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Abstract: Silver nanoparticles (AgNPs) are frequently detected in many convenience goods, such as
cosmetics, that are applied directly to the skin. AgNPs accumulated in cells can modulate a wide
range of molecular pathways, causing direct changes in cells. The aim of this study is to assess
the capability of AgNPs to modulate the metastasis of breast cancer cells through the induction of
epithelial-to-mesenchymal transition (EMT). The effect of the AgNPs on MCF-7 cells was investigated
via the sulforhodamine B method, the wound healing test, generation of reactive oxygen species
(ROS), the standard cytofluorimetric method of measuring the cell cycle, and the expression of EMT
marker proteins and the MTA3 protein via Western blot. To fulfill the results, calcium flux and HDAC
activity were measured. Additionally, mitochondrial membrane potential was measured to assess the
direct impact of AgNPs on mitochondria. The results indicated that the MCF-7 cells are resistant to
the cytotoxic effect of AgNPs and have higher mobility than the control cells. Treatment with AgNPs
induced a generation of ROS; however, it did not affect the cell cycle but modulated the expression
of EMT marker proteins and the MTA3 protein. Mitochondrial membrane potential and calcium
flux were not altered; however, the AgNPs did modulate the total HDAC activity. The presented
data support our hypothesis that AgNPs modulate the metastasis of MCF-7 cells through the EMT
pathway. These results suggest that AgNPs, by inducing reactive oxygen species generation, alter the
metabolism of breast cancer cells and trigger several pathways related to metastasis.

Keywords: silver nanoparticles; breast cancer; epithelial–mesenchymal transition; metastasis; estro-
gen; MCF-7

1. Introduction

The uncontrolled spread of cancer cells in the body (metastasis) often results in
rigorous therapy and frequently leads to the death of the patient. The risk factors for
developing cancer are environmental factors (such as an unhealthy diet or lack of physical
activity), exposure to pollutants, and possession of genetic predispositions.

Breast cancer, the incidence of which is often influenced by age [1], has rapidly become
the most commonly diagnosed cancer in women [2]. Primary factors that induce the de-
velopment of breast cancer are generally associated with increased exposure to estrogens,
early adolescence, late menopause, late age of first pregnancy, forsaking breastfeeding [3],
and taking contraceptives [4]. Most malignant tumors found in breasts contain estrogen
receptors (ERs) and progesterone receptors (PRs). In terms of ER expression, breast cancer
tumors can be classified into two types: ER-positive (ER+) and ER-negative (ER-). It has
been reported that younger women more frequently have ER- cancer [5]. In addition to age,
the decisive factors for developing estrogen-dependent breast cancer are menopause, obe-
sity, use of contraceptives, and hormone replacement therapy (HRT) during menopause [6].
The distinguishing feature of ERs is low substrate specificity, resulting in ER binding not
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only endogenous estrogens but also structurally distant synthetic compounds as well as
secondary metabolites of higher plants.

The binding of exogenous ligands does not always lead to the inducement of estrogen
signaling. It can cause a disruption of estrogen pathways, block the ligand-binding site,
or activate a different signaling pathway. These changes may lead to many serious health
problems, such as the aforementioned metastasis. Epithelial-to-mesenchymal transition
(EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), are key for the
development of many tissues and organs [7]. EMT is a biological process that allows a po-
larized epithelial cell with a normal epithelial phenotype to undergo multiple biochemical
changes, enabling it to adopt a mesenchymal phenotype associated with increased cell mi-
gration capacity, increased resistance to apoptosis, and significantly increased production
of extracellular matrix (ECM) components [8]. Epithelial cells are characterized by high
levels of E-cadherin, while cells with a mesenchymal phenotype are rich in N-cadherin, fi-
bronectin, and vimentin. Thus, EMT involves deep morphological and phenotypic changes
in the cell. As a result of this process, the basement membrane is degraded, and the cell
phenotype shifts to the mesenchymal type, enabling migration from the epithelial layer
from which it originates. It is believed that the basic indicator that occurs during EMT is
lower than the physiological level of E-cadherin. Proteins such as Snail 1, Snail 2 (often
called Slug), ZEB1, ZEB2, TCF3, and KLF8 can attach to the E-cadherin promoter and
inhibit its transcription [9].

Due to the low substrate specificity, the ERs can bind a lot of extracellular components,
often called estrogen mimetics. The estrogen mimetics can be divided into two separate
groups based on their origin: phytoestrogens and metalloestrogens. The first group
comprises a plethora of natural compounds produced by plants, whereas the second’s
structure is based on elemental metal. The group of metalloestrogens includes all forms of
elements from the metal group, ranging from ions to nanoparticles.

Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in household
products (as an alternative to detergents and fungicides) due to their bactericidal and fungi-
cidal properties. The introduction of nanomaterials into the environment in recent decades
has resulted in continuous accumulation of the nanomaterials in the abiotic environment
and, consequently, in the tissues of organisms. Only in the last decade have discussions
begun concerning the long-term effects of mass and continuous exposure of organisms to
nanomaterials and how great a burden this is for the abiotic environment [10].

Nanoparticles are known for their interactions with molecular pathways in the cell.
There are dozens of published papers about green-synthesized AgNPs that are modified
or unmodified with organic or inorganic compounds and can modulate many various
pathways in breast cancer cells. Depending on the modification of the surface, the Ag-
NPs present a different mechanism of action. Despite the positive sides of the AgNPs,
these nanoparticles can also cause (depending on their size, surface modifications, shape)
cytotoxicity, mitochondrial dysfunction, and oxidative stress and induce apoptosis [11]
and—as shown in this paper—metastasis through induction of the EMT pathway. The
exact background of our hypothesis that AgNPs cause metastasis in breast cancer cells was
our own observation of MCF-7 cells and the already proven low specificity of estrogen
receptors that can bind a plethora of ligands [12].

In this paper, we wanted to present the results of experiments conducted to verify the
hypothesis about the metastasis caused by AgNPs in estrogen-dependent breast cancer
cells of the MCF-7 cell line, which is the most commonly used and well-described in vitro
model of ER+ breast cancer. We believe that our research will contribute to an improved
understanding of the complex network of connections between nanomaterials and intracel-
lular transmission pathways, with particular emphasis on implications for the treatment of
hormone-dependent breast cancers.
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2. Results

All experiments were conducted on MCF-7 cells cultured in Dulbecco’s modified Eagle
medium (DMEM) supplemented with 10% fetal bovine serum (FBS). All experiments were
conducted at least in triplicate (n = 3). The statistics were analyzed (unless otherwise stated)
via Student’s t-test by comparing control cells with treated cells (α = 0.05) via GraphPad
Prism 8 software. Statistical significance was formatted as follows: * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001.

2.1. Survival of the MCF-7 Cells Treated with AgNPs

To measure the cytotoxicity of AgNPs, the fluorimetric assay based on sulforhodamine
B (SRB), a dye that binds to cellular proteins, was used. This method is insensitive to the
turbidity of the sample, which could occur due to the release of AgNPs accumulated in
cells. Commonly used methods for measuring the viability of cells, such as MTT, could
provide a false-positive result due to the content of AgNPs in the sample. Thus, the SRB
assay provides reliable viability results.

Figure 1 shows the results of the survival of MCF-7 cells treated with AgNPs at a
range of concentrations. The results are presented in comparison with the control cells.
Silver nanoparticles in the range of 0.39–100 µg/cm3 did not cause acute toxicity in MCF-7
cells after 24 h of incubation. It was not possible to determine the IC50 concentration of
AgNPs because even at the highest used concentration (100 µg/cm3), the viability of the
cells was much higher than 50%.

Figure 1. Viability of the MCF-7 cells treated with silver nanoparticles (AgNPs) at a range of
concentrations for 24 h.

2.2. Assessment of the Migration Capacity of MCF-7 Cells via Wound Healing Test

The EMT is closely related to a change in the migration of cells. Degradation of the
basal membrane and a change in the protein profile of the cells will lead to a shift in their
proliferation and migration capacity. In the commonly used wound healing test, the cell
monolayer is damaged, and the percent of the wound filled by cells after incubation is
measured.

Figure 2 shows the photographs of cell cultures before (on the left, marked in yellow)
and 24 h after (on the right, marked in red) wounding the cell monolayer. A scratch was
made in the cell culture monolayer after it reached 100% confluence. The samples were
rinsed thoroughly to remove the detached cells, and photographs of the culture were taken
under a light microscope after the addition of AgNPs. Photographs were taken again, in
the same location, after the 24-h incubation period. The results are presented as the ratio of
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the scratch area before and after the incubation of the cells, expressed as a percentage of
the area filled. Cells treated with AgNPs (Figure 2C,D) displayed improved results in the
scratch test when compared to the control cells (Figure 2A,B). Cells after 24 h of incubation
with AgNPs (25 µg/cm3) showed a greater ability to migrate (44.46% of the wounded area
filled) when compared to the control cells (38.95% of the wounded area filled), which was
statistically significant (p < 0.01). The MCF-7 cells treated with AgNPs are characterized by
an improved ability to overgrow the scratch in the cell monolayer.

Figure 2. Images showing the wound healing test conducted on MCF-7 cells. (A) Control cells at
time 0; (B) control cells after a 24 h incubation from scratching; (C) cells before adding AgNPs at
time 0; (D) cells after a 24-h incubation with AgNPs (25 µg/cm3). Pictures (A,B) and (C,D) were
taken in the same appropriately marked location of each scratch in the cell monolayer. The scratch
surface was analyzed with a Nikon Eclipse Ti microscope, and the scratch surface area was expressed
in pixels (px). Graph (E) presents the results of the wound healing assay for MCF-7 cells treated with
AgNPs at a concentration of 25 µg/cm3 for 24 h.

2.3. Reactive Oxygen Species (ROS) Generation

Silver nanoparticles are known for their ability to induce reactive oxygen species
(ROS) generation in mammalian cells. The amount of generated ROS highly depends
on the type of the cell, its metabolic activity (i.e., amount of mitochondria), the redox
status of the environment, and many other variables that influence the AgNP-induced ROS
generation. Below, the data from a series of experiments using three different fluorescent
probes—DHR123, DHE, and H2DCFDA—is shown (Figure 3).

As shown in Figure 3A, the amount of generated superoxide in MCF-7 cells after
24 h treatment with AgNPs in the range of concentrations did not differ significantly
compared to the control. The amount of generated hydrogen peroxide—which is a product
of superoxide dismutation—was statistically significant (p < 0.05) after 24 h treatment with
AgNPs in a concentration of 50 µg/cm3 (Figure 3B). The overall amount of generated ROS
after treatment with AgNPs is shown in Figure 3C and was measured via H2DFCDA-
induced fluorescence signal. The data clearly show that AgNPs in the concentration of
25 and 50 µg/cm3 after 24 h of incubation time induced a generation of ROS that was
statistically significant (p < 0.05).
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Figure 3. Reactive oxygen species generation in MCF-7 cells after 24 h treatment with silver nanopar-
ticles in three different concentrations—50, 25, and 12.5 µg/cm3. (A) The generation of superoxide
measured with a dihydroethidium (DHE) fluorescent probe. The amount of generated hydrogen
peroxide (B) was measured with a dihydrorhodamine 123 (DHR123) fluorescent probe. Finally,
the overall amount of ROS (C) was measured with a 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA) fluorescent probe. The presented data were normalized to cell viability and compared
with the control.

2.4. Cell Cycle Measurement

The EMT, in addition to changes in cell migration, can also be associated with a change
in the proportion of cell cycle phases. We examined the effect of AgNPs on the cell cycle of
MCF-7 cells. MCF-7 cells were cultured in 6-well plates for 24 h. AgNPs were then added
to the cells at a final concentration of 25 µg/cm3 for an additional 24 h. The cells were then
subsequently prepared for cytofluorimetry measurement (as described in the Section 4).

The results are summarized in Figure 4. The data presented in the graph is expressed
as a percentage of the number of cells present in each phase of the cell cycle. In the control
culture, there were more cells in the G1 phase when compared to the cells incubated
with AgNPs. The number of cells in the G2 and S phases was greater in the culture
incubated with AgNPs when compared to the control cells. However, the differences were
not statistically significant. Thus, it can be concluded that AgNPs, at a concentration of
25 µg/cm3, do not modulate the cell cycle in MCF-7 cells.

2.5. Measurement of EMT Marker Proteins and MTA Protein Levels

During EMT, tremendous changes occur in the protein profile of the cells. This is
necessary for the cells to alter their morphology from epithelial to mesenchymal and detach
from the basal membrane. Several proteins are recognized as EMT markers: Slug, Snail,
vimentin, and N-cadherin are the most described. In the present study, we analyzed a range
of EMT markers: vimentin, N-cadherin, Claudin-1, β-catenin, ZO-1, Snail, Slug, ZEB1, and
E-cadherin. The loss of E-cadherin is thought to be the primary marker of the EMT process.
The MCF-7 cells used in this study did not express all of the above-mentioned proteins;
our culture showed expression of E-cadherin, β-catenin, Snail, and ZO-1.



Int. J. Mol. Sci. 2021, 22, 9203 6 of 23

Figure 4. Cell cycle phase distribution of MCF-7 cells treated with AgNPs at a concentration of
25 µg/cm3 for 24 h.

The expression level of EMT marker proteins in MCF-7 cells was analyzed via Western
blot. After 24 h of incubation with AgNPs at a concentration of 25 µg/cm3, MCF-7 cells
were lysed with M-PER solution. Figure 5 shows the expression of EMT marker proteins in
MCF-7 cells after incubation with AgNPs. The cells treated with AgNPs showed a higher
level of expression of the β-catenin protein when compared to the control cells (p < 0.05),
which was similar in the case of the Snail protein (p < 0.01). There were no significant
changes in the level of E-cadherin and ZO-1 proteins.

The MTA3 protein level in MCF-7 cell lysates was significantly higher for AgNP-
treated cells compared with control (Figure 6; p < 0.001). When normalized to β-actin, the
results revealed that the cells treated with AgNPs had an approximately 6-fold increase in
the MTA3 protein level compared to control cells.

2.6. Assessment of Mitochondrial Membrane Potential

It is well-proven that AgNPs’ mechanism of action highly depends on the generation of
ROS. Mitochondria of the mammalian cells are especially susceptible to the direct damage
induced by AgNPs; thus, we decided to measure the membrane potential of mitochondria
in MCF-7 cells after treatment with AgNPs in a range of concentrations.

As shown in Figure 7, the mitochondrial membrane potential of MCF-7 cells treated
with AgNPs did not differ significantly compared to the control cells.

2.7. Measurement of the Intracellular Calcium Level after the Addition of AgNPs

Fura-2 is a fluorescent Ca2+ indicator often used to measure cytoplasmic calcium
levels. The fluorescence of Fura-2 in its original state can be measured with 380 nm
excitation and 510 nm emission wavelengths, whereas Fura-2 bound with Ca2+ shifts its
excitation spectrum toward a shorter wavelength, i.e., 340 nm. Therefore, the 340/380 nm
fluorescence signal ratio indicates the change in the intracellular level of Ca2+.

Our experiments showed no difference in intracellular calcium level between the
control and treated cells (Figure 8). The 95% confidence intervals for slopes were 0.005235
to 0.007524 and 0.005155 to 0.006659 for control and treated cells, respectively. Best-
fit values, calculated by GraphPad Prism 8, were 0.006379 for control and 0.005907 for
treated cells. Analysis of regression showed no statistical significance between the slopes
(F = 0.4676; p = 0.4948).



Int. J. Mol. Sci. 2021, 22, 9203 7 of 23

2.8. Histone Deacetylase (HDAC) Activity

Histone deacetylases modulate vast molecular processes through their repressive
influence on transcription. Alteration in the activity of HDAC often significantly impacts
cellular signaling related to metastasis.

As shown in Figure 9, the MCF-7 cells after treatment with AgNPs had lower activity
of HDAC when normalized and compared to control cells. Thus, AgNPs at a concentration
of 25 µg/cm3 after 24 h of incubation did change the HDAC activity in MCF-7 cells in an
E2-deprivation setup.

Figure 5. Expression of EMT marker proteins in MCF-7 cells treated with AgNPs at a concentration
of 25 µg/cm3 for 24 h. The chemiluminescence photos of protein bands were derived from one
gel/membrane and were physically cut before the visualization due to huge differences in the protein
levels.
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Figure 6. Expression of MTA3 protein in MCF-7 cells treated with AgNPs at a concentration
of 25 µg/cm3 for 24 h. The chemiluminescence photos of protein bands are derived from one
gel/membrane and were digitally cut using an image editor to show the differences between protein
levels.

Figure 7. Mitochondrial membrane potential in MCF-7 cells after 24-h treatment with AgNPs in a
range of concentrations, measured with a Mitotracker™ Red CMXRos probe.
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Figure 8. Calcium flux after the addition of silver nanoparticles at a concentration of
25 µg/cm3. The graph presents the ratio of Fura-2 fluorescence intensity at 340 and
380 nm wavelengths. Cells were measured immediately after the addition of AgNPs for
120 min (the measurement was done every 15 min).

Figure 9. Activity of HDAC after treatment with AgNPs. The graph presents the activity of HDAC
from MCF-7 cell nuclei crude extract that was incubated with AgNPs at a concentration of 25 µg/cm3.

3. Discussion

Silver nanoparticles are widely used in medicine and pharmacology. They enter
the human environment intentionally as an additive in cosmetics, antibacterial agents,
or bandages. Because of their unique physicochemical properties and well-understood
mechanism of toxicity, the AgNPs are often used in therapeutic approaches, most often
as drug carriers. Several studies have described the effect of green-synthesized AgNPs
on MCF-7 cells. The MCF-7 cell line is a well-established and willingly used hormone-
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dependent human breast cancer cell model used in the basic research because of the
physiological expression of estrogen receptor α. This particular cell line is—among other
applications—often used in research on E2-dependent cellular signaling pathways and
interactions between drugs and potential estrogen mimetics. The estrogen mimetics can be
plant-derived metabolites, environmental pollutants (such as cadmium [13]), or elemental
metals. Nanoparticles are a member of the metal estrogen mimetics family; thus, the
mechanism of action of the AgNPs is different in hormone-dependent cells than in triple-
negative cell lines [14]. These differences are most probably caused by the low specificity
of the estrogen receptor that can bind a vast number of ligands, each causing a different
effect, i.e., promoting cellular signaling, blocking the receptor binding site, and so forth. In
the aforementioned papers, the results suggest that the AgNPs exert an action similar to
estrogen mimetics through the activation of ERα-dependent cellular signaling pathways.
Furthermore, we assumed that the ROS-generating ability of AgNPs would influence
the morphology of the cells cultured in the E2-deprivation setup, thus leading to their
detachment and an increase in migration potential. The experimental conditions utilized
in the present study simulate the conditions of estrogen deprivation, under which breast
cancer cells are found in the body of postmenopausal women.

Our research, from the very beginning, was meant to check if the AgNPs would induce
an effect similar to that induced by estrogen mimetics. A great majority of published papers
is based on hormone-dependent cell lines such as MCF-7, cultured without the addition of
E2 in media supplemented with phenol red, which, in fact, also is an estrogen mimetic [15].
Thus, the deprivation of E2 in that particular situation is being compensated by the addition
of phenol red. In vivo, the cells are constantly exposed to many endogenous and exogenous
substances, of which some of them can be estrogen mimetics.

Silver nanoparticles are commonly described as cytotoxic in vitro. Their toxicity
depends on the cell line used and the size of the nanoparticles [16]. Discussions on AgNPs
can be problematic because literature reports are very diverse. Most of the published
papers are based on green-synthesized AgNPs [17], which often contain a relevant amount
of silver ions [18]. In the case of clean, properly dispersed AgNPs, coated with protein
coronas, the problem with silver ion residue is negligible because the amount of released
intracellular silver ions is minimal. Cronholm et al. [19] showed that silver and copper
nanoparticles are more toxic than the salts of these elements. The authors suggest that the
mechanism differentiating these two forms means that nanoparticles are being absorbed by
the cells. They verified this hypothesis using laser scanning confocal microscopy (LSCM)
and transmission electron microscopy (TEM) methods and confirmed that after only 4 h
of incubation, the nanoparticles were delocalized into the intracellular matrix. The exact
localization of silver and copper nanoparticles in the cells was the same, but after another
20 h of incubation, there were only AgNP aggregates inside the cells. The IC50 parameter
for AgNPs is also problematic because it differs significantly between published papers and
usually ranges from several to even a 100 µg/cm3. In addition, most papers do not provide
information on the confluence of the cell monolayer, which is an important parameter
because the ratio of the amount of AgNPs to cell area affects the endpoint of the experiment.

Mammalian cells in vitro release many substances into the extracellular matrix: pro-
teins, metabolites, and compounds that affect the pH of cell media. Our aim is to assess the
impact of AgNPs on those substances released to the conditioned medium, which would
change the redox status of the medium; therefore, the use of methods based on the reduc-
tion of resazurin or MTT [17,20] is not a reliable method to measure cell survival. Redox
status of the extracellular environment is dynamic, shaped by intracellular metabolism. A
lot of signaling pathways are involved in this process, especially autocrine and paracrine
signaling, which directly affect intercellular signaling. For example, mammalian cells
actively secrete sulfhydryl oxidases that catalyze the reaction of reducing molecular oxygen
to hydrogen peroxide, which is involved in cell signaling, regulation of cell adhesion, and
proliferation [21].
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Resazurin is commonly used as an indicator of cell viability. It penetrates the mem-
brane and is enzymatically reduced in the presence of microsomes to resorufin. During the
reduction process, the electrons are transferred from NADPH + H+ to resazurin. Research
conducted on Enterococcus faecalis showed that the reduction of resazurin occurs only inside
the cells; when the cells were sonicated and, thus, the enzymes and metabolites were
released, the reduction of resazurin still occurred, even without live cells [22]. In turn, a
paper by O’Brien et al. [23] clearly shows that in mammalian cultures, resazurin is reduced
inside the cells or through the reaction of resazurin with conditioned media.

The MTT test is based on the conversion of MTT to formazan crystals by the mito-
chondria of live cells, determining their activity. Because in most cell cultures, the activity
of mitochondria is relative to the viability of the cells, this test is widely used to assess the
cytotoxic influence of drugs on the cell lines in vitro. A paper by Bernas and Dobrucki [24]
shows that MTT is actively absorbed by the cells and easily undergoes the reduction cat-
alyzed by membrane reductases and intracellular enzymes. The authors suggest that only
a part of the crystalized formazan is localized on the surface of the cell and inside the
mitochondria when the same reaction occurs simultaneously in other parts of the cells such
as the cytoplasm or cell membrane. The results of our study demonstrate that commercially
available AgNPs, with a diameter of ~20 nm, do not exert acute cytotoxicity on MCF-7
cells (Figure 1). To assess the viability of the MCF-7 cells, we used a quantitative method
based on the binding of sulforhodamine B to cell proteins. It is a fluorometric method; thus,
measurement interferences due to the turbidity of the sample are excluded (as in the case of
methods based on the absorbance of the sample), and it is not burdened with uncertainty,
as in the case of methods based on the reduction of substrates.

The initial symptom of EMT that can be observed (using a microscope) is the migration
capacity of cells, which is manifested, inter alia, in the popular and widely used scratch
overgrowth test. Rodríguez-Razón et al. [25] studied the migration ability of breast cancer
cell lines and compared the effect of AgNPs (of 2–9 nm nominal diameter) on three breast
cancer cell lines: MCF-7, HCC70, and HCC1954. The AgNPs significantly reduced the
adhesion of MCF-7 cells and decreased the viability of the cells by approximately 45%. The
scratch test, commonly used to assess the migration capacity of the cell culture, is based on
creating a wound in a monolayer of cells and its observation over time. For example, green-
synthesized AgNPs, with a nominal diameter of ~48 nm, have been shown to inhibit the
migration of MCF-7 cells dose-dependently [26], while our results demonstrate that AgNPs
with a nominal diameter of 20 nm promote cell migration at a concentration of 25 µg/cm3

(Figure 2). It is widely acknowledged that the cytotoxicity and overall biological effect
induced by AgNPs is size-dependent; however, a single principle underlies this: smaller
nanoparticles are generally more toxic than larger nanoparticles due to a greater ability
to penetrate cells [27–29]. AshaRani et al. [30] reported that AgNPs at a concentration of
25 µg/cm3 did not cause cytotoxicity in lung fibroblast cells (IMR-90), and the uptake
of the nanoparticles occurred primarily through clathrin-dependent endocytosis. The
results indicated that AgNPs induce mitotic arrest in normal human fibroblasts, which
corroborates the results obtained in the present study, i.e., treatment with AgNPs did
not influence the MCF-7 cells (Figure 4). AshaRani et al. [30] also postulated that the
cytotoxicity of AgNPs was due to the formation of intracellular calcium (Ca2+) transients in
the cells. Li et al. [31] used silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol)
(PVA/COS-AgNP) nanofibers to check their effect on fibroblasts from human skin. The
PVA/COS-AgNP nanofibers upregulated cell factors associated with the TGF-β1/Smad
signal transduction pathway, resulting in accelerated wound healing that was inhibited
by the TGF-β receptor inhibitor SB431542. The authors suggest that the stimulation of the
cells with prepared nanofibers induced the TGF-β1/Smad signal transduction pathway,
resulting in the promotion of migration of the cells. Seo et al. [32] observed the effect of
AgNPs on wound healing in Danio rerio (zebrafish) using the AgNPs of 72.66 nm nominal
diameter. The AgNPs caused a visually faster wound healing and the upregulation of
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wound-healing-related genes, namely, TGF-β, MMP-9 and MMP-13, IL-1β, TNFα, as well
as antioxidant enzymes superoxide dismutase and catalase.

The AgNPs’ mechanism of action in most cases is based on the generation of ROS,
which triggers intracellular signaling pathways. Khan et al. [17] showed that green-
synthesized AgNPs, in a concentration of 5 µg/cm3, increase the intracellular produc-
tion of ROS in MCF-7 cells by 200% when compared to control. This amount of AgNPs
was enough to induce a strong apoptotic response, resulting in a 2-fold increase in the
expression of Caspase-3. Furthermore, Ullah et al. [33] reported that green-synthesized
AgNPs in a concentration of 12.35 µg/cm3 increased ROS production dose-dependently
and increased the activity of Caspase-3 and Caspase-9. Oxidative stress is an inherent
attribute of mammalian cell cultures treated with AgNPs [34], with some exceptions such
as pneumocytes, which have a high tolerance to oxidative stress and a well-established
antioxidant defense system (data not shown).

In our paper, we have shown the generation of ROS in MCF-7 cells treated with
AgNPs in a range of concentrations (Figure 3). To measure the generation of free radicals, a
set of fluorescent probes was used: DHR123, DHE, and H2DCFDA. The measurement of
superoxide (which, in mammalian cells, is a precursor to other ROS) after 24 h incubation
with AgNPs did not show a statistical difference between the treated cells and the control
(Figure 3A). Additionally, we did not detect the superoxide after a shorter time of incubation
(8 and 4 h) with AgNPs (data not shown), most probably because the oxidative stress
induced by AgNPs in MCF-7 cells does not—at the beginning—exceed the adaptive level
of oxidative stress. Moreover, an efficiently working antioxidant system, consisting mainly
of superoxide dismutase, may also be the cause of a lack of statistical significance. The fact
that the oxidative stress generated in this cell line is low may be evidenced by the relatively
high resistance of the MCF-7 cell line to the AgNPs (Figure 1), which, at the same time,
confirms the key role of oxidative stress in AgNP cytotoxicity.

After 24 h of incubation with AgNPs, the MCF-7 cells showed a higher level of total
ROS compared to the control (Figure 3C). These data confirm that the adaptive capacity of
the cells was exceeded, and, thus, the disruption of redox equilibrium led to the generation
of ROS. Similar results were generated with the DHR123 fluorescent probe (Figure 3B);
however, the lower concentrations of AgNP (i.e., 12.5 and 25 µg/cm3) did not differ
significantly from the control cells. These differences are most probably because of the
higher specificity of DHR123, which mainly detects H2O2, while H2DCFDA detects a total
level of ROS [35]. Undetectable levels of superoxide (Figure 3A) prove that in our setup,
the ROS are most probably not being generated directly from mitochondria; however, the
total level of ROS is sufficient to activate the intracellular signaling pathways.

A place mainly responsible for the generation of ROS in mammalian cells is the
mitochondria. Mitochondrial membrane potential is a key parameter when assessing the
damage caused directly to these organelles. In our setup, the AgNPs did not modulate
the mitochondrial membrane potential (Figure 7) after 24 h incubation. These results
suggest that the mitochondria are not being directly damaged in this particular setup,
which corresponds to the lack of difference in calcium flux (Figure 8) after the treatment
with AgNPs.

As reported by Gorowiec et al. [36], oxidative stress can induce EMT via a TGF-β1-
dependent signaling pathway. The authors showed the upregulation of EMT markers
(vimentin, αSMA, fibronectin, and pro-collagen type III) in an in vitro model of alveolar
epithelium after incubation with hydrogen peroxide. Furthermore, they reported an
increase in the secretion of pro-MMP-2 and active MMP-2 in response to oxidative stress.
High MMP-2 expression has been associated with poor prognosis and the induction of EMT
in nasopharyngeal carcinoma [37]. During EMT, the cell undergoes genomic processes,
including the activation of transcription factors and changes in the expression of miRNAs as
well as non-genomic processes involving the release of MMPs, cytoskeletal reconfiguration,
and the expression of proteins involved in EMT [38]. Then, a number of transcription
factors are activated, which trigger multiple signaling pathways and molecules such as Akt,
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MAPK, STAT3, TGF-β, β-catenin, Wnt, Ras, Notch, NF-κB, and TNF-α [39,40]. Snail protein
has a strong effect in increasing the invasiveness of the cells. It has been previously reported
in a hepatocellular carcinoma model in vitro that the MMP gene family is upregulated by
Snail expression, which is positively correlated with the upregulation of invasion in HepG2
cells [39,41]. Azhar et al. [42] reported that green-synthesized AgNPs cause oxidative stress
in HepG2 cells and lead to cell death through the association with MMP loss apoptosis.
Furthermore, Agraval and Yadav [43] showed an increase of MMP-2 and MMP-9 by
cigarette smoke extract in A549 cells, which, in turn, triggered the molecular signaling
cascade through the EGFR/AKT/ERK/β-catenin axis. Presented changes were restored by
the addition of MMP-2 and MMP-9 inhibitors. Our results present the upregulation of Snail
and β-catenin in cells treated with AgNPs (Figure 5). The mechanism underlying these
changes may be associated with the induction of the MMP signaling pathway by AgNPs.
Upregulation of β-catenin probably is the endpoint of the signaling cascade through the
EGFR/AKT/ERK/β-catenin axis, thus leading to an increase in the invasiveness parameter
of the cells (Figure 2). ROS play a crucial role in the induction and progression of EMT.
According to Jiang et al. [44], oxidative modifications of proteins possessing free thiol (-SH)
groups on cysteine residues play an important role in regulating the signaling pathways.
Through these redox modifications, ROS modulate the biological functions of proteins
involved in ECM remodeling, for example, integrin, actin, NF-κB, HIF-1α or TGF-β, thereby
regulating EMT initiation and cancer cell metastasis [45]. Zhu et al. [46] provided data
on the role of heme oxygenase-1 (HMOX-1) in TGF-β-induced EMT. Hemin-induced
HMOX-1 caused inhibition of migration, invasion, and ROS generation in TGB-β-induced
EMT in MCF-7 cells, which once again suggests the ROS-dependent way of TGF-β action.
Moreover, supplementation of the triple-negative breast cancer cell line MDA-MB-231
with resveratrol—which is a potent antioxidant—reversed the TGF-β-induced EMT [47].
Resveratrol reduced the secretion of MMP-2 and MMP-9, downregulated the expression
of Smad2, Smad3 (and its phosphorylated forms), vimentin, Snail, and Slug as well as
increased the expression of E-cadherin.

Snail, Slug, Twist, ZEB1, and ZEB2, responsible for repressing epithelial markers
and upregulating genes associated with metastasis, are regulated by the nuclear factor-κB
(NF-κB), hypoxia-inducible factor 1 (HIF-1), and transforming growth factor beta (TGF-β)
signaling pathways [48]. Additionally, FoxO (forkhead box class O) transcription factor
can modulate extracellular matrix (ECM) remodeling and cell mobility by promoting the
expression of MMPs [49]. Furthermore, β-catenin dissociates from E-cadherin to translocate
to the nucleus and bind with TCF/LEF to activate the transcription of Snail, Twist, and
MMP-7 [50]. Activation of the NF-κB transcription factor induces the expression of Twist1,
Snail, Slug, and ZEB1/2, all of which are involved in the disruption of cell–cell junctions [51].
Moreover, NF-κB promotes the transcription of vimentin and MMP family members. The
action of NF-κB especially depends on the ROS levels—it has been reported that increased
ROS levels activate NF-κB signaling pathways, thus leading to the induction of EMT,
which was reversed by the addition of N-acetylcysteine- or NF-κB-specific inhibitors [52].
However, despite more evidence about the activation of NF-κB by ROS, NF-κB signaling
can also be inhibited by ROS. For example, glutathionylation of p50 (a member of the NF-
κB family) at Cys62 in the nucleus leads to the inhibition of the DNA-binding ability of the
p50 [44]. Another transcription factor—TGF-β—plays an important role in regulating cell
proliferation and adhesion. Additionally, TGF-β has a predominant role in the regulation
of cell EMT through the suppression of E-cadherin expression by the activation of Snail [53].
Activated TGF-β can bind with its receptor, resulting in the phosphorylation of Smad2 and
Smad3, which interact with Smad4 and trigger its translocation to the nucleus to initiate
the transcription of target genes [44]. Transcriptional activation of TGF-β, mediated by the
p53/SMAD/p300 complex, can be stimulated by ROS through the phosphorylation of p53
on Ser15 [54]. It is commonly known that damaged mitochondria produce excess ROS, and
it has already been reported that AgNPs induce mitochondria damage [11]. Leakage of ROS
from (especially damaged) mitochondria can active TGF-β signaling through the activation
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of TGF-β expression [55]. Secretion of TGF-β bound with latency-associated protein (LAP)
is necessary for this transcription factor to react with its receptors [56]. It has been reported
that LAP is sensitive to ROS; thus, it oxidizes and loses its ability to bind TGF-β, leading
to the activation of TGF-β-related signaling pathways [57]. Moreover, TGF-β has been
reported to promote ROS production via the disruption of oxidative phosphorylation at
complex IV [58] and the regulation of antioxidant balance through the depletion of GSH,
one of the major endogenous antioxidants [44]. Martin et al. [59] confirmed that AgNP
exposure interferes with basement membrane and cell adhesion dynamics.

Histone deacetylation plays an important role in the development of cancer cells [60].
Inhibition of HDAC by histone deacetylase inhibitors (HDI) is often used as supportive
therapy, in addition to conventional therapeutics [61]. Treatment with HDI induces MET
by unblocking E-cadherin repression in cancer cells [62]. However, contradictory results
were also published, in which HDI induced EMT rather than inhibiting metastasis [63].
It seems that the endpoint of HDI’s action highly depends on the type and origin of the
cells as well as the type of HDI used. Vorinostat (suberanilohydroxamic acid; SAHA) is a
member of the HDI family that is used to treat cutaneous T-cell lymphoma. Treatment with
SAHA inhibits the EMT induced by TGF-β1 in cell lines that do not express Erα—MzChA-1
and TFK-1 [61]—via inhibition of p-SMAD2, p-SMAD3, and SMAD4 nuclear translocation
induced by TGF-β1 and the partial binding inhibition of SMAD4 to E-cadherin-related
transcription factors [64]. There are also reports of SAHA promoting EMT through the
HDAC8/FOXA1 axis in triple-negative MDA-MB-231 and BT-549 breast cancer cells, in
which SAHA upregulated the mesenchymal markers N-cadherin, vimentin, and fibronectin
and downregulated E-cadherin expression [61]. Another HDI—LBH589—reversed EMT
in triple-negative breast cancer cells, while no changes were noted in the ER-positive
MCF-7 cells [65]. Other HDIs, such as entinostat and MS-27, have also been reported to
reverse EMT in breast cancer cells; however, all of the cell lines used in these papers were
triple-negative (MDA-MB-231 and Hs578T, MDA-MB-468, respectively) [66,67], although
despite the aforementioned reports, the effect of HDI on cells of other origins was quite
consistent. The contradictory results of HDI action are published mainly in the case of
breast cancer cells. Another example of the EMT-promoting effect is a paper published by
Debeb et al. [68], in which two hormone-independent cell lines (SUM159 and MDA-231)
treated with valproic acid (VPA) and SAHA showed an increase in migration potential and
the upregulation of epithelial markers (fibronectin, vimentin, N-cadherin and tenascin-C),
whereas the E-cadherin was not detected. Additionally, the HDAC inhibition resulted in
the activation of the Wnt/β-catenin signaling. The AgNPs in our results were inhibited by
approximately 20% overall HDAC activity in hormone-dependent MCF-7 cells (Figure 9).
We also noted an increase in β-catenin levels (Figure 5). Thus, this may suggest that
AgNPss induce an effect similar to VPA in hormone-dependent breast cancer cells. It has
been reported that AgNPs modulate β-catenin signaling in neural stem cells, leading to
disruption of the formation of cytoskeletal inclusions [69]. Loss of E-cadherin expression
results in the release of β-catenin and its translocation to the nucleus in colorectal cancer
cells [70]. During EMT, the expression of β-catenin is elevated. In the present study, after
24 h of incubation, MCF-7 cells treated with 25 µg/cm3 AgNPs showed an increased ex-
pression of β-catenin compared to the control (p < 0.05; Figure 5). Moreover, the expression
of E-cadherin varied significantly; however, this is not an indication that the EMT did not
occur. It has been reported that cells treated with AgNPs show increased expression of the
Snail protein, which has been widely described as an EMT marker [71]. Expression of the
Snail protein is induced, inter alia, by the Wnt pathway, which, in turn, is associated with
the expression of the β-catenin protein, thus, leading to EMT [72]. During the EMT induced
by TGF-β, Snail forms a transcriptional repressor complex with SMAD3/4, targeting genes
that encode junction proteins, such as E-cadherin, resulting in gene repression [73]. In the
presence of Wnt signaling, β-catenin acts as a transcriptional factor through interaction
with TCF/LEF, activating EMT by inducing the expression of Axin2, which stabilizes
Snail [71,74]. Through the induction of Snail and β-catenin expression, the Wnt pathway
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provides the cells with the ability to metastasize. In 2012, Lee et al. [75] discovered a
novel function of tumor progression (mediated by the Wnt pathway) that suppresses
mitochondrial respiration by inhibiting cytochrome C oxidase activity and initiating the
consumption of glucose, leading to a glycolytic switch.

The most probable primary mechanism for the transport of AgNPs into MCF-7 cells
is clathrin-dependent endocytosis [76]. The cytotoxicity induced by AgNPs (of 50 and
100 nm in diameter) in Mytilus galloprovincialis is eliminated by blocking the clathrin-
dependent endocytosis pathway via the addition of amantadine [77]. This could confirm
the mechanism proposed by AshaRani et al. for the transport of AgNPs. Furthermore, a
study by Totta et al. [78] reported that clathrin is connected with E2-signaling. The study
highlighted a connection between the clathrin heavy chain (CHC) and E2-signaling and
revealed that the N-terminal of the CHC directly contacts the ligand-binding domain of
ERα. The findings of the present study corroborate these results.

To confirm our hypothesis that AgNPs induce EMT, the expression of primary EMT
markers (Vimentin, N-Cadherin, Claudin-1, β-Catenin, ZO-1, Snail, Slug, ZEB1, E-cadherin)
was analyzed via Western blot (Figure 5). In our experiments, E-cadherin, β-Catenin, Snail,
and ZO-1 (with β-actin as a reference standard) were expressed by MCF-7 cells (Figure 5).
MCF-7 cells cultured by Choo et al. [79] for 4 months (40 passages) were chronically
exposed to a low dose of AgNPs (0.13 and 1.33 µg/cm3) to assess the carcinogenic potential
of the nanoparticles. Chronic exposure to AgNPs resulted in a significant increase in cell
migration and induced EMT. Moreover, a significant decrease in Caspase-3, which has been
reported to regulate the metastasis of colon cancer cells [80], was observed, while MMP-9,
which is also thought to be involved in EMT [39], was upregulated. Choo et al. suggested
that long-term exposure to AgNPs could enhance cell transformation through regulation
of the MAPK kinase complex [79].

As reported by Dhasarathy et al. [81], the loss of ERα in breast cancer cells is correlated
with an increased incidence of metastasis. ERα is responsible for direct activation of
metastasis-associated protein 3 (MTA3), which is a component of the gene repressing the
histone deacetylation Mi-2/NuRD complex in breast epithelial cells [82]. One of the genes
targeted by this complex is Snail [81]. Therefore, the absence of ERα (which is activated
by E2) or MTA3 (activated by ERα) results in deactivation of the Mi-2/NuRD complex,
leading to the aberrant expression of Snail. Activated Snail regulates EMT, leading to
the repression of E-cadherin and resulting in metastasis. The mechanism underlying this
process is dependent upon the activation or deactivation (in the case of no ligand) of ERα,
leading to the activation of the Wnt/β-catenin pathway and/or the deactivation of the
Mi-2/NuRD complex.

The present study was conducted to assess whether AgNPs could induce EMT in
breast cancer cells. It is widely acknowledged that metastasis (a result of EMT) leads
to the formation of new tumors, which, in turn, often results in the death of the patient.
AgNPs are commonly added to cosmetics (such as antiperspirants), bandages, and fabrics,
resulting in daily human contact with AgNPs. Therefore, it is important to understand
the exact mechanism of action of the nanoparticles, and counteracting negative effects is
an extremely important concern in modern toxicology. It is anticipated that the research
presented herein will contribute to the development and understanding of the mechanisms
of action of AgNPs, which are very complex and different in cells from different organs
and/or species. In the present study, we wanted to check whether the addition of AgNPs
will cause metastasis in hormone-dependent breast cancer cells. The estrogen-deprivation
setup was meant to simulate the situation of postmenopausal women dealing with breast
cancer. Our results, confronted with the current knowledge about AgNPs, suggest that
AgNPs modulate a lot of different pathways in ER-positive breast cancer cells. The AgNPs
showed an effect similar to HDI (Figure 9), but with the induction rather than inhibition of
EMT, upregulated the expression of MTA3 and some of the EMT markers (Figures 5 and 6),
and caused an increase in migration capacity (Figure 2) without causing any significant
drop in the cell’s survival (Figure 1). Treatment with AgNPs also induced the generation of
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ROS (Figure 3). Summarizing the above, we suggest that AgNPs, through the induction of
ROS generation, cause a significant change in breast cancer cells. However, more data are
needed to clearly state the mechanism of induction of EMT.

4. Materials and Methods
4.1. Preparation of the AgNP Solution

According to the methods outlined in our previous study [83], the AgNPs, with a
nominal diameter of 20 nm, were suspended in PBS containing 1% albumin. Full character-
istics, including the hydrodynamic radius of nanoparticles, of the used AgNPs have been
described in the previous paper by Zuberek et al. [83].

4.2. Cell Culture

Cells were cultured and passaged as recommended by the American Type Culture
Collection (ATCC). The MCF-7 cells were cultured in DMEM (25 mmol/dm3 glucose)
supplemented with 10% fetal bovine serum.

Cell passage was performed twice per week after the cells reached a density within
the range of 5 × 105–6 × 105/cm2, which corresponded to 85% cell culture confluence. The
cells were passaged at a subcultivation ratio of 1:4.

4.3. Determination of Cell Viability Using the SRB Method

Cell viability under the influence of AgNPs was determined using the SRB fluorescent
dye test based on the protocol developed by Vichai and Kirtikara [84]. For the experiments,
the trypsin-released cells were transferred to 96-well flat-bottom plates (Thermo Fisher
Scientific, Nunclon ™ Delta Surface, Waltham, MA, USA) at a concentration of 5 × 103

cells per well in a volume of 0.1 cm3 of culture medium. Twenty-four hours after seeding,
the AgNP solution was added to the cells in 0.1 cm3 of culture medium to achieve a final
concentration range of 0.39–100 µg/cm3. After the 24 h incubation period, 0.1 cm3 of
chilled 10% trichloroacetic acid (Sigma Aldrich, St. Louis, MO, USA) was added directly to
the wells, and the plates were incubated again for 1 h at 4 ◦C to fix the cells to the plate. The
wells were then rinsed four times with tap water and allowed to dry at room temperature.
For staining, 0.1 cm3 per well of 0.057% SRB solution (Invitrogen, Waltham, MA, USA) in
1% acetic acid was added to the dried cells in the wells, and the plates were incubated for
30 min at room temperature. The dye solution was subsequently removed from the wells,
and each well was washed four times with 1% acetic acid at a volume of 0.1 cm3. The plates
were left to dry at room temperature. Once dried, 0.2 cm3/well of a 10 mmol/dm3 Tris
solution (pH 10.5) was added, and the plates were shaken for 5 min. The fluorescence was
then measured at 488 nm excitation and 585 nm emission wavelengths using an EnVision®

microplate reader (PerkinElmer, Waltham, MA, USA).

4.4. Wound Healing Test

The cells were seeded in a 6-well plate (Thermo Scientific, Nunclon ™ Delta) at a
concentration of 5 × 105 cells/well in a volume of 3 cm3 of culture medium. Once the
cell cultures reached 100% confluency, a scratch was created in the cell monolayer. The
monolayer was then washed three times with PBS solution, and 3 cm3 of cell culture
medium was added. The AgNP solution was added to the wells to produce a final
concentration of 25 µg/cm3. Afterward, photographs were taken under a Nikon (Tokyo,
Japan) light microscope in the location where each scratch was made. The cells were then
incubated for 24 h. After the incubation time had elapsed, photographs were taken again
under a light microscope at the location of each scratch. To analyze the results, before and
after images of the surface area of the scratches were compared using Nikon Ti-U Eclipse
software.
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4.5. Measurement of Free Radical and Reactive Oxygen Species Generation

Reactive oxygen species measurement was performed according to [85] and [86].
MCF-7 cells were seeded on Nunc™ 96 black flat-bottom well plates (Thermo Fisher
Scientific) at a density of 5000 cells per well in 0.1 cm3 of full growth medium and left
for 24 h for proper bottom attachment. Subsequently, 0.1 cm3 of AgNP solution in full
medium was added into each well (to the final concentration in the wells: 50, 25, and
12,5 µg/cm3). Cells were then incubated for 24 h. Next, cells were washed with 0.1 cm3 of
PBS solution, and 0.1 cm3 of fluorescent probe solution in PBS was added into the wells.
For H2DCF-DA (2′,7′-dichlorodihydrofluorescein diacetate) (Thermo Fisher Scientific)
and DHE (dihydroethidium) (Thermo Fisher Scientific) assays, the cells were measured
every 60 s for 30 min, immediately after addition of the probe solution. For the DHR123
(dihydrorhodamine 123) (Thermo Fisher Scientific) assay, the medium containing an AgNP
solution after a preincubation was removed and stored in fresh Eppendorf (Hamburg,
Germany) tubes; the cells were stained with 0.1 cm3 of 10 µM DHR123 in PBS for 30 min
in 37 ◦C, then washed once with PBS and covered with 0.15 cm3 of conditioned medium
containing AgNPs and were left for 24 h incubation. Measurements of H2DCF-DA and
the DHE signal were performed with a final concentration of the probe and filter sets
Excitation/Emission (nm) as follows: 10 µM (485/535) and 5 µM (525/590). As for the
DHR123 assay, the cells were measured with the 485/535 filter set. All measurements were
performed with a proper dichroic mirror. Data were calculated as a curve slope value
(H2DCF-DA and DHE assays) or endpoint value (DHR123 assay) and normalized with cell
viability using the sulforhodamine B assay (described earlier). Data were collected with a
Perkin Elmer Wallac EnVision 2102 multilabel reader.

4.6. Cell Cycle Analysis Using Flow Cytometry

The cells were seeded in a 6-well plate (Thermo Fisher Scientific, Nunclon ™ Delta) at
a concentration of 4 × 105 cells/well in a volume of 3 cm3 of culture medium. Twenty-four
hours after seeding, the AgNP solution was added to the cell cultures to produce a final
concentration of 25 µg/cm3, and the cell cultures were incubated for a further 24 h under
standard conditions. The culture medium was then removed from above the cell monolayer,
and 0.5 cm3 of 0.25% trypsin solution was added to each of the wells. When all cells had
detached from the surface of the culture vessel, 1.5 cm3 of culture medium was added to the
culture to neutralize the trypsin. The cells were then transferred to 2 cm3 Eppendorf tubes,
and the cell suspension was centrifuged (100 rpm, 20 ◦C, 7 min). The supernatant was
removed, and the cell pellet was resuspended by adding 0.15 cm3 of PBS solution. Next,
0.1 cm3 of the cell suspension was injected under the surface of 1 cm3 of a 70% aqueous
ethanol solution that had been cooled to −20 ◦C while vortexing. The cell suspension in
ethanol was centrifuged for 10 min at 3000 rpm and 4 ◦C. The supernatant was removed,
and the pellet was resuspended in chilled PBS and washed by centrifugation for 10 min at
3000 rpm and 4 ◦C. The supernatant was once again removed, and the pellet was resus-
pended by gently pipetting in a propidium iodide solution (Invitrogen) at a concentration
of 75 µmol/dm3, with the addition of 50 Kunitz units/cm3 of RNase A (Sigma Aldrich)
in PBS. The cells were incubated for 30 min in the dark at 37 ◦C. The samples were then
placed on ice, and a low flow rate cytofluorimetric measurement was taken using an LSRII
instrument (BD). The data were analyzed with FlowJo software.

4.7. Determination of the Expression Level of Selected EMT Marker Proteins and the MTA3
Protein Using the Western Blot Method

The cells were seeded in a 6-well plate (Thermo Fisher Scientific, Nunclon™ Delta) at
a concentration of 5 × 105 cells/well in a volume of 3 cm3 of culture medium. After 24 h of
incubation, the AgNP solution was added to the culture to produce a final concentration of
25 µg/cm3, and the cells were incubated for an additional 24 h under standard conditions.
The culture medium was removed from above the cells, and the cell monolayer was rinsed
with PBS solution. The cells were then lysed by adding 0.15 cm3/well of M-PER lysis
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solution (Thermo Fisher Scientific), supplemented with Halt Protease Inhibitor Cocktail
protease solution (Thermo Fisher Scientific), and shaking the plates for 5 min. The cell
suspension was transferred to clean Eppendorf tubes, and the samples were maintained on
ice until the end of the preparation. The samples were then sonicated with an ultrasonic
homogenizer and centrifuged for 5 min at 14,000 rpm and 4 ◦C. The supernatant was
transferred to new Eppendorf tubes. To determine the protein concentration, standard
curves for bovine albumin were prepared, and test samples were incubated with Pierce’s
reagent (Thermo Fisher Scientific) for 5 min. Absorbance measurements were then taken
using an EnVision® microplate reader (PerkinElmer). Samples were prepared in a volume
of 0.025 cm3 containing 10 µg of protein with loading buffer (Thermo Fisher Scientific)
and were heat-inactivated at 95 ◦C for 5 min; 4–20% gradient gels (Bio-Rad, Hercules,
CA, USA) were used with a Precision Plus Protein ™ Dual Color mass marker (Bio-Rad).
Electrophoresis was performed in SDS-PAGE buffer (25 mmol/dm3 Tris, 192 mmol/dm3

glycine, 0.1% SDS, pH 8.3) at 130 V for approximately 1 h. After the electrophoresis was
completed, the proteins were transferred from the polyacrylamide gel to the Trans-Blot®

Turbo™ Mini nitrocellulose membranes (Bio-Rad) using the Trans-Blot® Turbo™ Transfer
System (Bio-Rad). The membranes were washed three times for 5 min with TBST buffer
(20 mmol/dm3 Tris, 150 mmol/dm3 NaCl, 0.1% Tween 20). The membranes were then
incubated for 1 h in blocking buffer (5% powdered milk in TBST) and subsequently rinsed
three times in TBST solution for 5 min. The membranes were cut into strips corresponding
to individual proteins and placed in separate wells in 2 cm3 of blocking buffer. Correspond-
ing antibodies were added to the membranes (see Table 1), and the wells were incubated
overnight at 4 ◦C. The following day, a β-actin monoclonal antibody (Sigma Aldrich) was
added to the membrane for 1 h. All membranes were rinsed three times in TBST solution
for 5 min before the addition of 2 cm3 of blocking buffer. II◦ antibodies were added to
the EMT marker proteins (Cell Signaling) and β-actin (Sigma Aldrich) and incubated for
1 h. The membranes were then washed, as outlined above, and incubated for 5 min in
the imaging solution (Thermo Fisher Scientific). Images were taken using an UVITEC
Cambridge Alliance HD4 Mini chemiluminescence analysis device (UVITEC, Cambridge,
UK). Sample analysis was performed using UVITEC Alliance software.

Table 1. Antibodies used for protein detection via the Western blot method; r—rabbit protein, m—mouse protein.

Antigen Antibody Clone 1◦ (Manufacturer) Antibody Isotype Antibody 2◦

β-catenin D10A8 (Cell Signaling) Rabbit IgG1 Goat anti-rIgG1 conjugate with HRP
E-cadherin 24E10 (Cell Signaling) Rabbit IgG1 Goat anti-rIgG1 conjugate with HRP

Snail C15D3 (Cell Signaling) Rabbit IgG1 Goat anti-rIgG1 conjugate with HRP
ZO-1 D7D12 (Cell Signaling) Rabbit IgG1 Goat anti-rIgG1 conjugate with HRP
ZEB1 D80D3 (Cell Signaling) Rabbit IgG1 Goat anti-rIgG1 conjugate with HRP

Claudin-1 D5H1D (Cell Signaling) Rabbit IgG1 Goat anti-rIgG1 conjugate with HRP
β-actin AC-74 (Sigma Aldrich) Mouse IgG1 Rabbit anti-mIgG1 conjugate with HRP
MTA3 428C2a (Santa Cruz Biotechnology) Mouse IgG1 Rabbit anti-mIgG1 conjugate with HRP

The same methodology was used for the measurement of MTA3 protein levels in the
cell lysates.

4.8. Mitochondrial Membrane Potential Measurement

Analysis of mitochondrial membrane potential was performed with Mitotracker™
Red CMXRos (Thermo Fisher Scientific), which is a non-ratiometric probe with a signal
corresponding to a membrane potential value [87]. After the incubation with the AgNP, as
described in Section 4.5, the medium was removed from the wells. Then, the cells were
covered with 0.1 cm3 of 200 nM Mitotracker™ Red CMXRos solution in PBS and incubated
for 30 min at 37 ◦C. After staining, the cells were washed once with PBS and covered with
0.1 cm3 of the buffer solution. Data were collected with a Perkin Elmer Wallac EnVision
2102 multilabel reader (Perkin Elmer) with filter set Ex/Em: 570/590 and then normalized
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with sulphorhodamine B assay measurement results (described earlier). All values were
reduced by the value collected from the stained empty well, which corresponds to the
unspecific binding of a probe to a surface of the plate’s well. Conditions of staining were
tested in a preliminary study using fluorescent-inverted microscopy.

4.9. Measurement of the Intracellular Calcium Flux in MCF-7 Cells Treated with AgNPs

Measurement of intracellular calcium flux was performed using a Fura-2, AM ratio-
metric fluorescent probe (Invitrogen™, Thermo Fisher Scientific). MCF-7 cells were seeded
on a Nunc™ 96 black flat bottom well plate (Thermo Fisher Scientific) at the density of
5000 cells per well in 0.1 cm3 of full growth medium and left for 24 h for proper bottom
attachment. Next, cells were stained with 5 µM probe solution in PBS (without Ca2+ and
Mg2+) for 30 min at 37 ◦C. After that, the cells were washed with PBS solution. Every
well was covered with 0.1 cm3 of the buffer and measured before incubation to check
the basal signal. The experiment started with the addition of 0.1 cm3 of appropriate PBS
buffer into control wells and AgNP solution into the treatment wells (final concentration
25 µg/cm3). The fluorescence signal was measured for 2 h every 15 min. The fluorescence
of the probe was induced by 340 and 380 nm excitation light and measured at 510 nm
emission wavelength. The data are presented as a 340/380 nm ratio and were analyzed by
GraphPad Prism 8.

4.10. Determination of the Histone Deacetylase (HDAC) Activity

Measurement of HDAC activity was performed using a HDAC Activity Fluorometric
Kit provided by Cayman Chemical (Ann Arbor, MI, USA). The experiment was divided
into two parts: extraction of the nuclei from MCF-7 cells and measurement of HDAC
activity.

Extraction of the nuclei: the cells were seeded in 75 cm3 culture flasks to provide
approximately 1 × 107 cells for lysis. When the culture achieved 75–80% confluence, an
AgNP solution in 1x PBS was added to the final concentration of 25 µg/cm3, and the cells
were incubated for 24 h in standard conditions. Next, the culture medium from above the
cells was discarded, and the cells were washed once with 1x PBS solution and trypsinized.
After that, the cell suspensions were centrifuged at 100× g for 10 min, the supernatant
was discarded, and the cells were resuspended in 1 cm3 of cold lysis buffer. Next, the
samples were vortexed for 10 s and kept on ice for 15 min. The cells were then centrifuged
through 4 cm3 of cold sucrose cushion (following the instruction) at 800× g for 10 min at
4 ◦C. The centrifuge force was lowered from 1300 to 800× g due to the low quality of the
samples caused by higher centrifugation force. The supernatant was discarded, and the
nuclei pellet was resuspended in 1 cm3 of cold 10 mM Tris-HCl, pH 7.5 (containing 10 mM
NaCl). A sample of the nuclei extract was visualized with Hoechst 33,342 under a Nikon
Ti-U Eclipse fluorescence microscope to ensure that the samples contain only the nuclei.
The samples were then centrifuged at 800× g for 10 min at 4 ◦C, and the supernatant was
discarded. The precipitates were suspended in 0.15 cm3 of extraction buffer. The samples
were sonicated for 30 s and left on ice for 30 min. After that, the samples were centrifuged
at 10,000× g for 10 min at 4 ◦C, and the supernatant was stored at −80 ◦C until use.

Measurement of HDAC activity: The 96-well plate was prepared according to the man-
ufacturer’s protocol. The fluorescence signal was measured using an excitation wavelength
of 340 nm and an emission wavelength of 450 nm.
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