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Purpose: The purpose of this study was to investigate the prognostic value of pre-
treatment CT radiomics and clinical factors for the overall survival (OS) of advanced (IIIB–
IV) lung adenocarcinoma patients.

Methods: This study involved 165 patients with advanced lung adenocarcinoma. The
Lasso–Cox regression model was used for feature selection and radiomics signature
building. Then a clinical model was built based on clinical factors; a combined model in the
form of nomogram was constructed with both clinical factors and the radiomics signature.
Harrell’s concordance index (C-Index) and Receiver operating characteristic (ROC) curves
at cut-off time points of 1-, 2-, and 3- year were used to estimate and compare the
predictive ability of all three models. Finally, the discriminatory ability and calibration of the
nomogram were analyzed.

Results: Thirteen significant features were selected to build the radiomics signature
whose C-indexes were 0.746 (95% CI, 0.699 to 0.792) in the training cohort and 0.677
(95% CI, 0.597 to 0.766) in the validation cohort. The C-indexes of combined model
achieved 0.799 (95% CI, 0.757 to 0.84) in the training cohort and 0.733 (95% CI, 0.656 to
0.81) in the validation cohort, which outperformed the clinical model and radiomics
signature. Moreover, the areas under the curve (AUCs) of the radiomic signature for 2-year
prediction was superior to that of the clinical model. The combined model had the best
AUCs for 2- and 3-year predictions.

Conclusions: Radiomic signatures and clinical factors have prognostic value for OS in
advanced (IIIB–IV) lung adenocarcinoma patients. The optimal model should be selected
according to different cut-off time points in clinical application.
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INTRODUCTION

Lung cancer, as a leading cause of cancer-related mortality, is
responsible for approximately 1.4 million deaths annually
throughout the world (1). Non-small cell lung cancer (NSCLC)
represents approximately 85% of lung cancers, and
adenocarcinoma is the most common histological subtype of
NSCLC (2). As NSCLC has no specific early symptoms and signs,
57% of patients present with advanced stage disease at primary
diagnosis (3), which may deny patients the opportunity to
receive resection and result in a diminished survival time.

Since the 1990s, emergence of chemotherapy with platinum
doublets and tyrosine kinase inhibitors (TKIs) has made
breakthroughs in the treatment for NSCLC (4); however, the
5-year overall survival (OS) rate is only 5% for those with
metastatic disease (5). Thus, the ability to predict clinical
outcomes accurately is crucial for clinicians to judge the most
appropriate therapies for these patients to improve prognosis. To
this end, biomarkers are needed (6).

The tumor node metastasis (TNM) staging system is the most
important postoperative prognostic tool that guides treatment,
but there are marked variations in responses and prognosis for
patients who are undergoing similar treatment in the same stage.
The heterogeneity reflects the complexity of the underlying
genotype and microenvironment; increasing numbers of
-omics studies are being conducted to better understand the
complexity (7). Radiomics is an emerging field that converts
imaging data into a high-dimensional mineable feature space
using a large number of automatically applied algorithms to
relate a variety of tumor characteristics (8). Radiomic features are
known to pick up the heterogeneity of the tumor (9, 10); since
visualization of heterogeneity has been linked to tumor
aggressiveness (11), it correlates with poor outcome. Many
studies have elucidated the predictive potential of radiomic
features for NSCLC prognosis (12). Kirienko et al. identify an
images-based radiomic signature capable of predicting disease-
free survival (DFS) in NSCLC patients (13); He et al. described a
combination of features (size, shape, texture and wavelets) which
could predict OS for NSCLC patients (14); but majority of them
involved patients of all stages, which might interfere with results
because the therapeutic modalities and prognosis between early
and advanced-stage patients were of significant difference. Our
study limited the subjects to patients with advanced (stage IIIB–
IV) lung adenocarcinoma and attempted to predict the OS based
on pre-treatment contrast-enhanced computed tomography
(CT) radiomics.
MATERIALS AND METHODS

Patients
Institutional review board approval was obtained for this
retrospective study, with a waiver for the informed consent
requirement. A total of 493 consecutive pathologically
confirmed advanced stage (IIIB–IV) lung adenocarcinoma
patients were recruited retrospectively from January 2014 to
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December 2017. The inclusion criteria were as follows: (1) age
>18; (2) Eastern Cooperative Oncology Group (ECOG)
performance status of 0–2; and (3) restricted therapeutic
regimens: patients with TKI-sensitive epidermal growth factor
receptor (EGFR) mutations or anaplastic lymphoma kinase
(ALK) rearrangement accepted TKI therapy initially, and the
rest of the patients accepted platinum-based chemotherapy
initially. The exclusion criteria were as follows: (1) examination
by unassigned CT scanners (n = 127); (2) previous anticancer
therapy (n = 25); (3) incomplete clinical data (n = 92);
(4) difficulty in distinguishing boundary of regions of interest
(ROIs) (n = 51); and (5) loss of follow-up (n = 33). Ultimately,
165 patients were included in this study with no ALK
rearrangement patients (Figure S1). The clinical data collected
for analysis included sex, age, ECOG, TNM stage, smoking status,
TKI-sensitive EGFR mutations, tumor diameter, location,
margin, lobulation, spiculation, air-bronchogram, pleural
invasion, lymph node metastases, brain metastases, liver
metastases, and bone metastases. The patients were randomly
divided into two individual cohorts for training and validation at
a ratio of 7:3 through computer-generated random numbers. The
workflow of the radiomic analysis is illustrated in Figure 1.

Image Acquisition
Contrast-enhanced CT images were acquired from Toshiba
Aquilion One, Toshiba Aquilion 64 (Toshiba Medical Systems)
or Phillips Brilliance iCT 256 (Philips Medical Systems)
scanners. The scanning parameters were as follows: 120 kVp;
100–200 mAs; detector collimation of 64, 256, or 320 ×
0.625 mm; field of view of 350 × 350 mm; matrix of 512 × 512
and reconstructed slice thickness of 2 mm. Contrast-enhanced
CT scanning was performed with a 25-s delay after the injection
of 85 ml of non-ionic iodinated contrast material (350 mg
iodine/ml, Omnipaque, GE Healthcare). All images were
exported to the Picture Archiving and Communication System
(PACS) workstation (IMPAX, AGFA).

Image Pre-Processing
Image pre-processing was performed to enhance feature
robustness and reduce feature dependence on scanner
variations. Each voxel corresponded to a volume of 1.0 mm *
1.0 mm * 1.0 mm with a linear interpolation algorithm, then a
Gaussian filter was used to remove noise. The gray level was
consistent across the different scanners; therefore, gray level
normalization was not required here.

Tumor Segmentation and
Feature Extraction
Three-dimensional (3D) contours of the tumor regions of interest
(ROIs) were delineated manually in reference to pulmonary and
mediastinum windows (window width and window level of 1,500
and −450 HU on pulmonary window, while the window width
and window level of 400 and 40 HU on mediastinal window).
Segmentation was strictly performed by two chest radiologists
(W.XT. with 7 years of experience and H.D. with 13 years of
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experience in chest CT) who were blinded to all patients’
information. The radiologists delineated the boundaries of the
tumors on a transversal plane using itk-SNAP (version 3.4.0,
www.itk-snap.org) software (Figure S2). The image biomarker
standardization initiative (IBSI) was regarded as reference and
taken into consideration in most of the data processing, images
feature, and biomarker selection procedure.

A total of 396 radiomic features were generated automatically
using in-house software (Artificial Intelligence Kit, A.K., GE
Healthcare) from ROIs. Features were classified into the
following three categories: (a) morphological features (n = 9);
(b) first-order features (intensity features, n = 42); and (c) texture
features (n = 345). The details are given in Figure S3.

Inter-/intra-class correlation coefficients (ICCs) were used to
evaluate the inter-observer and intra-observer agreement. To
assess inter-observer reproducibility, the ROIs of 30 randomly
chosen images were performed by the two chest radiologists
independently; to evaluate intra-observer reproducibility, they
repeated the same procedure at an one-month interval. An ICC
>0.75 was considered as good agreement. Stable and
reproducible features were entered in the subsequent analysis.
Frontiers in Oncology | www.frontiersin.org 3
Feature Selection and Radiomic
Signature Building
Least absolute shrinkage and selection operator (LASSO)
Cox regression analysis was utilized to select effective and
predictable features and establish a model in the training
cohort. Features with non-zero coefficients were chosen based
on 10-fold cross-validation (Figure S4). The radiomics signature
(Rad-score), which was calculated via a linear combination of the
selected features that had been weighted by their respective
coefficients, represented quantitative ROI characteristics of
each patient.
Validation of the Radiomic Signature
(1) The patients were divided into high- and low-risk subgroups
in the training and validation cohorts according to the Rad-score,
and the optimized threshold values were determined using X-
Tile software (version 3.6.1, Yale University). Then, Kaplan–
Meier OS curves and log-rank analyses were performed to assess
the prognosis of subgroups. (2) The receiver operating
characteristic (ROC) curves were plotted, and areas under the
FIGURE 1 | Workflow of the radiomic analysis.
May 2021 | Volume 11 | Article 628982
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curves (AUCs) were calculated for predictive validity assessment
of survival at 1-, 2- and 3-year time points in the training and
validation cohorts. (3) The validation cohort was further divided
into mutated EGFR subgroup and wild type EGFR subgroup.
Harrell’s concordance index (C-index) and ROC curves for 1-, 2-
and 3-year survival were used to compare the performances of
radiomic model in both subgroups.

Clinical Model Building and Validation
The clinical model was built by Cox proportional hazard
regression to compare with the radiomic signature. Sex, age,
ECOG, TNM stage, smoking status, TKI-sensitive EGFR
mutations, tumor diameter, location, margin, lobulation,
spiculation, air-bronchogram, pleural invasion, lymph node
metastases, brain metastases, liver metastases, and bone
metastases in the training cohort were first analyzed by
univariate Cox regression. Only significant factors (p < 0.05)
from univariate Cox regression were entered into the
multivariate Cox regression analysis. AUCs were calculated for
the clinical model in the same way and compared with that of
radiomic signature using DeLong test.

Combined Model Construction
and Validation
The combined model in the form of nomogram for 1-, 2- and 3-
year overall survival rate predictions was generated on the basis
of the Rad-score and the clinical factors with P <0.05 in
univariate Cox regression. Backward multivariate cox
regression was used again, and the factors with P <0.05 were
incorporated into the nomogram. The discriminative power of
the predictive model was evaluated by C-index with 95%
confidence intervals and AUCs in both cohorts. The
calibration curves were plotted to explore the calibration
degree of the combined model for the 1-, 2- and 3-year OS rates.

Statistical Analysis
All statistical analyses were performed using R statistical software
version 3.6.2. The “glmnet” package was used for executing the
LASSO Cox algorithm. For the baseline characteristic analyses,
the normality of data was assessed by the Shapiro–Wilk test.
Differences between the training and validation cohorts were
assessed by using independent-sample t-test and chi-square test,
where appropriate. Performances of the models were evaluated
by C-index. A two-sided p-value <0.05 was considered
statistically significant for all comparisons.
RESULTS

Patients
A total of 165 patients were enrolled in the study. The cohort
consisted of 94 men and 71 women with a mean age of 58.1 years
(range of 34–78 years). The longest follow-up period was 72
months, and the mean was 19.2 months. The training cohort
included 115 patients; the validation cohort included 50 patients.
Patients’ clinical characteristics are reported in Table 1.
Frontiers in Oncology | www.frontiersin.org 4
There were no significant differences except ECOG
performance status in clinical factors between the two cohorts.
TABLE 1 | Demographic data of patients in the training and validation cohorts.

Training
cohort

(N = 115)

Validation
cohort
(N = 50)

p

Sex/No. (%) 0.611†
Male 67(58.3) 27(54)
Female 48(41.7) 23(46)

Age/Mean ± SD 57.3 ± 9.6 60 ± 8.7 0.085‡
ECOG/No. (%) 0.006†*
0-1 75(65.2) 43(86)
2 40(34.8) 7(14)

Smoking status/No. (%) 0.278†
Smoker 36(31.3) 20(40)
Never 79(68.7) 30(60)

Stage/No. (%) 0.968†
IIIB 21(18.3) 9(18)
IV 94(81.7) 41(82)

Treatment method
/No. (%)

0.797†

TKIs 55(47.8) 25(50)
Chemotherapy 60(52.2) 25(50)

Tumor diameter (cm) 0.902†
<5 54(47) 24(48)
≥5 61(53) 26(52)

Location/No. (%) 0.81†
Central 46(40) 21(42)
Peripheral 69(60) 29(58)

Margin/No. (%) 0.061†
well-defined 99(86) 48(96)
ill-defined 16(14) 2(4)

Lobulation/No. (%) 0.324†
Yes 97(84) 39(78)
No 18(16) 11(22)

Spiculation/No. (%) 0.755†
Yes 49(42.6) 20(40)
No 66(57.4) 30(60)

Air-bronchogram/No. (%) 0.916†
Yes 29(25.2) 13(26)
No 86(74.8) 37(74)

Pleural invasion/No. (%) 0.447†
Yes 28(24.3) 15(30)
No 87(75.6) 35(70)

Lymph node metastasis /No.
(%)

0.809†

Yes 69(60) 31(62)
No 46(40) 19(38)

Brain metastases /No. (%) 0.488†
Yes 16(13.9) 5(10)
No 99(86.1) 45(90)

Liver metastases /No. (%) 0.602†
Yes 17(14.8) 9(18)
No 98(85.2) 41(82)

Bone metastases /No. (%) 0.933†
Yes 19(16.5) 8(16)
No 96(83.5) 42(84)

Rad-score/Mean ± SD −0.118 ± 0.653 0.177 ± 0.656 0.598‡
High-low risk/No. (%) 0.966†
High risk 41(35.7) 18(36)
Low risk 74(64.3) 32(64)
May 2021 |
 Volume 11 | Article
† Chi-square test was used.
‡ Independent-samples t-test was used.
*p < 0.05 was considered statistically significant.
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Feature Selection and Radiomic
Signature Building
After assessing the reproducibility, 324 features with both inter-
and intra-class correlation coefficients >0.75 were reserved. In the
training cohort, 13 features were evaluated to construct a radiomic
signature through the LASSO Cox algorithm: [1] Range; [2]
skewness; [3] GLCMEntropy_ AllDirection_offset1_SD; [4]
GLCMEntropy_angle135_offset1; [5] Correlation_AllDirection_
offse t4_SD; [6] GLCMEnergy_angle45_off se t7 ; [7]
GLCMEntropy_angle45_offset7; [8] sumAverage; [9]
ShortRunLowGreyLevelEmphasis_AllDirection_offset1_SD;
[10] ShortRunEmphasis-_AllDirection_offset4_SD; [11]
ShortRunHighGreyLevelEmphasis_AllDirection_offset7_SD;
[12] ShortRunHighGreyLevelEmphasis_angle0_offset7; and [13]
Sphericity. The formula of Rad-score is illustrated in Table S1.

Validation of the Radiomic Signature
The C-indexes of the radiomic signature were 0.746 (95% CI,
0.699 to 0.792) in the training cohort and 0.677 (95% CI, 0.597 to
0.766) in the validation cohort.

(1) The patients were classified into high- and low-risk
subgroups according to the Rad-score at a cut-off point of 0.15
according to X-Tile. Kaplan–Meier analysis revealed significantly
different subgroup OS in both training cohort (p < 0.0001, log-
rank test) and validation cohort (p < 0.0001, log-rank test), as
shown in Figure 2.

(2) The ROC curves of the two cohorts for 1-, 2- and 3-year
survival are plotted in Figure 3A.

(3) The C-index for mutated EGFR subgroup was 0.629 (95%
CI, 0.476 to 0.782) in validation cohort; the C-index for wild type
EGFR subgroup was 0.662 (95% CI, 0.537 to 0.787) in validation
cohort. The AUCs of the subgroups for 1-, 2- and 3-year survival
are shown in Table S2. Although there was no significant
difference by the DeLong test in all pairs, the AUCs of wild
type EGFR subgroup were superior to that of mutated EGFR
subgroup for all cut-off time points.

Clinical Model Building and Validation
The variables with p values <0.05 in the univariate analysis,
namely, ECOG, TKI-sensitive EGFR mutations (treatment
Frontiers in Oncology | www.frontiersin.org 5
methods), pleural invasion, and brain metastases, were entered
into the multivariate analysis. The multivariate Cox proportional
hazard model showed that all the entered factors were identified
as independent predictors of OS (Table 2).

For the clinical model, the C-indexes were 0.718 (95% CI,
0.669 to 0.766) in the training cohort and 0.698 (95% CI, 0.603 to
0.792) in the validation cohort. The ROC curves for the clinical
model are depicted in Figure 3B. The comparison of AUCs for
radiomic signatures and the clinical model are shown in
Figure 4. In the validation cohort, although there was no
significant difference by the DeLong test in all pairs, the AUC
of the radiomic signature for 1-year prediction was inferior to
that of the clinical model, but the 2-year prediction was superior
to that of the clinical model. The prediction efficiencies of both
models for 3-year survival were not satisfactory.

Combined Model Construction
and Validation
Clinical parameters with p <0.05 in the univariate Cox regression
(ECOG, treatment methods pleural invasion and brain
metastases) and Rad-score were included in the construction of
the combined model using backward multivariate Cox regression
(Table 3). The nomogram was showed in Figure 5.

The C-indexes of the combined model were 0.799 (95% CI,
0.757 to 0.84) in the training cohort and 0.733 (95% CI, 0.656 to
0.81) in the validation cohort, which were higher than those of
the other two models. ROC curves are delineated in Figure 3C.
Figure 4C shows that the combined model improved the
accuracy for 2- and 3-year survival predictions compared with
the radiomics and clinical models. The calibration curves of the
nomogram demonstrated good consistency between predicted
and observed results (Figure 6).
DISCUSSION

The present study explored whether a radiomic approach could be
used to generate prognostic biomarkers of OS for advanced lung
adenocarcinoma patients. Three models (radiomic signature,
A B

FIGURE 2 | Predictive capacity of radiomic signatures. Kaplan–Meier curves showed that radiomics signatures could effectively discriminate patients with low risk
from those with high risk. (A) Training cohort. (B) Validation cohort.
May 2021 | Volume 11 | Article 628982
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clinical model, and combined model) were constructed and
compared. We found that the radiomic signature and clinical
model had similar predictive performance in the validation cohort
(C-index, 0.677 and 0.698), and they were mutually
complementary for predicting 1- and 2-year survival. The
combined model provided a better and balanced estimation (C-
index, 0.733) in the validation cohort.

Many studies have attempted to utilize different features to
“phenotype” tumor and predict the outcomes of patients with
lung cancer (10, 15). Huang et al. found a correlation between
Frontiers in Oncology | www.frontiersin.org 6
radiomics biomarkers on CT and disease-free survival (DFS) in
early stage (I or II) NSCLC and the C-index of the model was
0.72 (95% CI, 0.71 to 0.73) (16). Yang et al. developed a radiomic
nomogram based on the 2D and 3D CT features which yielded a
C-index of 0.731 (95% CI, 0.626 to 0.836) to predict the survival
of NSCLC patients (17). Our study tried to construct a model to
predict OS for patients with advanced (IIIB–IV) lung
adenocarcinoma (C-index of combined model, 0.733, 95%CI,
0.656 to 0.81), who starved for a more accurate prediction to
improve initial therapeutic regimens. Furthermore, we compared
A

B

C

FIGURE 3 | The ROC curves of the two cohorts for 1-, 2- and 3-year survival in all models. (A) Radiomic signature. (B) Clinical model. (C) Combined model. The
numbers of patients who died after 1-, 2- and 3-year cut-off time were 78, 40 and 15 in the training cohort; the numbers were 37, 22, and 7 in the validation cohort.
May 2021 | Volume 11 | Article 628982
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TABLE 2 | Univariate and multivariate analyses for clinical data.

Risk factor Univariate Multivariate

HR 95% CI p HR 95% CI p

Sex (M/F) 1.355 0.907–2.026 0.138
Age (>60y/≤60y) 0.917 0.609–1.379 0.678
ECOG (0–1/2) 0.299 0.196–0.456 <0.01* 0.358 0.222–0.576 <0.01*
Smoking status (Yes/No) 1.195 0.783–1.823 0.409
Stage (IIIB/IV) 0.638 0.372–1.097 0.104
Tumor diameter (≥5 cm/<5 cm) 1.074 0.723–1.596 0.722
Location (Central/Peripheral) 1.245 0.834–1.859 0.284
Margin
(well-defined/ill-defined)

0.873 0.493–1.547 0.643

Lobulation (Yes/No) 1.285 0.715–2.307 0.401
Spiculation (Yes/No) 1.394 0.931–2.087 0.106
Air-bronchogram (Yes/No) 1.32 0.849–2.053 0.218
Pleural invasion (Yes/No) 1.589 1.017–2.483 0.042* 1.888 1.196–2.979 <0.01*
Lymph node metastasis
(Yes/No)

1.334 0.888–2.002 0.165

Brain metastases (Yes/No) 5.236 2.924–9.376 <0.01* 3.417 1.798–6.493 <0.01*
Liver metastases (Yes/No) 1.579 0.921–2.708 0.097
Bone metastases (Yes/No) 1.482 0.864–2.544 0.153
Treatment methods (TKIs/Chemotherapy) 0.649 0.437–0.965 0.033* 0.533 0.354–0.803 <0.01*
Frontiers in Oncology | www.frontiersin.org
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*p < 0.05 was considered statistically significant.
A B C

FIGURE 4 | Comparison of 1-, 2- and 3-year survival AUCs in all models. (A) Radiomic signature. (B) Clinical model. (C) Combined model. In the validation cohort,
the AUC of the radiomics signature for 1-year prediction was inferior to that of the clinical model, but the 2-year prediction was superior to that of the clinical model.
The combined model had the best AUCs in 2- and 3-year predictions.
TABLE 3 | Results of multivariate Cox regression for combined model.

Coefficient HR 95% CI p

Lower Upper

Rad-score 1.499 4.475 2.899 6.919 <0.01*
ECOG (0–1/2) -0.921 0.398 0.245 0.646 <0.01*
Pleural invasion (Yes/No) 0.475 1.608 1.018 2.54 0.042*
Brain metastases (Yes/No) 0.899 2.458 1.267 4.769 <0.01*
Treatment methods (TKIs/Chemotherapy) -0.445 0.641 0.424 0.968 0.034*
*p < 0.05 was considered statistically significant.
28982
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the accuracy of the radiomic model, clinical model and combined
model in the prediction for 1-, 2- and 3-year survival and draw a
conclusion that the optimal model should be selected according
to the cut-off time points.

In our research, the clinical model had the peak accuracy in
the 1-year prediction (AUC = 0.864, 95% CI, 0.697 to 1) because
death from the existence of brain metastases (HR = 5.236, 95%
CI, 2.924 to 9.376) and higher ECOG score (HR = 3.344, 95% CI,
2.193 to5.102) could occur quickly. The median OS for brain
metastasis patients was only 8 months; the median OS for
ECOG = 2 patients was only 9 months; however, 1 year later,
when the impact of these factors weakened, the prediction
accuracy of the clinical model fell sharply (AUC = 0.712, 95%
Frontiers in Oncology | www.frontiersin.org 8
CI, 0.573 to 0.853). The radiomic signature had complementary
advantages in the 2-year prediction with clinical model (AUC =
0.774, 95% CI = 0.644 to 0.901); the combined model exhibited
the best AUC for 2-year prediction (AUC = 0.82, 95% CI, 0.701
to 0.939).

There are different treatment methods in mutated EGFR
group and wild type EGFR group (18), so generally, their
prognosis was studied separately. However, many previous
studies have shown that radiomic has a high accuracy in
distinguishing wild and mutated EGFR NSCLC patients (19,
20), therefore, we combined two groups to increase the
universality of the models. We also performed subgroup
analysis which indicated that the radiomic signature own
FIGURE 5 | Nomogram for estimating the 1-, 2- and 3-year survival rates.
A B

FIGURE 6 | Calibration curves of the nomogram. (A) Training cohort. (B) Validation cohort.
May 2021 | Volume 11 | Article 628982
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higher discrimination capacity for wild type EGFR group than
mutated EGFR subgroup for all cut-off time points.

In contrast to findings in previous articles, TNM stage was
not an independent risk factor in the clinical model in our study
because the inclusion criteria were limited to stage IIIB and IV
patients, whose OS times were not significantly different (median
OS, 24 vs 19 months, p = 0.38).

Some limitations of this study have to be acknowledged. First,
it was a retrospective study with a relatively small number of
samples, which might cause instability in feature values (21);
second, histologic grade and subtype were recognized prognostic
factors (13, 22–24), but they were not tested in our study due to
the unavailability of whole tumor specimens through
transthoracic or transbronchoscopic biopsy (25); third, anti-
PD-1/L1 monotherapy has already been approved by the US
Food and Drug Administration (FDA) for treatment of patients
with advanced lung adenocarcinoma (26), but it was not
considered in our study. Future study with larger samples and
anti-PD-1/L1 monotherapy is warranted.
CONCLUSION

The radiomic signatures and clinical factors have prognostic
value for OS in advanced (IIIB–IV) lung adenocarcinoma
patients. The results of the radiomic signature and the clinical
model in predicting 1- and 2-year survival were complementary
and the optimal model should be selected according to the cut-
off time.
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