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Abstract Neuroendocrine circuits encode environmental information via changes in gene

expression and other biochemical activities to regulate physiological responses. Previously, we

showed that daf-7 TGFb and tph-1 tryptophan hydroxylase expression in specific neurons encode

food abundance to modulate lifespan in Caenorhabditis elegans, and uncovered cross- and self-

regulation among these genes (Entchev et al., 2015). Here, we now extend these findings by

showing that these interactions between daf-7 and tph-1 regulate redundancy and synergy among

neurons in food encoding through coordinated control of circuit-level signal and noise properties.

Our analysis further shows that daf-7 and tph-1 contribute to most of the food-responsiveness in

the modulation of lifespan. We applied a computational model to capture the general coding

features of this system. This model agrees with our previous genetic analysis and highlights the

consequences of redundancy and synergy during information transmission, suggesting a rationale

for the regulation of these information processing features.

DOI: 10.7554/eLife.24040.001

Introduction
Signaling pathways convey information about the environment, enabling organisms to generate

appropriate physiological response to changing conditions (Gendron et al., 2015). We recently

established that tph-1 tryptophan hydroxylase expressed in ADF and NSM neurons and daf-7 TGFb

expressed in ASI neurons in Caenorhabditis elegans transmit environmental information to physiol-

ogy by modulating the response of lifespan to food (Entchev et al., 2015). Our previous analytical

framework estimated the accuracy of tph-1 and daf-7 expression in decoding food input; however, it

could not reveal the type of encoding strategy used by tph-1 and daf-7 within these neurons, nor

could it quantify the contribution of these genes to lifespan modulation. Here, we applied informa-

tion theory (Shannon, 1948) to address these issues. Information theory has been proposed as a

general framework to characterize how biological signals are encoded and transmitted

(Bowsher and Swain, 2014; Levchenko and Nemenman, 2014) and has been used to study infor-

mation processing in the nervous system (Borst and Theunissen, 1999) as well as biochemical and

genetic pathways (Cheong et al., 2011; Tkačik et al., 2015).

Groups of neurons can encode information redundantly or synergistically (Brenner et al., 2000;

Puchalla et al., 2005). This form of informational redundancy is conceptually distinct from genetic

redundancy. Redundant encoding systems replicate the same information in more than one neuron,

analogous to a computer backup, which provides robustness to perturbations in single neurons at

the expense of coding efficiency. In contrast, synergistic circuits encode more information than the
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sum of their component neurons, but this efficiency is vulnerable to disruptions in the constituent

neurons. Redundancy and synergy have been defined using information-theoretic measures

(Averbeck et al., 2006; Schneidman et al., 2003), and both of these strategies for encoding infor-

mation have been characterized in many neural and genetic circuits (Averbeck et al., 2006;

Puchalla et al., 2005; Schneidman et al., 2011; Tkačik et al., 2015; Tkačik and Walczak, 2011).

Previously, we identified regulatory interactions among tph-1 and daf-7 that influence their cod-

ing accuracy (Entchev et al., 2015). Here, we show that cross-talk between daf-7 and tph-1 further

affects the adoption of redundancy or synergy during discrimination between food levels. We found

that the regulation of signal-to-noise in gene expression underlies shifts between redundancy and

synergy across genotypes. Finally, we use a computational model to explore the consequences of

redundant and synergistic coding at the level of downstream targets.

Results and discussion
Information theory allows us to quantify the information encoded by daf-7 and tph-1 based on the

overlap of their expression distributions (Figure 1A). By associating environmental stimuli (food

level) and neuronal responses (gene expression) with the input and the output of a communication

system, the encoding capacity of ASI, ADF, and NSM is given by the mutual information (MI)

between gene expression responses (G) and food stimuli (F),

MIðG;FÞ ¼
X

G;F

PðFÞPðGjFÞ log
PðGjFÞ

PðGÞ
(1)

where PðFÞ denotes the chances of encountering the food condition F, PðGjFÞ is the response under

each specific food level, and PðGÞ is the average response across all the food stimuli (see Appendix

and Figure 1—figure supplement 5). The MI measures the ability of the gene expression response

to discriminate between food conditions.

To define the redundancy of the system (Schneidman et al., 2003), we considered the difference

between the sum of the information independently encoded by gene expression in the ADF, ASI,

and NSM neurons, and the MI obtained from their combinatorial expression (Figure 1B):

R¼MIðGADF;FÞþMIðGASI ;FÞþMIðGNSM ;FÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sumof parts

�MIðGADF;GASI ;GNSM ;FÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

whole

(2)

Conceptually, redundancy occurs when the whole is less than the sum of parts (R>0), whereas syn-

ergy occurs when the whole is greater than the sum of parts (R<0) (Figure 1B).

This analysis revealed that ASI, ADF, and NSM neurons encode ~ 0:9 bits of information about

food abundance in wild-type animals (Figure 1C), which is in the same range of information encoded

by other biochemical pathways (Cheong et al., 2011), and it is consistent with the requirement for

sensing the two states (boom or bust) experienced by C. elegans in the wild (Félix and Braendle,

2010). Approximately 40% of this information is encoded redundantly in wild-type animals

(Figure 1D–E), consistent with the genetic evidence that tph-1 and daf-7 act in parallel pathways to

modulate lifespan (Entchev et al., 2015). tph-1(-) and daf-7(-) mutants show respective increases

and decreases in food information (Figure 1C), consistent with our prior decoding analysis. tph-1(-)

mutants also show a modest decrease in the fraction of redundant information (Figure 1E), suggest-

ing that the added information is more efficiently but less robustly encoded.

Remarkably, changes in the expression distributions of the daf-7 and tph-1 reporters in daf-7(-)

mutants shift the encoding strategy of ASI, ADF, and NSM from redundancy to synergy (Figure 1C–

D), such that ~ 40% of the total information in the circuit is now encoded synergistically (Figure 1E).

This effect is not due to the loss of ASI function in daf-7(-) mutants, as we observed the same shift to

synergy when only tph-1(-) expressing neurons are analyzed (Figure 1F–H), indicating that crosstalk

between daf-7 and tph-1 as well as daf-7 autoregulation control the coding strategy adopted by the

circuit. Importantly, the coding strategy shift is daf-7-specific, as disruption of tph-1 does not result

in a similar phenotype (Figure 1C). In the tph-1(-); daf-7(-) double mutant, cross- and self-regulation

are abolished, and ASI, ADF, and NSM neurons approach the independence regime (R ¼ 0)

(Figure 1C–E), confirming the idea that redundancy and synergy arise from the communication

between neurons via daf-7 and tph-1.
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Figure 1. Redundancy and synergy in a gene expression code. (A) Information content depends on the overlap between gene expression distributions

under different environmental conditions, which in turn depends on both the response magnitude (signal) and the variability across the population

(noise). (B) Diagrams illustrating redundancy versus synergy, calculated as the difference between the whole (combinatorial information in NSM/ASI/

ADF; darkest bar) and the sum of parts (information in NSM + ASI + ADF; stacked bars). (C–E) Analysis of redundancy and synergy based on tph-1

expression in ADF and NSM, and daf-7 expression in ASI. Genotype color key: Wild-type (black), tph-1(-) (blue), daf-7(-) (red), and tph-1(-); daf-7(-)

(purple). (C) Effect of tph-1(-) and daf-7(-) mutations on food encoding in the whole circuit (darkest bars) and the sum of parts (lighter stacked bars). (D)

Effect of tph-1(-) and daf-7(-) on redundancy and synergy among ADF, NSM, and ASI, as defined in Equation 2 and (B). As described in Equation 2

and in the main text, redundancy and synergy are indicated by positive and negative R values, respectively. (E) Fraction of redundant or synergistic

information in ADF, NSM, and ASI, which is the amount of redundancy or synergy in (D) normalized to the information encoded. (F–H) Analysis of

redundancy and synergy only in the tph-1 expressing neurons, ADF, and NSM. (F) Effect of daf-7(-) in the information encoded by tph-1 expression in

ADF and NSM (darkest bars) and the sum of their parts (lighter stacked bars). (G) Effect of daf-7(-) on redundancy/synergy of ADF and NSM. (H)

Fraction of redundant or synergistic information in tph-1 expression in ADF and NSM, which is the amount of redundancy or synergy in (G) normalized

to the total information encoded from (F). (I) Loss of tph-1 and daf-7 degrades information about food abundance at the level of lifespan responses.

DOI: 10.7554/eLife.24040.002

The following source data and figure supplements are available for figure 1:

Source data 1. Information and redundancy across genotypes.

DOI: 10.7554/eLife.24040.003

Source data 2. Fluorescence values for animals carrying both Pdaf-7::mCherry and Pdaf-7::Venus across four food levels for Figure 1—figure supple-

ment 2.

Figure 1 continued on next page
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The same information-theoretic analysis can be applied to quantify more directly the contribution

of daf-7 and tph-1 to the food-responsiveness of the physiological output. The lifespan response to

food abundance consists of ~ 0:6 bits of information in wild-type animals, and approximately 80% of

this food information is lost in the tph-1(-); daf-7(-) double mutant (Figure 1I), strengthening our pre-

vious assertion that the majority of the food information encoded in the lifespan response is medi-

ated by tph-1 and daf-7. While other genetic pathways may also play important roles, this central

role of tph-1 and daf-7 suggests that their coding features weigh heavily on the physiological

outcome.

Multicellular coding strategies rely on response correlations between cells (Schneidman et al.,

2003). Specifically, redundancy can be dissected into two components: the signal correlation,

which reflects correlated average responses (Figure 2A) and increases redundancy; and the noise

correlation, which captures co-fluctuations among different cells under fixed food levels

(Figure 2B–C) and promotes synergy (Schneidman et al., 2003) (Appendix). As opposed to the

wild-type animals, where the negligible value of noise correlation leads to redundancy (Figure 2D–

E), all mutants display a general increase of noise correlations. tph-1(-) animals retain redundancy

by compensating this effect with an increase of signal correlation; however, this balance shifts in

the daf-7(-) mutant due to the dramatic reduction of signal correlation (Figure 2F), bringing the

system to the synergistic regime (Figure 1D). The tph-1(-); daf-7(-) double mutant has nearly equal

signal and noise correlations which generate independent encoding.

Redundancy and synergy is strongly affected by noise and correlation among neurons. To charac-

terize their effects, we rescaled noise and correlations in the original response distributions of daf-7

and tph-1 over a biologically relevant range (Figure 3, Appendix). In wild-type animals, redundancy

is highly sensitive to noise, and weakly sensitive to correlation, providing a rationale for daf-7 in

noise reduction (Entchev et al., 2015). tph-1(-) mutants displayed increased sensitivity to both noise

and correlations. Redundancy in daf-7(-) mutants was more sensitive to correlation than noise, a

reversal of the wild-type situation. tph-1(-); daf-7(-) double mutants were less sensitive to noise and

correlations than either single mutant. These results suggest that the sensitivity of redundancy to

noise is controlled by daf-7, while robustness to correlation is maintained by both daf-7 and tph-1.

Redundancy or synergy in daf-7 and tph-1 expressing neurons serves as one constraint but

does not necessarily lead to the same coding strategy in their targets. The coding strategy used

by these targets will depend on their connectivity to ASI, ADF, and NSM, as well as their noise,

correlation, and dynamic range. Since little is known about the immediate targets of TGFb and

serotonin signaling in relation to the food response in C. elegans, we considered a minimal model

of three ideal sensors detecting an input and transmitting to a target that integrates linearly their

signals (Figure 4A, Appendix). This simple model shows that decreasing signal-to-noise ratio favors

synergy (Figure 4B, Appendix), in agreement with the observation that daf-7(-) mutants show

Figure 1 continued

DOI: 10.7554/eLife.24040.004

Source data 3. Optimal input distributions for ADF, ASI and NSM neurons across genotypes (data for Figure 1—figure supplement 3).

DOI: 10.7554/eLife.24040.005

Source data 4. Validation of information and redundancy estimates for Figure 1—figure supplement 4.

DOI: 10.7554/eLife.24040.006

Source data 5. Information, redundancy, and optimal input distribution by food level across genotypes.

DOI: 10.7554/eLife.24040.007

Figure supplement 1. Schematic of experimental and analytical workflow.

DOI: 10.7554/eLife.24040.008

Figure supplement 2. Experimental variability.

DOI: 10.7554/eLife.24040.009

Figure supplement 3. Neurons differ in their optimal input distributions.

DOI: 10.7554/eLife.24040.010

Figure supplement 4. Robustness of information theoretic analyses.

DOI: 10.7554/eLife.24040.011

Figure supplement 5. Information and redundancy by food level.

DOI: 10.7554/eLife.24040.012
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reduced signal-to-noise, and adopt synergistic encoding (Figure 1D–F). This model also explains

the decrease in synergy in tph-1(-); daf-7(-) double mutants compared to daf-7(-) single mutants

(Figure 1D–F): loss of tph-1 increases signal separation (Entchev et al., 2015), which increases sig-

nal-to-noise, thus reducing synergy. Thus, that signal-to-noise ratios can contribute significantly to

the coding strategy.

Our model also illustrates the advantages of redundancy in the case of linear integration. Redun-

dant strategies increase the minimum information transmitted to a downstream target when com-

pared to a synergistic encoding (Figure 4C). Additionally, redundant encoding not only allows

higher information transmission, but can also be accommodated by a broader set of signaling

parameters (Figure 4D), avoiding the need to fine tune biological properties. When considering life-

span as the downstream target, our model suggests that lifespan responsiveness to food should

decrease in daf-7(-) mutants, because wild-type animals employ redundancy, whereas daf-7(-)

mutants employ a synergistic encoding. Indeed, we find that the ability to accurately discriminate

between different food inputs based on lifespan is degraded in daf-7(-) mutants (Figure 1I)

(Entchev et al., 2015).

By extending the analysis of our previous work, we have found that the ADF, NSM and ASI neu-

rons employ a redundant strategy to encode food information. Critically, this redundant encoding

strategy is controlled by daf-7 TGFb and modified by tph-1 tryptophan hydroxylase; this is a novel

effect of neuromodulators on circuit function. In particular, we revealed two roles for daf-7: as an

encoder of food information, and as a regulator of redundancy via regulation of tph-1. In principle,

redundancy and synergy could be specified by many different biological mechanisms, with obvious

candidates being developmental changes in sensor types or numbers in a neural circuit. These
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Figure 2. Signal and noise correlations influence redundancy and synergy. (A–B) Hypothetical expression distributions of two neurons at three food

levels, illustrating signal and noise correlations and their effects on redundancy (Schneidman et al., 2003). Centre: their 2D distributions. Top and side:

the distributions of each neuron. Signal correlation between two neurons across three food levels, and noise correlation at one selected food level are

denoted by dotted lines marked ‘S’ and ‘N’ in (A) and (B), respectively. (C) shows how signal and noise correlations are related to redundancy and

synergy as previously established (Schneidman et al., 2003). When signal correlations are higher (A), each neuron provides similar information (top and

side distributions), reflecting redundancy. When noise correlations are higher (B), the combinatorial expression shows reduced overlaps and contains

more information than individual neurons, providing synergy. (D–E) The effects of daf-7 and tph-1 on redundancy and synergy are explained by their

effects on the signal correlation (D) and noise correlation (E). (F) Signal and noise correlation in each genotype and their relation to redundancy and

synergy as indicated in (C).

DOI: 10.7554/eLife.24040.013

The following source data is available for figure 2:

Source data 1. Signal and noise correlations across genotypes.

DOI: 10.7554/eLife.24040.014
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mechanisms are ruled out in daf-7(-) and tph-1(-) animals, as the mutations do not affect the devel-

opment of the ASI, ADF, and NSM neurons, which remain food-responsive. Instead, we show that

daf-7 and tph-1 influence information processing via effects on the signal and noise properties of

these sensory neurons, and on their correlations, representing additional roles for these genes in

controlling information encoding. The discovery of other genes that regulate the signal-to-noise

ratio will likely provide further insights into genetic regulatory mechanisms that modulate neural

coding.

wild-type

Scaled Noise

S
c
a

le
d

L
in

e
a

r 
C

o
rr

e
la

ti
o

n

0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

tph-1(–) daf-7(–) tph-1(–); daf-7(–) Redundancy

(bits)0.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

-0.1
0

0.10.2

0.3

0.4

0
.5

0
.6

0
.7

0
.8

-0.4
-0.3

-0.2

-0.1

0

-0.1

0

0
.1

Redundancy

Coding StrategyGenes

daf-7

Noise
Correlations

Signal
Correlations

tph-1
Synergy

Independence

Expression
Noise

Signal
Levels

B

A

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Interplay between noise and correlation affects redundancy. (A) Heat maps showing redundancy when correlation and noise are scaled from

their baseline values in wild-type and mutants. Redundancy values are indicated by legend. Contour lines denote equal redundancy. The number of

contour lines crossed along each axis indicates the sensitivity to that parameter. (B) The steps leading from genes to coding strategy.

DOI: 10.7554/eLife.24040.015

The following figure supplement is available for figure 3:

Figure supplement 1. Sensitivity analysis of channel capacity, signal, and noise correlation.

DOI: 10.7554/eLife.24040.016

Redundancy

Synergy

input

output

= {0,1}

S1 S2 S3

= αS1 + βS2 + γS3

A

Sensors

C

1.50.5-0.5-1.5

O
u
tp

u
t

In
fo

rm
a
ti
o
n
 (

b
it
s
)

RedundancySynergy

(bits)

D

Output Information

(bits)

0.0 0.2 0.4 0.6 0.8 1.0

F
ra

c
ti
o
n

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0

-1.0

0.0

-1.0

Signal to Noise Ratio

R
e
d
u
n
d
a
n
c
y

S
y
n
e
rg

y (b
it
s
)

B

Figure 4. Computational model reveals advantages of redundancy. (A) Model for information encoding and transmission, where three sensors activate

one target that integrates their signals linearly (see Appendix). (B) Effect of signal-to-noise ratio on coding strategy. (C) Effect of coding strategy on

transmitted information. (D) Sensors that transmit more information tend to use redundancy.
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The following figure supplement is available for figure 4:

Figure supplement 1. Gaussian model of sensory neurons and information transmission.

DOI: 10.7554/eLife.24040.018
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Computational methods

Minimization and quantification of experimental noise
Information theory relies on accurate estimates of response distributions, requiring the minimisation

of experimental variability. We took several steps to achieve this. First, we only considered animals

oriented in a dorso-ventral position. The microfluidic chip was constructed to bias animals towards

this correct orientation, the orientation was checked during automated cell identification and verified

manually, ensuring that only image stacks with animals in dorso-ventral orientations were used in the

analysis. Second, we used direct imaging of transcriptional fusions to fluorescent protein reporters

integrated in single copy. This approach ensures that biological variance in promoter activity is not

artificially washed out by averaging in conventional high-copy reporters that are more traditionally

used to generate C. elegans transgenics. Using fluorescent reporters also eliminates experimental

noise associated with antibody staining due to variability in fixation, in permeabilizing the C. elegans

cuticle, and in signal amplification from secondary antibodies. Third, we minimized bleaching by

using a combination of low excitation from an LED light source, and rapid image acquisition using a

Piezo Z stage (Prior Scientific) that precisely moves the sample in the Z axis at high speed.

In addition, we used simultaneous quantification of mCherry and Venus/YFP driven by the same

promoter to estimate our experimental noise (Figure 1—figure supplement 2). We generated ani-

mals with Pdaf-7::mCherry and Pdaf-7::Venus reporters integrated at single copy in precise genomic

locations on LG I and LG II, respectively (Figure 1—figure supplement 2A). These animals were

shifted to four different food levels and imaged 1 day after the food shift. This experimental mea-

surement incorporates experimental noise associated with different fluorescent proteins (mCherry

and Venus) and different chromosomal locations for reporters, as well as other methodological

noise. We found that the two measurements were in good agreement (R ~ 0:83, Figure 1—figure

supplement 2B). Dissecting the variance in these measurements showed that 30% (1� R2) of the

observed variability in these measurements was due to variability between the mCherry and Venus

readouts. We note that this variability includes intrinsic noise as the reporters are on different chro-

mosomes; the actual experimental variability would therefore be lower, since intrinsic noise is non-

zero.

Computational analysis
The computational analysis of all the data was performed using custom-made C++ programs and

built-in implementations of standard multivariate analysis algorithms in R (R Core Team, 2016). C++

programs are available through GitHub repositories (https://github.com/giovannidiana/Information,

https://github.com/giovannidiana/KDE and https://github.com/giovannidiana/ModelRS). Mathemati-

cal details of these procedures and the results are discussed in the Appendix.
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Appendix

Supplementary computational methods
To uncover the information processing features of the daf-7/tph-1 genetic circuit embedded in

the ASI, ADF and NSM neurons, we performed an information-theoretic analysis of the gene

expression responses of daf-7 in the ASI neuron, and tph-1 in the ADF and NSM neurons. In

the main text we introduced the mutual information (MI) as a measure of the correlation

between food level and gene expression. In this section we discuss in greater detail the

properties of this quantity and the procedure used to estimate MI from our gene expression

data. The type of encoding system that we are interested in maps an input F (food level)

taking NF ¼ 6 distinct values ff1; � � � ; fNF
g onto three continuous variables denoted by the

vector G ¼ fGADF;GASI ;GNSMg (gene expression in the three neurons).

Mutual information
The multivariate gene expression response under a specific food condition is given by the set of

conditional probabilities PðGjF ¼ fkÞ, (k ¼ 1; . . . ;NF ). To characterize the information

transmission of a communication system we also need to specify the probabilities PðFÞ with

which the ADF-ASI-NSM encoder is exposed to each food condition. Given the input

probabilities PðFÞ we can compute averages across food level, in particular the marginal

probabilities of gene expression

PðGÞ ¼
XNF

k¼1

PðfkÞPðGjfkÞ: (3)

From input and response distributions we can build up three information entropies. First, the

joint information entropy of both food and gene expression is defined as (Cover and

Thomas, 2006)

HðF;GÞ ¼

Z

d3G
XNF

k¼1

PðG;FÞ log2PðG;FÞ; (4)

and it measures the variability of input and output. Second, we can quantify the variability of

the gene expression response to food by the conditional entropy

HðGjFÞ ¼

Z

d3G
XNF

k¼1

PðG;FÞ log2PðGjFÞ; (5)

Third, the entropy of the marginal distributions in Equation (3)

HðGÞ ¼

Z

d3GPðGÞ log2PðGÞ; (6)

measures the variability of the average response. The mutual information defined as
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MIðG;FÞ ¼

Z

d3G
XNF

k¼1

PðG; fkÞ log2
PðG; fkÞ

PðGÞPðfkÞ
¼

¼

Z

d3G
XNF

k¼1

PðfkÞPðGjfkÞ log2
PðGjfkÞ

PðGÞ
� 0:

(7)

is always positive due to the log-sum inequality and it can be expressed as the difference

between the gene expression entropy and the conditional entropy with respect to food

level, that is

MIðG;FÞ ¼HðGÞ�HðGjFÞ (8)

which yields to the standard interpretation of MI as the amount of information entropy

shared between stochastic variables.

As mentioned in the main text and Figure 1A, the mutual information is strongly affected by

the signal-to-noise ratio (SNR). For univariate distributions, we use the definition

SNR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðGÞ� hvarðGjFÞiF
hvarðGjFÞiF

s

; (9)

where varðGjFÞ is the variance under the condition F and h�iF denotes the average across all

conditions.

MI can be decomposed as

MIðG;FÞ ¼
XNF

k¼1

PðfkÞD
ðjointÞ
k (10)

where the components D
ðjointÞ
k are defined as

D
ðjointÞ
k �D PðGjfkÞjjPðGÞð Þ ¼

Z

d3GPðGjfkÞ log2
PðGjfkÞ

PðGÞ
(11)

and represent the relative entropy between conditional and average response.

Our estimates of mutual information provide a lower bound of the true information encoded

by tph-1 and daf-7 due to noise inherent in all experiments.

Channel capacity
A common question in biology is to understand how phenotypic changes are related to the

environmental input. To address this question it is natural to design experiments where

relevant input variables are controlled. These types of experiments provide a good sampling

of the responses, but the frequencies of environmental conditions at which biological

systems are exposed in the wild are not always known. On the other hand, the level of

information encoded about the environment depends on the input distribution. A common

procedure to infer the input distribution is to assume that the set of gene expression

responses is designed to maximize the information stored (Tkačik and Walczak, 2011;

Selimkhanov et al., 2014; Uda et al., 2013). With this assumption we can obtain the food

distribution by maximising the mutual information between food and gene expression. The

maximal MI achievable given the set of conditional responses is known as channel capacity
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C¼max
PðFÞ

MIðG;FÞð Þ; (12)

and it is an intrinsic property of the encoding system.

An important aspect of MI is that all the relative entropies D
ðjointÞ
k in the decomposition (10)

become identical under the optimality condition, which is easy to prove by maximizing the

action

S¼HðGÞ�HðGjFÞþl
X

k

PðfkÞ (13)

where l is a Lagrange multiplier to assure the normalization of the input distribution. By

considering the derivative over PðfkÞ we get

0¼
dS

dPðfkÞ
¼D

ðjointÞ
k � 1þl (14)

which implies that at the maximum, all the D
ðjointÞ
k are equal to 1� l. Therefore, since the

channel capacity is defined as an average of D
ðjointÞ
k , D

ðjointÞ
k ¼ C for all k. This property implies

that the optimal input distribution obtained by maximizing MI is such that all the conditional

responses are equally distant from their average, when relative entropy is used as a measure

of distance between probability distributions.

In Figure 1—figure supplement 5A we compare the channel capacity obtained from tph-1/

daf-7 expression in ADF, ASI and NSM neurons (dotted line) with the components D
ðneuronÞ
k of

the mutual information between gene expression and food abundance in each neuron (ADF,

ASI, NSM) for all genetic backgrounds. For this comparison we first obtained the channel

capacity and the optimal input distribution from the three-dimensional data for each

genotype (Figure 1—figure supplement 5C) and then we used this optimal distribution to

calculate the mutual information of each neuron. The components of the mutual information

for individual neurons are obtained from Equation (11) by using the corresponding marginal

distribution. Unlike the components D
ðjointÞ
k of the maximized joint mutual information, the

D
ðneuronÞ
k are not constant over the food level, reflecting the fact that single neurons are

optimized for different input distributions (Figure 1—figure supplement 3).

The optimal input frequencies (Figure 1—figure supplement 5C) reveal that wild-type

animals encode the most information when they are most likely to encounter the highest, an

intermediate, and the lowest food levels. This result implies that wild-type animals are best

at detecting these food levels, compatible with the boom and bust lifestyle of C. elegans in

the wild (Félix and Braendle, 2010). This optimal is altered in daf-7(-) mutants (Figure 1—

figure supplement 5C), indicating that it is genetically controlled. By maximizing the mutual

information between individual neurons and food conditions we find that each neuron is

specialized to sense different food levels (Figure 1—figure supplement 3), which broadens

their combined range of detectable food levels. For example, tph-1 expression in ADF in

wild-type animals is best at detecting the food extremes (Figure 1—figure supplement 3A).

At these extreme food levels, ADF carries more information than at other food levels. Thus

specialization among food sensing neurons ultimately leads to food-dependent

heterogeneity in coding (Figure 1—figure supplement 5A).

We note that the switch from redundancy in wild-type to synergy in daf-7(-) mutants still

occurs when we use the wild-type optimal input frequency for calculating redundancy values

for daf-7(-) mutants. Thus, our conclusions are not sensitive to the choice of using channel

capacity and the corresponding optimal input distribution for each genotype. All the
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estimates of channel capacity in this work were done by using the standard Arimoto-Blahut

algorithm (Arimoto, 1972; Blahut, 1972).

Redundancy and synergy
In the main text we introduce redundancy R as the difference (Schneidman et al., 2003)

R¼MIðGADF ;FÞþMIðGASI ;FÞþMIðGNSM ;FÞ�MIðG;FÞ (15)

and synergy as the negative of the redundancy. By following the work of Schneidman et al.

the redundancy can be written as the difference between signal and noise correlation

defined as

SC¼MIðGADF;FÞþMIðGASI ;FÞþMIðGNSM ;FÞ� IðsÞ (16)

NC¼MIðG;FÞ� IðsÞ (17)

where IðsÞ is the ‘shuffle’ information defined as

IðsÞ ¼

Z

d3G
X

k

PðfkÞ �P
ðsÞðGjfkÞ log

PðsÞðGjfkÞ
P

k PðfkÞP
ðsÞðGjfkÞ

; (18)

and corresponds to a modified version of the mutual information between gene expression

and food level where the joint distribution is replaced by the product of the marginal

densities PðsÞ,

PðsÞðGjFÞ � PðGADF jFÞ �PðGASI jFÞ �PðGNSM jFÞ: (19)

By using the definition of the mutual information per neuron we can rewrite the signal

correlation in the form of a relative entropy

SC¼

Z

d3G
X

k

PðfkÞ �P
ðsÞðGjfkÞ log

P

k PðfkÞP
ðsÞðGjfkÞ

PðGADFÞPðGASIÞPðGNSMÞ
� 0 (20)

which shows that SC is a non-negative quantity. As opposite to the signal correlation, which

can only increase the level of redundancy, noise correlation can be positive or negative.

Depending on the sign of R in Equation (15) the system operates in a redundant (SC>NC) or

synergistic (SC<NC) regime.

These information-theoretic measures of correlation reveal changes in different genotypes

that contribute to shifts in coding strategy and capture different features of the interaction

between the neurons. Consider for instance the case of independent encoders where the

probability distribution of the joint response is factorized into the product of the responses

of each neuron

PðGjFÞ ¼ PðsÞðGjFÞ ¼ PðGADFjFÞ �PðGASI jFÞ �PðGNSM jFÞ: (21)

In this case the noise correlation vanishes identically, however, signal correlation can be non-

zero due to the correlation induced by the stimulus, thus we obtain the intuitive result that

the level of redundancy in a system of independent encoders is always non-negative.

Therefore, the synergistic encoding that we observe in the daf-7(-) mutant is caused by the

change in the interaction network of ADF, ASI and NSM neurons. In the wild-type this
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network is tuned to guarantee a robust encoding of food abundance. When daf-7 is

knocked-out, the sign of R in Equation (15) changes, which namely corresponds to a switch

from redundancy to synergy.

Analogously to the mutual information, also redundancy can be decomposed as

R¼
XNF

k¼1

PðfkÞD
ðredÞ
k (22)

where we defined the food components D
ðredÞ
k as

Dred
k ¼D

ðADFÞ
k þD

ðASIÞ
k þD

ðNSMÞ
k �D

ðjointÞ
k : (23)

In Figure 1—figure supplement 5B we show the redundancy components at each food

level across all genotypes. We observe that the quality of the encoding (synergistic or

redundant) varies under different food conditions. In particular, both wild-type and tph-1(-)

mutant tend to adopt a synergistic behaviour under non optimal food conditions (see

Figure 1—figure supplement 3A–B for comparison with input distributions) whereas daf-7

(-) mutant and tph-1(-); daf-7(-) double mutant are always synergistic. The input distribution

obtained by maximizing MIðGADF ;GASI ;GNSM ;FÞ was used as a reference food distribution

for all the genotypes analyzed in this work. tph-1 and daf-7 promoter activity was available

also for mutant strains because the reporters were separate from the endogenous genes.

To confirm that the synergistic character of the encoding in the daf-7(-) mutant is not an

artifact of including ASI (where daf-7 is expressed) in the estimation of the redundancy, we

performed the same analysis by using only ADF and NSM read-outs. As a result, by

comparing wild-type and daf-7(-) mutant, we obtained the same qualitative switch from

redundant to synergistic encoding as obtained from the inclusion of all neurons (Figure 1F–

H).

Kernel density estimation
Information entropies, and thus mutual information, are functionals of the probability

distribution of the readouts. To quantify the conditional distributions PðGjFÞ we used Kernel

Density Estimation (KDE) (Scott, 1992), which provides a mathematical framework to

estimate distributions of continuous variables.

Compared to the standard methodology of frequency histograms to estimate distributions,

this technique does not require bin size selection. In the KDE approach, the probability

density is estimated by the sum of reference distributions (kernel) centered at the observed

values, thus for any expression vector g we have the estimated density f̂ ðgÞ reads

f̂ ðgÞ ¼
1

n

Xn

i¼1

KHðg�GiÞ (24)

where the kernel KH is a multivariate Gaussian distribution, the ‘bandwidth’ H corresponds

to its variance matrix and the sum is over all the measured expressions fGig
n
i¼1

.

An accurate estimation of the density relies on the choice of the bandwidth, which can be

constant across the support of the probability or adapted to the local density. The Mean

Squared Error (MSE)
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MSE½f̂ ðgÞ� ¼ Efðf̂ ðgÞ�PðgjFÞÞ2g ¼Var½f̂ ðgÞ�þBias2½f̂ ðgÞ� (25)

and its integral (MISE) are commonly minimized to find the appropriate bandwidth. Selector

algorithms differ in the trade-off between bias and variance of the estimator.

To check the robustness of our calculation, we compared the results obtained by using

different fixed bandwidth selector algorithms (Figure 1—figure supplement 4). In

particular, we used the plug-in method (Chacón and Duong, 2010), least squares cross-

validation (Bowman, 1984) and smoothing cross validation (Jones et al., 1991), all of which

provide a uniform bandwidth. The general, fixed bandwidth estimators tends to oversmooth

the main part of the distribution and undersmooth the tails. To confirm that this effect did

not introduce artificial biases we also used the ‘baloon’ (k-nearest neighbours) estimator

(Loftsgaarden and Quesenberry, 1965), where the probability distribution is proportional

to the local density of observations (Figure 1—figure supplement 4).

Once we obtained the conditional response distributions, averages over expression levels as

in Equation (7) were computed by evaluating PðGjFÞ on a three-dimensional grid (a different

approach would be to resample from the obtained distribution (Krishnaswamy et al.,

2014). By testing different grid resolutions we found that a grid of size 30
3 was sufficient to

guarantee the convergence of averages. The uncertainty in the estimation of channel

capacity was obtained by calculating the variance associated with sampling the 80% of the

data. As shown in Figure 1—figure supplement 4, the estimates of both channel capacity

and redundancy/synergy are robust to KDE algorithm in all genetic backgrounds.

Sample size bias
A well known issue in the estimation of channel capacity is the bias due to sample size. The

general jack-knife procedure to remove this effect involves expanding the channel capacity

in inverse powers of sample size (Cheong et al., 2011; Selimkhanov et al., 2014),

Cbiased ¼Cunbiased þ
a1

N
þO

1

N2

� �

(26)

and obtaining the unbiased term by a linear fit of the channel capacity calculated using

increasing fraction of the data. By applying this procedure, we found a very small sample-

size correction to channel capacity in all genetic backgrounds (Figure 1—figure supplement

4A–B). The same analysis applied to the redundancy/synergy (Figure 1—figure supplement

4C–D), showed that our conclusions are independent on the sample size. All our linear fits of

channel capacity and redundancy/synergy (Figure 1—figure supplement 4E) from 60% to

100% of the data were above the 95% of confidence level, indicating that our data is far

from the undersampled regime.

Covariance sensitivity analysis
To explore how channel capacity and redundancy depend on linear correlation and noise

among ADF, ASI and NSM neurons requires a way to scale these two properties in silico

from the baselines obtained in each genotype in experimental measurements. To do so, we

first approximated the gene expression densities as multivariate normal distributions. This

approximation captures most of the global features of our three-dimensional responses and

allows us to control noise and correlations in terms of covariance matrices. The Gaussian

assumption was also used in our previous decoding analysis (Entchev et al., 2015). The

agreement between our present study and the decoding analysis shows indirectly that the

Gaussian approximation can be used here for information-theoretic purposes. We used the
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maximum-likelihood estimates of the covariance matrices C for each genotype as a

reference and then we transformed each entry of the covariance matrix according to the rule

Cij ! adijþabð1� dijÞ
� �

Cij: (27)

The transformation above rescales all the standard deviations of the responses by a factor a

and the Pearson’s correlation index for all pairs of neurons by a factor b. Thus we studied

the sensitivity of information-theoretic variables to noise and correlation by varying a and b

over a biologically relevant range.

In the main text we presented the sensitivity analysis of redundancy, in Figure 3A and

Figure 3—figure supplement 1A–C we show the color-coded contour maps of channel

capacity, signal and noise correlation obtained by varying the parameters a and b from 0.5

to 2 independently. We checked numerically the positivity of the covariance matrix for all

pairs of a and b. The major factor that controls information capacity in wild-type is noise,

which provides a rationale for the noise regulation by daf-7 revealed in our previous study

(Entchev et al., 2015). Scaling the linear correlation has a more pronounced effect in all the

mutants and especially in the daf-7(-) mutant. This is due to the synergistic encoding in daf-7

(-) mutants - since interactions between neurons are a crucial to a synergistic strategy, the

system becomes much more sensitive to linear correlations. This effect is particularly evident

in daf-7(-) mutants, where the signal correlation is almost unchanged under noise rescaling

(Figure 3—figure supplement 1C), making noise correlation the more prominent

contributing factor.

Gaussian model
We can explore the consequences of redundant or synergistic strategies by modeling how the

information encoded by ADF, ASI and NSM neuron is read by an ideal output which conveys

the information from the sensory neurons. The essential features of the ADF-ASI-NSM

system are captured by using the model depicted in Figure 4—figure supplement 1A–B.

Here, the information about a binary input B is encoded by three sensors S1, S2 and S3

whose joint response is a multivariate normal distribution with mean vector �b

�b ¼
a;a;af g if b¼ 1

�a;�a;�af g if b¼ 0

�

(28)

where the parameter a is associated with the dynamic range of the response. The covariance

matrix Cij � covðSi; SjÞ associated to the joint distribution is assumed to be stimulus-

independent. This simplification is consistent with the observation that variances and

correlations between neurons do not change considerably across food levels. The covariance

matrix was parametrized as

covðSi;SjÞ ¼

s2

1
�12s1s2 �13s1s3

�12s1s2 s2

2
�23s2s3

�13s1s3 �23s2s3 s3

3

0

B
@

1

C
A; (29)

where �ij are the correlation coefficients between Si and Sj such that detC>0.

The information about the binary input encoded by the three Gaussian sensors is then

integrated linearly by the output variable

output¼ aS1 þbS2 þgS3 (30)

Diana et al. eLife 2017;6:e24040. DOI: 10.7554/eLife.24040 16 of 18

Research advance Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.24040


where a;b; g>0 and aþ bþ g ¼ 1. This choice implies that the output is also normally

distributed with mean �a dependently on the value of the input, whereas its variance reads

varðoutputÞ ¼ a2varðS1Þþb2varðS2Þþg2varðS3Þþ

þ 2abcovðS1;S2Þþ 2bgcovðS2;S3Þþ 2agcovðS1;S3Þ (31)

In our setting we assume the two states of the input b 2 f0; 1g to be equally probable,

leading to an information entropy of 1 bit. The information encoded by the sensors about

the input, I ¼ MIðS1; S2; S3;BÞ, is upper bounded by the input entropy, moreover the input

information encoded by each component, Ik ¼ MIðSk;BÞ, is always smaller than the joint

information. We can combine these constraints into the inequality

k
maxðIkÞ � I � 1 bit: (32)

Furthermore, since the output is a function of the sensor responses, the mutual information

between input and output Io ¼ MIðoutput;BÞ is bounded by the information encoded by the

three sensors

Ioutput � I: (33)

In order to understand the consequences of synergy and redundancy from the perspective

of the output node in the network which receives the input information from the three

sensors, we explored the parametric space of the model and calculated the information

encoded by the sensors and by the output. By using the variance of the first sensor as a

reference scale we set s1 ¼ 1 and sampled the eight parameters left uniformly within the

range

0:1 < s2<1 (34)

0:1 < s3 < s2 (35)

�0:7 < �ij < 0:7 (36)

0 < a < 1 (37)

0 < b < 1�a (38)

0 < a < 2s3; (39)

The range above was selected based on the following considerations:

1. All variances have a lower bound (set to 0.1) to avoid singular regimes where the 3D normal
distribution becomes too narrow around the mean.

2. From Equations (34,35) s1 >s2 > s3, which implies I1 < I2 < I3.
3. The upper bound of 0.7 on the absolute correlation coefficients �ij was used to keep the cor-

relations within a biologically relevant range. Correlations between ADF, ASI and NSM are
lower than 0.5 in all food conditions and genetic backgrounds.

4. The conditions in Equations (34–36) do not guarantee the covariance matrix in Equation (29)
to be positive definite, therefore in our sampling algorithm we rejected all parameter sets
with detðcovÞ<0.

5. In our sampling we choose the value of a to be lower than 2s3. Larger values of a generate
extreme regimes where I3 is approximately one bit, and the inequality for the joint informa-
tion I3 � I � 1 implies a positive redundancy

R¼ I1 þ I2 þ I3 � I » I1 þ I2 > 0: (40)

In this condition the output information is very sensitive to the value of g ¼ 1� a� b. For

g » 1, the output is only receiving input from S3, leading to an efficient transmission of 1 bit
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of information. Lower values of g lead to a decrease of the transmitted information due to

the noisier contribution of S1 and S2 to the output.

In Figure 4 and Figure 4—figure supplement 1 we show the calculation of information-

theoretic quantities from a sample of ~ 500000 parametric sets. Red and blue populations

correspond respectively to redundant and synergistic configurations. The majority of the

sampled configurations (65%) displays a positive redundancy. As discussed in the main text,

the minimum value of the output information increases proportionally to the level of

redundancy. This feature matches the intuitive view that redundant system allow to transmit

infomation more reliably. The redundancy value is lower bounded by the negative of the

total information encoded by the sensors and upper bounded by two bits (Figure 4—figure

supplement 1C), due to the inequalities

R¼ I1 þ I2þ I3 � I <I1 þ I2 <2: (41)

Synergistic regimes occupy the region of low signal correlation and positive noise correlation

(Figure 4—figure supplement 1D–F) and are generally characterized by low values of the

information carried by single sensors (Figure 4—figure supplement 1E).

In Figure 4—figure supplement 1G, we show the distribution of redundant/synergistic

regimes with respect to the parameters a and s3, which represent dynamic range and noise

in the model. The ratio between these two parameters quantifies the signal-to-noise ratio of

the system

SNR�
a

s3

: (42)

In the absence of extra constraints, redundant configurations are permitted for any value of

the signal-to-noise ratio, whereas the population of synergistic regimes is depleted for high

values of SNR (Figure 4—figure supplement 1H). When we require a non-zero lower bound

to the information encoded by the sensors, I > Imin, we see the appearance of a critical

value for SNR ¼ s�ðI0Þ which separates two regions (see Figure 4—figure supplement 1H,

right panel): a synergy-dominated region, for SNR < s�ðI0Þ, and a mixed region where both

coding strategies are permitted SNR > s�ðI0Þ. The critical SNR value depends on threshold

applied to the sensor information, in particular, s�ðI0Þ increases for increasing threshold I0.

This observation can be used to predict how changes in signal-to-noise ratio affect coding

strategy. Consider a system operating redundantly at high SNR. Our model shows that

independently of the details of the system, if we apply a perturbation to the system which

reduces the SNR below s�ðI0Þ, then in order to carry at least I0 bits of information the system

will necessarily adopt a synergistic strategy. Remarkably, this feature of the model is in

perfect agreement with the switch from redundancy to synergy observed in the daf-7(-)

mutant with respect to the wild-type animal.

Reduction of SNR accompanied by a sufficient level of information encoded is always

associated to a switch to synergy. This behaviour is easy to explain. When a � s3 the most

informative sensor S3 stores a very small amount of information due to the small SNR

however the joint information can still reach one bit by increasing the eccentricity of the

distributions, i.e. by increasing the linear correlations between sensors. This has the clear

consequence of increasing the noise correlation, therefore shifting redundancy to negative

values.
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