless combined with os-
imertinib. This suggests that expression of RAB32 and THBS1 impacts multiple molecular
processes, including FAK activation, of benefit for viability of osimertinib refractory cells,
while increased FAK activity may solely compensate for blocked EGFR activity. Moreover,
it indicates that the EGFR receptor is active in the absence of osimertinib and mechanis-
tically accessible to osimertinib in our cell line systems. Hence, FAK and EGFR presents
a synthetic lethal relationship, where cells refractory to osimertinib can cope with either
one of them being shut down but not both. This highlights a potential to treat patients
with disease progression during osimertinib therapy (Figure S4). The idea of combining
EGFR inhibition with FAK inhibition for therapeutic purposes in lung cancer has been
tested previously. Howe et al. demonstrated that combining erlotinib with different FAK
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inhibitors impacted cell viability in vitro and reduced tumor growth in vivo to a higher
degree than single-agent treatment, correlating with reduced Akt phosphorylation [37].
Moreover, Solanki et al. demonstrated that treatment of smoke-exposed and TKI-resistant
NSCLC cells with a FAK inhibitor restored their sensitivity to erlotinib, correlating with
PI3K signaling activity [38]. It is possible that PI3K signaling also plays a mechanistic role in
the signaling interplay between EGFR and FAK in osimertinib-resistant NSCLC. In addition
to NSCLC and EGFR TKIs, FAK inhibitors have also been shown to synergize with other
therapeutics, including chemotherapeutic drugs in pancreatic ductal adenocarcinoma [39]
and breast cancer [40], and RAF/MEK inhibitors in multiple RAS-driven solid cancers [41].

The FAK inhibitor defactinib recently received an FDA breakthrough therapy designa-
tion for treatment of recurrent ovarian cancer in combination with RAF/MEK inhibition [42].
Moreover, there are numerous clinical trials recruiting cancer patients for defactinib treat-
ment including multiple studies of NSCLC, emphasizing the potential of translating this
finding to the clinic [43].

We also observed a diagnostic potential of RAB32 and THBS1 by profiling their
RNA expression from exosomes extracted from longitudinally sampled plasma of EGFR-
mutation-positive NSCLC patients treated with osimertinib. While this finding warrants
further attention on RAB32 and THBS1 as potential markers of osimertinib resistance,
our results need further validation in independent and larger clinical cohorts. It should
also be mentioned that our liquid biopsy profiling cannot distinguish between tumor-
derived exosomal RNA and exosomal RNA shed from healthy cells. While the field
of liquid biopsies is increasingly developing with new methods, partly addressing the
capturing of tumor-specific exosomes [44–46], our results would also need to be validated
in longitudinally sampled tissue biopsies. Furthermore, a next step would be to validate the
therapeutic potential of combining osimertinib and defactinib in mouse models, including
state-of-the-art patient-derived xenograft (PDX) models of osimertinib refractory NSCLC.

5. Conclusions

In conclusion, we demonstrated that two transcripts, RAB32 and THBS1, conferred re-
sistance to osimertinib by activating FAK signaling in NSCLC in vitro and possess potential
as diagnostic biomarkers of osimertinib resistance in patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14143430/s1, Figure S1. siRNA-library screening in HCC827OR and HCC827P cells.
Knockdown of 24 genes in HCC827OR (upper panel) and HCC827P (lower panel) using 3 sets of
siRNAs for 72 h. Each bar visualizes cell viability for a given siRNA in comparison to cells transfected
with a scrambled negative control. siRNAs specific for the GAPDH gene were employed as a positive
control. Error bars represent the mean ± SD from three independent experiments; Figure S2. siRNA-
library screening in NCI-H1975OR and NCI-H1975P cells. Knockdown of 24 genes in NCI-H1975OR
(upper panel) and NCI-H1975P (lower panel) using 3 sets of siRNAs for 72 h. Each bar visualizes
cell viability for a given siRNA in comparison to cells transfected with a scrambled negative control.
siRNAs specific for the GAPDH gene were employed as a positive control. Error bars represent the
mean ± SD from three independent experiments; Figure S3. Venn diagram showing 26 upregulated
and 54 downregulated overlapping genes in HCC827OR/P and NCI-H1975OR/P; Figure S4. Model
for RAB32-THBS1-mediated EGFR and FAK signaling in osimertinib resistance of NSCLC cells.
Overexpression of THBS1 in osimertinib resistance promotes FAK autophosphorylation at Y397 and
phosphorylation of paxillin at Tyr118. The activation of FAK signaling enhances Rho small GTPase
and downstream oncogenic functions. Additionally, RAB32, a small GTPase, is potentially enhanced
via activation of a FAK signaling complex. Overexpression of RAB32 in osimertinib resistance likely
provides a feedback signal to activate FAK signaling. It is established that EGFR can activate Src
and, vice versa, that Src activates EGFR. EGFR and FAK signaling could simultaneously enhance
osimertinib resistance leading to promotion of cell growth and migration; Figure S5. full-length
of Western blots; Table S1. siRNA library targeting 24 upregulated genes in osimertinib-resistant
cells; Table S2. Genes altered in expression in individual osimertinib refractory cell lines; Table S3.
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Differentially expressed genes overlapping in HCC827OR/P and NCI-H1975OR/P; Table S4. Clinical
characteristics of 17 EGFR-mutant NSCLC patients.
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