
A translational perspective on neural circuits of fear extinction: 
Current promises and challenges

Dieuwke Sevenstera,b,*, Renée M. Visserc, Rudi D'Hoogea

aLaboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, 
B-3000 Leuven, Belgium bClinical Psychology, Utrecht University, Heidelberglaan 1, 3584 CS 
Utrecht, The Netherlands cMedical Research Council Cognition and Brain Sciences Unit, 
University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom

Abstract

Fear extinction is the well-known process of fear reduction through repeated re-exposure to a 

feared stimulus without the aversive outcome. The last two decades have witnessed a surge of 

interest in extinction learning. First, extinction learning is observed across species, and especially 

research on rodents has made great strides in characterising the physical substrate underlying 

extinction learning. Second, extinction learning is considered of great clinical significance since it 

constitutes a crucial component of exposure treatment. While effective in reducing fear responding 

in the short term, extinction learning can lose its grip, resulting in a return of fear (i.e., laboratory 

model for relapse of anxiety symptoms in patients). Optimization of extinction learning is, 

therefore, the subject of intense investigation. It is thought that the success of extinction learning 

is, at least partly, determined by the mismatch between what is expected and what actually 

happens (prediction error). However, while much of our knowledge about the neural circuitry of 

extinction learning and factors that contribute to successful extinction learning comes from animal 

models, translating these findings to humans has been challenging for a number of reasons. Here, 

we present an overview of what is known about the animal circuitry underlying extinction of fear, 

and the role of prediction error. In addition, we conducted a systematic literature search to evaluate 

the degree to which state-of-the-art neuroimaging methods have contributed to translating these 

findings to humans. Results show substantial overlap between networks in animals and humans at 

a macroscale, but current imaging techniques preclude comparisons at a smaller scale, especially 

in sub-cortical areas that are functionally heterogeneous. Moreover, human neuroimaging shows 

the involvement of numerous areas that are not typically studied in animals. Results obtained in 

research aimed to map the extinction circuit are largely dependent on the methods employed, not 

only across species, but also across human neuroimaging studies. Directions for future research 

are discussed.
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1 Introduction

Aversive experiences often leave a mark: seeing a dog shortly after being bitten by one may 

trigger a range of defensive responses, such as heavy perspiration, trembling, freezing, and 

the tendency to avoid the animal. Yet, with repeated encounters with harmless dogs such 

responses usually fade, a process referred to as ‘fear extinction’. The process of extinction 

has been studied for almost a century, starting with the classic studies by Ivan Pavlov 

(Pavlov, 1927). Today, fear extinction is a hot topic in neuroscience given the tremendous 

progress in uncovering its neural basis and its clinical significance.

Extinction is preceded by fear conditioning, the process of pairing a neutral stimulus with an 

aversive outcome (or threat conditioning as some prefer to call it in animals LeDoux, 2014). 

The formation of these associations during fear acquisition is very rapid and extremely 

robust. This is in stark contrast with fear extinction learning, the decrement of responding 

through unreinforced presentation of the conditioned stimulus (CS), which requires 

extensive training and results in a relatively fragile memory trace (Bouton, 1993, 2002, 

2004). Extinction training produces a new memory trace that inhibits the original association 

of the CS with the unconditioned stimulus (US). Maintaining the inhibitory memory is thus 

critical for long-term retention of extinction. This remains a great challenge as fear returns 

under a variety of conditions such as re-exposure to the US (reinstatement), the passage of 

time (spontaneous recovery), and post-extinction context change (i.e., renewal) (Bouton, 

2002). Here, we use the term ‘extinction’ exclusively to refer to extinction of conditioned 

fear.

By and large, most of our knowledge about the principles of fear extinction is derived from a 

vast body of animal literature. Notably, many affective responses appear to be highly 

conserved between different non-human mammalian species, and many of the underlying 

cellular and molecular processes of neuroplasticity can even be examined in invertebrates 

such as insects and gastropods. Particularly the last two decades of neuroscientific research 

in animals have produced exciting new insights into the representation and the dynamic 

nature of emotional memory in general (Josselyn, Köhler, & Frankland, 2015; Tonegawa, 

Liu, Ramirez, & Redondo, 2015), and extinction specifically (e.g., Herry et al., 2008; 

Moscarello & Maren, 2018; Senn et al., 2014; Xu et al., 2016).

What makes insight into the neural basis of extinction so important is its clinical 

significance. Extinction learning is considered the crux of exposure therapy, during which 

patients suffering from anxiety or stress-disorders are confronted with the object of their fear 

in a safe environment. While exposure is effective in reducing anxiety symptoms, some 

patients respond insufficiently or experience a relapse of symptoms on the long run (Craske, 

1999; Resick, Williams, Suvak, Monson, & Gradus, 2012). The return of fear responses 

provides a laboratory model of relapse of fear following treatment that is often observed in 
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patients after exposure therapy (Eddy, Dutra, Bradley, & Westen, 2004; Resick et al., 2012). 

It is important to note that detection of danger and immediate engagement of the defensive 

system in the face of threat is crucial for survival. Learning to associate stimuli with danger 

can help an individual to optimize effective threat detection. Thus, both fear learning and 

appropriate return of fear responding following extinction are highly adaptive. Crucially, in 

patients the ability for adaptive fear learning and inhibition of inappropriate fear responding 

is impaired (Duits et al., 2015; Duits, Cath, Heitland, & Baas, 2016; Peri, Ben-Shakhar, Orr, 

& Shalev, 2000; VanElzakker, Kathryn Dahlgren, Caroline Davis, Dubois, & Shin, 2014).

Insights from animal studies on the extinction circuitry are indispensable in providing 

hypotheses about extinction learning and return of fear in humans. These hypotheses can be 

tested in laboratory settings, to help identify factors that increase the risk of relapse after 

successful exposure therapy (Eddy et al., 2004; Resick et al., 2012), as well as to guide the 

innovation and optimization of clinical treatments. However, the translation of our vast body 

of knowledge about animal extinction learning to the human condition remains a formidable 

task. Neuroimaging in humans has been suggested to provide a crucial translational step in 

assessing to what extent the neural circuitries underlying emotional memory systems are 

similar across species (Milad & Quirk, 2012; Sehlmeyer et al., 2009; Visser, Lau-Zhu, 

Henson, & Holmes, 2018). However, as will be discussed in Sections 3 and 4, drawing 

parallels between the animal and human extinction circuits using modern neuroimaging 

techniques is not always straightforward.

Here, we present a succinct overview of what is established knowledge about the animal 

circuitry underlying extinction of fear (Section 2), and compare this with recent findings 

from human imaging studies as identified by a systematic literature search (Section 3). In the 

discussion of both animal and human extinction circuitry we will consider the role of 

prediction error, that is, a mismatch between what is expected (e.g., CS-US) and what 

actually happens (e.g., CS-no US). In doing so, this review aims to provide both an update 

and extension of previous reviews (Milad & Quirk, 2012; Sehlmeyer et al., 2009). We will 

argue that translation of the animal extinction circuitry to the human brain is more complex 

than previously thought. We will discuss to what degree recent advances in human imaging 

and analyses techniques might aid to overcome some of these difficulties (Section 4), as well 

as highlight other avenues for future research.

2 Extinction network in rodents

Extinction is ethologically relevant and evolutionary adaptive, since it is part of an animal’s 

behavioural repertoire that enables it to adjust its behaviour to a perpetually changing 

environment. The extinction of fear occurs even in primitive organisms that possess only the 

most basic learning abilities. Also, more advanced invertebrates such as snails and insects 

display extinction when a previously encountered threat is no longer present (Eisenhardt, 

2014). Studies in rodents such as mice and rats have been particularly important to our 

present understanding of the behavioural and neural mechanisms of extinction, because of 

the homologies between rodent and primate brain structure and function (Barad, 2005).
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Generally, Pavlovian fear (or threat) conditioning research in rodents entails the coupling of 

a discrete cue (e.g., light or tone) or a context (CS), with foot shocks (US). Freezing 

response is the most frequently used readout of conditioned responding (CR) to the CS. Fear 

extinction is established by repeated presentation of the CS alone. Evidence of extinction 

learning can be assessed at the end of the extinction training (reduction from beginning to 

end) or at a later time point, usually 24 h later. Assessing extinction learning at a later time 

point is referred to as extinction recall. Within-session extinction is not considered a good 

marker for a longer-term reduction in fear responding, or in therapeutic terms, of 

‘successful’ extinction learning (Craske, 2015; Plendl & Wotjak, 2010): individuals that 

show a strong reduction of fear responses from the beginning to the end of a session may 

show a substantial or complete recovery of conditioned fear at the beginning of the next 

session, while individuals with a more moderate reduction of fear may show better retention 

of this reduction over time. Extinction recall, a reduction of fear that persists, may thus be a 

better, and clinically more relevant, indicator of successful extinction. The standard model of 

Pavlovian conditioning is highly relevant for normal or adaptive fear acquisition and 

extinction. Extensions of the model that increase the unpleasantness of the learning 

situation, for example using higher shock intensity or a prior stress episode, could 

potentially more accurately model pathological fear (Desmedt, Marighetto, & Piazza, 2015; 

Izquierdo, Wellman, & Holmes, 2006). Furthermore, we note a recent and increasing interest 

in the empirical characterization of heterogeneity in fear learning, extinction and return of 

fear in animal models (e.g. Galatzer-Levy, Bonanno, Bush, & Ledoux, 2013; Shumake, 

Jones, Auchter, & Monfils, 2018), which is expected to push the field forward in terms of 

identifying factors contributing to mental health disorders and markers to predict treatment 

response. For pragmatic reasons, we restrict the current perspective to research using 

‘standard’ models of fear, and by focusing more on average responses than on heterogeneity.

Several procedures are used to uncover the return of fear following extinction training: a 

return of freezing response to the CS after the passage of time (e.g. one week) indicates 

spontaneous recovery; reinstatement of fear to the CS is observed after unsignaled 

presentation of the foot shock; a renewal of fear occurs upon a switch from the context in 

which extinction (context B) took place to the original acquisition context (context A) or a 

new context (context C). To this end, environmental features (shape; odour; lighting) of the 

cage in which fear conditioning, extinction, and renewal test take place are manipulated. 

Renewal experiments clearly demonstrate the contextual dependency of extinction (see 

Section 2.2) (Bouton, 2002, 2004).

2.1 Prelimbic-amygdala and Infralimbic-amygdala projections

Decades of research have shown that memory for extinction is not situated in a single brain 

area. Rather, it is distributed across a network which main structures include the amygdala, 

hippocampus and prefrontal cortex (PFC). This network has been studied extensively in 

animals and is addressed only concisely here (for review see e.g., Moscarello & Maren, 

2018; Orsini & Maren, 2012; Quirk & Mueller, 2008). The key circuitry is depicted 

schematically in Fig. 1. In short, the amygdala has been proposed to play a crucial role in the 

acquisition and expression of conditioned fear responding. The central nucleus of the 

amygdala (CEA) controls the expression of conditioned fear. Projections from the 
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basolateral complex of the amygdala (BLA) modulate CEA activity (LeDoux, 2000; Vidal-

Gonzalez, Vidal-Gonzalez, Rauch, & Quirk, 2006). The PFC exerts a dual control in 

expression of conditioned fear, as it can both facilitate and inhibit fear responding, which 

depends on different amygdala connections (Senn et al., 2014). Prelimbic (PL) PFC sends 

excitatory projections to the basal amygdala (BA), which in turn innervates the central 

amygdala (CEA) resulting in expression of conditioned fear (LeDoux, 2000; Vidal-Gonzalez 

et al., 2006) (Fig. 1).

Extinction learning is thought to heavily depend on the infralimbic area (IL) of the PFC. 

Lesion studies showed that extinction depends on IL neuroplasticity and the concomitant 

formation of novel or updated memory networks (Lebron, Milad, & Quirk, 2004; Quirk, 

Russo, Barron, & Lebron, 2000). Manipulating the processes of neural plasticity, especially 

those involved in memory consolidation and updating, affected extinction. For example, a 

series of experiments showed that infusion of brain-derived neurotrophic factor (BDNF) – a 

protein that controls neural growth and survival (Bramham & Messaoudi, 2005) – into the IL 

cortex of fear-conditioned rats produced an extinction-like effect without affecting the 

original fear memory (Peters, Dieppa-Perea, Melendez, & Quirk, 2010). More specifically, 

BDNF infusion 60 min before extinction training significantly reduced fear responding 

during extinction training and on subsequent tests of extinction recall, reversed naturally 

occurring extinction deficits, and even reduced fear responding in the absence of further 

extinction training. This effect was specific to inhibition of conditioned fear, as open-field 

anxiety was still intact and BDNF infusion prior to conditioning did not reduce subsequent 

fear responding. Yet, this effect was transient as conditioned fear responses could be 

reinstated, indicating that BDNF infusion did not degrade the original fear memory. Further 

experiments demonstrated that the hippocampus (rather than amygdala or IL) is the source 

of IL BDNF, and that similar extinction-like effects could be achieved by boosting 

hippocampal BDNF, unless a BDNF-inactivating antibody was co-administered in the IL, 

indicating that the IL mPFC is the primary site of action for hippocampal BDNF (Peters et 

al., 2010). These experiments showed that the IL is crucial for inhibitory extinction learning. 

Other studies showed that IL exerts this inhibition through projections to the amygdala. This 

inhibition is not due to direct IL-CEA connections, but is mediated by the intercalated cells 

(ITC) of the amygdala that inhibit the CEA (Amano, Unal, & Paré, 2010). In addition, it is 

thought that the IL has reciprocal connections to the BLA. Although the BLA is mostly 

recognized for its role in the acquisition of fear responses, this is most likely not its only 

role. An optogenetic study showed a dissociation between fear neurons and extinction 

neurons within the BA (Herry et al., 2008). These extinction neurons were responsive only 

to extinguished stimuli and were connected to the mPFC, possibly affecting activity in the 

CE via ITC or direct projections (Orsini & Maren, 2012). Understanding of direct and 

indirect IL-amygdala connections is developing rapidly and cannot be fully addressed here. 

What is important is that the net effect of these IL-amygdala projections is reduced 

responsiveness of CEA to BLA input, resulting in reduced fear responding (Quirk, Likhtik, 

Pelletier, & Paré, 2003).
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2.2 Hippocampus

The hippocampus exerts a dual role in extinction learning and recall; depending on the 

conditions the hippocampus activates or inhibits fear expression. Hippocampal involvement 

during extinction learning has been considered a prerequisite for extinction recall; 

inactivation of the hippocampus during extinction training resulted in impaired extinction 

recall; fear was expressed both in the context in which extinction took place and other 

contexts (Corcoran, Desmond, Frey, & Maren, 2005; Sierra-Mercado, Padilla-Coreano, & 

Quirk, 2011).

Extinction learning and recall is highly context dependent (Bouton, 2002, 2004); extinction 

is best recalled in the context in which it took place and a switch to another context uncovers 

the conserved relation of the CS and its aversive consequence. The hippocampus is thought 

critical for establishing a context representation during extinction learning, and the 

regulation of fear renewal following a context switch (Maren, Phan, & Liberzon, 2013). 

Down-regulation of the hippocampus during extinction recall facilitates generalization of 

extinction to other contexts. Promisingly, pharmacological inactivation of the hippocampus 

(Corcoran & Maren, 2001) or specific optogenetic inhibition during extinction recall 

prevented fear renewal (Xu et al., 2016). The role of the hippocampus in activation or 

inhibition of fear expression appears to be controlled by direct and indirect pathways. There 

are direct projections from the hippocampus to the BLA, and indirect projections through 

the IL and PL (Orsini, Kim, Knapska, & Maren, 2011; Orsini & Maren, 2012) (Fig. 1). 

Pathways to the BLA and PL are thought to be involved in fear expression; fear renewal was 

indeed shown to recruit hippocampal-BLA projections (Jin & Maren, 2015; Orsini et al., 

2011). Recently, in addition to projection to the BLA, weaker hippocampal projections to the 

CEA have been identified (Xu et al., 2016). Different populations of CA1 hippocampal 

neurons target the BLA and CEA and specific optogenetic inhibition of the hippocampal-

CEA pathway during renewal test prevented fear renewal (Xu et al., 2016). Moreover, 

exciting recent insights demonstrated that hippocampus-mediated inhibition of IL could be 

central to fear relapse; activation of hippocampal input into amygdala-projecting IL neurons 

resulted in a relapse of fear (in the extinction context), while inactivation of hippocampal-IL 

pathway prevented renewal (Marek et al., 2018).

In sum, the hippocampus mediates both fear activation and inhibition. Hippocampal activity 

during extinction is associated with extinction plasticity. Hippocampal inactivation during 

extinction recall may facilitate extinction generalization to other contexts.

2.3 Prediction error in rodents

Fear extinction entails adaptation to changing environmental demands; when the CS is no 

longer a good predictor of threat, it should no longer be considered as unsafe. An important 

factor in the effective adjustment to the reversal in contingencies is mediated by a violation 

of expectancies. The greater the mismatch between what is expected (CS-US) and what 

actually happens (CS-no US), the greater the opportunity for new learning (Rescorla & 

Wagner, 1972). While prediction error is considered the driving force of fear extinction, it 

receives little attention in the traditional conceptualization of the neural circuitry of 

extinction.
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Following fear acquisition, unreinforced CS exposure can have opposite behavioural 

outcomes: initially, the CS leads to mere retrieval of the original fear memory, leading to 

anticipation of threat and expression of conditioned fear. With repeated presentation of the 

CS without the US, it may no longer be considered as unsafe, and conditioned fear 

responding may be inhibited. How does the brain determine when to continue to anticipate 

threat, or when to adapt to changing environmental demands and transition to safety 

behaviour? Prediction of the US and confirmation or violation of prediction might control 

which network (expression or inhibition of fear) is engaged. Rescorla and Wagner (1972) 

argued that the greater the mismatch between what is expected (based on previous 

experience e.g., CS-US) and what actually occurs (CS-no US), the greater the opportunity 

for new learning (but alternative models have been used as well; Delamater & Westbrook, 

2014). While unexpected reinforcement (positive PE) drives fear learning, absence of 

expected reinforcement (negative PE) is linked to extinction learning, and an extinction 

memory trace is formed when the actual outcome on a learning trial is less than expected. 

Note that this model (Rescorla & Wagner, 1972) traditionally regarded extinction as 

unlearning. The notion that extinction consists of additional inhibitory learning is later 

accounted for by the observation of return of fear following extinction (Bouton, 2002, 2004; 

see also introduction). While prediction error is considered the driving force of fear 

extinction, it receives little attention in the traditional conceptualization of the neural 

circuitry of extinction. Animal networks of PE will be discussed below.

2.3.1 Prediction error and the hippocampus—The hippocampus is explicitly 

associated with contextual processing during and following extinction (see Sections 2 and 

3.3). It is, however, likely that the role of the hippocampus in extinction extends beyond 

contextual modulation. Research from a different field recognizes the hippocampus as an 

essential region in error processing (i.e., matching current incoming information with 

predictions). Novelty detection and prediction error signaling is associated with the CA1 

region of the hippocampus (Barbeau, Chauvel, Moulin, Regis, & Liégeois-Chauvel, 2017; 

Giovannini et al., 2001; Huh et al., 2009; Lisman & Grace, 2005; Lisman & Otmakhova, 

2001; Radulovic & Tronson, 2010; Tronson et al., 2009). Note that novelty and prediction 

error are related but distinct concepts. For example, a novel stimulus that is not followed by 

a threatening event may generate less prediction error than a familiar threatening stimulus 

that is not reinforced. Thus, it may not be the overall novelty but rather the amount of PE 

drives learning. Alternatively, PE alone may be insufficient to explain some of the reported 

results regarding extinction, and additional novelty-driven attentional mechanisms may need 

to be taken into account (e.g. Larrauri & Schmajuk, 2008).

Different molecular markers of novelty and PE have been identified; generally, expression of 

cFos in CA1 increases in response to novelty (Matsuo & Mayford, 2008; Monfil et al., 2018; 

VanElzakker, Fevurly, Breindel, & Spencer, 2008). Specific for fear extinction is PE-induced 

activation of phospho extracellular signal-regulated kinases (pErk) in CA1 (Huh et al., 2009; 

Radulovic & Tronson, 2010; Tronson et al., 2009). Given the theoretical emphasis on PE in 

extinction it is surprising that, to our knowledge, little more research has been conducted in 

this area.
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Altogether, the hippocampus likely plays a dual role in extinction, possibly being crucial for 

both contextual modulation and error processing. The CA1 may constitute the hippocampal 

locus of these processes (Huh et al., 2009; Xu et al., 2016). Future studies could differentiate 

CA1 cell populations that are selectively involved in one of two processes. For example, 

optogenetic inhibition of those cells involved in contextual modulation should prevent fear 

renewal, while inhibition of PE-related cells should prevent extinction recall.

2.3.2 Prediction error and the ventral tegmental area (VTA)—In models of 

appetitive conditioning, PE has been frequently linked to dopaminergic signaling. An 

influential theory poses that there is a functional loop between the hippocampus and the 

ventral tegmental area (VTA) that controls memory encoding (Lisman & Grace, 2005); 

hippocampal novelty signals project to the VTA, and dopaminergic signals project back 

from the VTA to the hippocampus. Dopaminergic innervation of the hippocampus then leads 

to enhanced memory plasticity. Indeed, violation of prediction leads to alterations in firing 

rate of these dopaminergic systems; positive PE results in an increase, whereas negative PE 

results in a depression of dopamine firing (Frank, Moustafa, Haughey, Curran, & Hutchison, 

2007; Schultz, 2010; Waelti, Dickinson, & Schultz, 2001). It is important to note that while 

this pattern of activity is observed during appetitive conditioning, the decrease in dopamine 

associated with negative PE has rarely been observed in aversive conditioning (Li & 

McNally, 2014). Indeed, some authors have argued that the absence of expected negative 

reinforcement during extinction can be regarded as an appetitive prediction error (Raczka et 

al., 2011). Also, future rodent studies will have to characterize the role of the hippocampal-

VTA loop in extinction. Nevertheless, the role of dopamine in fear learning and extinction 

has received considerable attention (for review see Abraham, Neve, & Lattal, 2014). D1 

receptor knock-out mice showed delayed extinction learning (El-Ghundi, O’Dowd, & 

George, 2001). Impaired extinction learning was also observed when dopamine loss was 

restricted to the mPFC (Fernandez Espejo, 2003; Morrow, Elsworth, Rasmusson, & Roth, 

1999), and a D1/D5 antagonist infusion in the IL resulted in impaired extinction retention 

(Hikind & Maroun, 2008). In contrast, selective activation of dopamine cells in the 

substantia nigra and subsequent D1 signaling in the striatum prevented fear renewal 

(Bouchet et al., 2018). Understanding the role of dopamine in associative learning is 

complicated given the existence of various dopamine receptor subtypes that in turn affect 

different signaling cascades. Apart from D1-like receptors (comprising D1/D5 receptors), 

the D2 receptor family (including D2/D3/D4 receptors) has also been implicated in 

extinction. Administration of D2 agents during extinction learning yielded conflicting 

results. For example, blocking D2 activity systemically improved extinction (Ponnusamy, 

Nissim, & Barad, 2005), whereas a D2 antagonist, administered systemically, to the nucleus 

accumbens (Holtzman-Assif, Laurent, & Westbrook, 2010), or to the IL prevented extinction 

(Mueller, Bravo-Rivera, & Quirk, 2010). Hence, while the exact role of dopamine in PE-

driven extinction learning remains to be elucidated, studies thus far suggest that the circuitry 

involved extends beyond the hippocampal-VTA loop.

In sum, the extinction circuitry in rodents consists of PL-amygdala pathways that control the 

expression of learned fear, IL-amygdala pathways that mediate inhibition of conditioned 

responding, and hippocampal projections that control the contextual modulation of 
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extinction. Circuitries involved in PE processing may include, but are not restricted to, the 

CA1 area of hippocampus and VTA dopaminergic projections.

3 The human extinction circuit

The typical fear conditioning and extinction paradigm in humans consists of pairing a 

picture (CS) with an aversive consequence (US). The US usually entails electrical 

stimulation to the wrist, individually adjusted to a level that is uncomfortable but not painful. 

Less often, an auditory US is used, such as a loud scream. There are obvious ethical 

constraints on ecologically validity of fear conditioning and extinction in humans. Yet, 

within the limits of what is ethically possible, a number of variations of the paradigm have 

been shown to increase ecological validity. For example, use of fear relevant (e.g., spider) 

instead of neutral CS pictures (e.g., square, circle) results in more robust fear conditioning 

that is more resistant to extinction (Dawson, Schell, & Banis, 1986). More importantly, the 

use of virtual reality provides a great leap forward in terms of ecological validity. In these 

paradigms participants navigate through different virtual environments (e.g., room, park, 

street) in which discrete cues (e.g., tone or spider) are followed by electrical stimulation 

(Alvarez, Johnson, & Grillon, 2007; Huff et al., 2011). An advantage of the study of humans 

is that in addition to psychophysiological measurements (fear potentiated startle; skin 

conductance response, pupil dilation responses), subjective indices of conditioned 

responding (US-expectancy, distress) can be collected. As will be discussed, this may be 

particularly valuable in the context of assessing the role of prediction error (Section 3.5.1).

Compared to animals, it is more challenging to study the neural mechanisms underlying 

extinction in humans. While imaging studies can reveal regional (de)activation during 

extinction, inter-regional connectivity is difficult to establish, especially in deep brain 

structures such as the amygdala. Nevertheless, some similarities have been observed 

between the rodent and human extinction circuitry. The basic model proposes that, 

homologous to rodents, the human extinction network involves the amygdala, prefrontal 

cortex, and hippocampus. Most knowledge on this circuitry in humans is derived from 

structural and functional connectivity studies. Structural connectivity is typically assessed 

using diffusion tensor imaging (DTI) or diffusion weighted imaging (DWI), which estimates 

white matter connectivity patterns in the brain. Aside from the static physical organization of 

the brain, dynamic functional connectivity between brain regions can be assessed by 

magnetoencephalography (MEG), electroencephalography (EEG), and functional magnetic 

resonance imaging (fMRI), with only the latter allowing for the imaging of deep brain 

structures such as the amygdala. Functional connectivity assesses synchronized activity 

(e.g., changes in blood flow as indexed by blood-oxygen-level dependent, BOLD, signal 

fluctuations) between spatially separated brain regions. This activity can be task-related, 

such as when participants undergo a conditioning procedure, or spontaneous, such as when 

participants are told to just rest. Synchronized resting-state activity is thought to reflect 

‘intrinsic’ coupling between brain regions, and shows high consistency across individuals 

(Damoiseaux et al., 2006). Notably, networks identified with resting state-fMRI closely map 

onto networks obtained using DWI and DTI (Collin, Sporns, Mandl, & van den Heuvel, 

2014; van Oort, van Cappellen van Walsum, & Norris, 2014), suggesting that inter-regional 

co-activation may reflect direct anatomical links. The advantage of studying functional 
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connectivity compared to structural connectivity is that it allows the assessment of changes 
in inter-regional coupling as a function of environmental demands.

To investigate what is known about the human extinction circuit, and compare this to animal 

work, we conducted a systematic literature search. Articles were identified through searches 

of PubMed for articles published from 1995 to 2018, using the terms “extinction” AND 

“fMRI” OR “imaging” OR “neuroimaging”. The 571 articles resulting from this search, and 

relevant references cited in those articles were selectively reviewed. Articles were selected if 

they were peer-reviewed; they were published in English; they presented new data obtained 

from human participants, or a meta-analysis of such data; and fear conditioning and 

extinction was the primary topic of investigation. Case studies, qualitative studies and pilot 

studies were excluded.

3.1 Human homologue of PL-amygdala connectivity

Amygdala-anterior cingulate cortex (ACC) connections have been proposed as the human 

homologue of rodent PL-amygdala coupling. DTI and DWI studies showed structural 

connectivity between the regions as a dorsal pathway connects the amygdala with the 

anterior cingulate cortex (ACC) (Bracht et al., 2009; Croxson et al., 2005; Kim et al., 2011) 

(Fig. 1). With regard to fear-related activity within these regions, the role of the amygdala in 

human fear conditioning and extinction is not unequivocal, in contrast to the overwhelming 

evidence from animal studies that place the amygdala at the centre of emotional learning. 

Whereas early studies did report amygdala activity during fear acquisition and/or extinction 

(Knight, Smith, Cheng, Stein, & Helmstetter, 2004; LaBar, Gatenby, Gore, LeDoux, & 

Phelps, 1998; Linnman, Zeidan, Pitman, & Milad, 2012; Milad et al., 2007; Phelps, 

Delgado, Nearing, & LeDoux, 2004), more recent studies have failed to replicate this. 

Recent meta-analyses of fMRI studies on fear conditioning (Fullana et al., 2016) and 

extinction (Fullana et al., 2018) failed to identify robust involvement of the amygdala in both 

fear acquisition and extinction (see also Section 4). In contrast, many fMRI studies have 

shown dACC activity in response to conditioned stimuli (Büchel, Morris, Dolan, & Friston, 

1998; Cheng, Knight, Smith, Stein, & Helmstetter, 2003; Knight et al., 2004; Milad et al., 

2007; Sehlmeyer et al., 2011). Meta-analyses by Fullana and colleagues and Sehlmeyer and 

colleagues, confirmed that dACC is robustly activated, both during fear conditioning 

(Fullana et al., 2016; Sehlmeyer et al., 2009) and extinction (Fullana et al., 2018). The 

dACC is hypothesised to receive signals from the anterior insula about the subject’s 

cognitive, affective and physical state to facilitate homeostatic autonomic and behavioural 

responding (Critchley, 2009). Indeed, the meta-analysis by Fullana et al. (2018) 

demonstrated insula involvement in extinction learning. Co-activation of the ACC and insula 

is strongly associated with activation of a negative affective state such as threat anticipation 

(Etkin, Egner, & Kalisch, 2011; Medford & Critchley, 2010). Furthermore, dACC 

hyperactivity has been associated with maladaptive fear responding. For example, PTSD 

Patients showed heightened dACC activity during fear conditioning (Bremner et al., 2005; 

Rougemont-Bücking et al., 2011), and persistently enhanced dACC activity during 

extinction and extinction recall (Marin et al., 2016; Milad et al., 2009; Rougemont-Bücking 

et al., 2011). Also, individuals with a genetic vulnerability to develop anxiety pathology 

demonstrated enhanced ACC activity during extinction (Hermann et al., 2012). These 
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findings were not replicated in patients with obsessive-compulsive disorder (OCD) (Milad et 

al., 2013), nor in individuals with high trait anxiety, where in fact the opposite (reduced 

involvement of the dACC during extinction) was found (Sehlmeyer et al., 2011). 

Furthermore, it has been suggested that sex differences might modulate ACC hyperactivity 

during extinction recall in PTSD (Shvil et al., 2014).

Even though there is no robust evidence for activation in the amygdala in conditioning or 

extinction, there are some indications that individual differences in connectivity between 

amygdala and ACC may berelated to fear conditioning and extinction. Functional 

connectivity studies showed that amygdala-dorsal ACC coupling was increased from pre- to 

post-conditioning (Feng, Feng, Chen, & Lei, 2014), and that amygdala-dACC coupling was 

altered in post-traumatic stress disorder (PTSD) (Brown et al., 2014; Sripada et al., 2012).

Together these findings have led to the proposition that dACC-amygdala projections might 

constitute the human homologue of rodent PL-amygdala coupling to enhance the expression 

of fear (Fig. 1). It is important to note that, although much overlap has been found between 

functional and structural connectivity (Collin et al., 2014; van Oort, van Cappellen van 

Walsum, & Norris, 2014), a correlation between regions does not always indicate direct 

anatomical connections. For example, functional connectivity has been observed between 

the BA and dACC, and CEA and dACC (Roy et al., 2009), whereas rodent and primate 

neuroanatomy shows that the cingulate area is structurally connected to the BA, but not CEA 

(Freese & Amaral, 2009; Orsini & Maren, 2012). It is unclear whether connectivity between 

these regions could be different in the human brain compared to other primates or rodents, or 

whether instead, co-activation of CE and dACC may be mediated by indirect pathways. An 

obvious candidate is the BA, which connects to both areas.

3.2 Human homologue of IL-amygdala connectivity

Converging evidence points towards the ventromedial PFC (vmPFC) as the human 

homologue of rodent IL cortex (Fig. 1). Studies on both functional (Feng, Zheng, & Feng, 

2016; Hare et al., 2008; Pezawas et al., 2005) and structural (for review see Kim et al., 2011; 

Kim & Whalen, 2009) coupling showed connectivity between the amygdala and vmPFC. 

Generally, adaptive emotion regulation is characterized by increased prefrontal activity and 

concurrently decreased amygdala activity (Delgado, Nearing, LeDoux, & Phelps, 2008; Erk 

et al., 2010; Hariri, Bookheimer, & Mazziotta, 2000; Hariri, Mattay, Tessitore, Fera, & 

Weinberger, 2003; Lieberman et al., 2007; Ochsner, Bunge, Gross, & Gabrieli, 2002; Phan 

et al., 2005; Urry et al., 2006). A DTI study similarly observed that strength of the 

connection between the amygdala and vmPFC was negatively correlated with trait anxiety 

(Kim & Whalen, 2009). Together, these studies suggest that strong amygdala-vmPFC 

connectivity is related to adaptive behavior, such as low anxiety levels in the absence of 

threat.

More specific to extinction, the vmPFC is generally considered the main structure involved 

in inhibition of conditioned responding. Several studies observed vmPFC activity during 

extinction learning (Gottfried & Dolan, 2004; Linnman et al., 2012; Milad et al., 2007; 

Phelps et al., 2004) and extinction recall (Hermann, Stark, Milad, & Merz, 2016; Kalisch et 

al., 2006; Linnman et al., 2012; Lonsdorf, Haaker, & Kalisch, 2014; Milad et al., 2007). The 
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recent meta-analysis on extinction by Fullana et al. (2018) did identify a role for the vmPFC 

during extinction recall but not during extinction learning. It was argued that the specific 

contrasts used for analysing extinction learning and extinction recall could account for these 

unexpected results. That is, for extinction learning the typical contrast (CS+ > CS−) could 

result in a minimal difference given that during extinction the CS+ becomes a safety signal 

(similar to the CS−), and the vmPFC responds strongly to safety signals (Harrison et al., 

2017; Schiller & Delgado, 2010) The vmPFC may thus respond equally strong to the CS+ 

and CS− stimuli, and not ‘show up’ in the contrast. In contrast, during extinction recall 
usually an extinguished stimulus (CS+E) is contrasted with a stimulus that was not presented 

during extinction and thus not extinguished (CS+U). In such a contrast (i.e., CS+E > CS+U), 

the extinguished stimulus will have gained safety properties and engage the vmPFC, 

whereas the stimulus that was not presented will not, leading to differential vmPFC activity.

Yet, while the vmPFC (see Section 3.1) may not be differentially engaged during extinction 

learning, individual differences in vmPFC and amygdala connectivity do seem to be 

associated with extinction learning. For example, resting state functional connectivity 

between vmPFC and amygdala was associated with extinction success (Feng et al., 2016). In 

individuals with a polymorphism of the BDNF gene (related to extinction plasticity, see 

Section 2.1), impaired extinction learning (as measured by SCR) was associated with 

reduced vmPFC activity during extinction (Soliman et al., 2010). In contrast, the ability to 

flexibly regulate emotions (i.e., cognitive reappraisal) was associated with enhanced vmPFC 

activity during extinction recall (Hermann, Keck, & Stark, 2014).

Patients suffering from anxiety disorders, PTSD, or OCD typically demonstrate impaired 

extinction recall (Blechert, Michael, Vriends, Margraf, & Wilhelm, 2007; Duits et al., 2015, 

2016; Jovanovic & Norrholm, 2011; McLaughlin et al., 2015). This could be explained by 

hypoactivation of the vmPFC during extinction recall (Garfinkel et al., 2014; Marin et al., 

2016, 2017; Milad et al., 2009, 2013; Rougemont-Bücking et al., 2011), with more 

pronounced hypoactivation for those individuals with more than one anxiety disorder (Marin 

et al., 2017), and more pronounced hypoactivation for adults compared to adolescents with 

anxiety disorders (Britton et al., 2013). Furthermore, anxiety-related alterations of vmPFC-

amygdala coupling during extinction recall also seem to change with age (Gold et al., 2016). 

Recently, vmPFC activity during extinction in patients was identified as a marker of 

successful exposure in patients; engagement of the vmPFC during extinction predicted 

exposure treatment success in patients with fear of public speaking (Ball, Knapp, Paulus, & 

Stein, 2017). In PTSD impaired extinction may be the result of vmPFC hypoactivity 

together with dACC hyperactivity. The persistently enhanced dACC activity during 

extinction recall (see Section 3.1) coincided with reduced vmPFC activity (Milad et al., 

2009). Thus, in individuals with PTSD, regions responsible for safety learning and emotion 

regulation failed to participate, whereas regions responsible for fear expression remained 

engaged during extinction learning.

3.3 Hippocampus

Similar to rodents, the hippocampus has been ascribed a central role in extinction in humans 

(Åhs, Kragel, Zielinski, Brady, & LaBar, 2015; Hermann et al., 2016; Hermann, Stark, 
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Blecker, Milad, & Merz, 2017; Kalisch et al., 2006; Lissek, Glaubitz, Uengoer, & 

Tegenthoff, 2013; Milad et al., 2007, 2009; Visser, Kunze, Westhoff, Scholte, & Kindt, 

2015; Visser, Scholte, Beemsterboer, & Kindt, 2013). In PTSD patients, impaired extinction 

recall is associated with hippocampal hypoactivation (Garfinkel et al., 2014; Marin et al., 

2016; Milad et al., 2009; Rougemont-Bücking et al., 2011). Recent studies suggested that 

co-activation and connectivity patterns of the hippocampus to other regions involved in 

extinction learning (amygdala, ACC, vmPFC) may be similar to that in rodents (Hermann et 

al., 2017, 2016); the left hippocampus and left insula showed stronger responses to a CS+ 

compared to a CS− one day after the CS+ was extinguished (i.e., extinction recall), while the 

right amygdala and right hippocampus showed reduced responses. Additionally, individuals 

who showed stronger extinction recall (as indexed by SCR difference scores between CS+ 

and CS) showed more activation in the vmPFC and left hippocampus. Functional 

connectivity between these regions was not reported for extinction recall, but seemed 

enhanced in individuals who, after a subsequent shift to an unfamiliar context, showed 

stronger renewal of conditioned fear (SCRs). A concurrent DTI study failed to find clear 

evidence of structural alterations underlying these individual differences (Hermann et al., 

2017). Thus, while it can be assumed that, analogous to the rodent network, the 

hippocampus projects to both prefrontal areas and the amygdala (Fig. 1), further research 

should reveal the subregions involved in these projections.

It should be noted that while in animals the hippocampus is strongly linked to contextual 

modulation, the neural mechanisms of contextual processing are difficult to examine in 

humans. The options for establishing different contexts inside an MRI scanner are limited 

(Maren et al., 2013). Context manipulations in neuroimaging studies are therefore restricted 

to changing visual or auditory backgrounds of the stimulus material, and participants cannot 

freely move in these contexts. The development of virtual-reality technologies, where 

contexts can be more immersive, and the participant may experience to some extent 

experience free movement may be promising in this regard. Also, while in animals a clear 

dual role (i.e., modulating both activation and inhibition of fear expression) has been 

identified for the hippocampus, this is less clear in humans. The dual role might obscure 

hippocampal involvement in imaging studies; a meta-analysis on extinction (Fullana et al., 

2018) found robust involvement of the hippocampus during extinction recall, but not 

extinction learning, in the same way that vmPFC activation is only observed during 

extinction recall: newly acquired safety information for the CS+ may obscure differences 

between CS+ and CS−. A first step could be to replicate the animal findings that 

hippocampal inactivation during extinction and extinction recall differentially affect fear 

expression. Direct manipulation of the hippocampus is of course impossible in humans. 

However, an animal study demonstrated that higher doses of systemic administration of a 

scopolamine, a cholinergic antagonist (known to affect the hippocampus) before extinction 

severely impaired extinction learning and recall (Zelikowsky et al., 2013). It would be 

exciting to see whether similar effects could be observed in humans, and to extend the 

findings by investigating whether scopolamine before extinction recall enhances extinction 

generalization.

Finally, extinction after trace conditioning (i.e., where the UCS follows CS offset after a 

delay), is a relatively understudied topic, and our review identified a gap in the literature 
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when it comes to combining this paradigm with neuroimaging. Given that conditioning 

paradigms have revealed a far more robust involvement of the hippocampus during the 

acquisition of fear in studies employing trace conditioning compared to delay conditioning 

(Sehlmeyer et al., 2009), combining extinction of trace-conditioned fear with neuroimaging 

might be a promising next step for gaining insight into the role of hippocampus.

3.4 Pharmacological manipulation of extinction

In animals, highly specific manipulations via optogenetic activation/inhibition or local 

infusion of pharmacological agent can be performed. These manipulations contribute to the 

characterization of the fear extinction circuitry. For example, pharmacological inactivation 

of the hippocampus relieves extinction of its contextual dependency (Corcoran et al., 2005; 

Corcoran & Maren, 2001) and, thus, points towards a role for the hippocampus in contextual 

processing during extinction and its recall (Section 2.2). While pharmacological agents 

cannot be administered locally in humans, these studies may, nevertheless, provide 

invaluable information about the neural circuitry underlying extinction, and could be a 

crucial translational step in the science-driven optimization of treatments for anxiety 

disorders. Various lines of research have addressed the effect of pharmacological agents on 

extinction.

First, research suggests that the stress hormone cortisol may impair the recall of declarative 

emotional memories, while enhancing their consolidation (Schwabe, Joëls, Roozendaal, 

Wolf, & Oitzl, 2012). Translating these findings to the conditioning paradigm, a multi-day 

study tested whether administration of cortisol before the start of extinction would enhance 

extinction memory (tested a week later) and would facilitate the transfer of the extinction 

memory from the extinction context to a new context (Merz, Hamacher-Dang, Stark, Wolf, 

& Hermann, 2018). Results showed that cortisol administration before extinction training 

diminished conditioned fear responses during extinction learning. This was evident in 

reduced differential skin conductance levels, and reduced differential neural activation at the 

beginning of extinction in the amygdala, hippocampus, and anterior parahippocampal gyrus. 

In contrast, the hippocampus showed enhanced CS+/CS− differentiation activation, and 

enhanced vmPFC coupling, at the beginning of extinction recall. These findings are in line 

with the idea that cortisol strengthens the consolidation of extinction memory leading to 

stronger extinction recall. This is possibly mediated by synchronised action of the 

hippocampus and vmPFC, inhibiting conditioned fear responses via projections to inhibitory 

intercalated cells in the amygdala. However, effects of cortisol did not transfer to a different 

context. Cortisol-induced enhancement of extinction learning could only be observed when a 

consolidation period between acquisition and extinction is taken into account. That is, 

cortisol administration immediately after acquisition and before extinction learning impaired 

extinction learning (Merz, Hermann, Stark, & Wolf, 2014). Also, it is important to note that 

many of these studies have assessed cortisol effects in either all-male (Hermann, et al., 2014; 

Merz et al., 2018; Merz, Hamacher-Dang, & Wolf, 2014) or all-female (Tabbert et al., 2010) 

populations, even though (or because) sex differences play an important role in the 

modulation of fear and extinction learning (Merz et al., 2012), and cortisol may exert 

gender-specific effects on extinction learning. For example, cortisol administration prior to 

tests of return of fear increased fear renewal following reinstatement (but not renewal only) 
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in men, but not in women. In men, this coincided with enhanced activation in the right 

amygdala in response (CS+ > CS−), while in women activation in this region decreased after 

cortisol treatment (Kinner, Wolf, & Merz, 2018).

Second, noradrenaline is involved in the consolidation of extinction learning (Mueller & 

Cahill, 2010) and animal studies revealed that noradrenergic receptors are abundant in areas 

related to fear and extinction learning, including the amygdala, hippocampus and the 

vmPFC (Kim & Jung, 2006; LeDoux, 2000; Milad & Quirk, 2012). Hence, enhancing 

noradrenaline was considered a potential candidate for boosting extinction learning. 

However, administration of the selective NA reuptake inhibitor reboxetine (RBX), in 

animals known to enhance noradrenergic levels in frontal and hippocampal areas (Hajós, 

Fleishaker, Filipiak-Reisner, Brown, & Wong, 2004), following extinction affected neither 

behavioural (SCR), nor neural correlates of extinction learning and recall (Lonsdorf, Haaker, 

Fadai, & Kalisch, 2014). Another study found that noradrenergic blockade even boosted 

extinction learning (Kroes et al., 2016). Administration of the beta-blocker propranolol 

prevented spontaneous recovery and reinstatement of SCR (but not subjective fear). Also, 

hippocampal activity during extinction recall was increased in those receiving propranolol 

combined with extinction. The finding that increased hippocampal activity during extinction 

recall is associated with reduced return of fear and thus enhanced extinction plasticity is in 

line with recent human data (Fullana et al., 2018; Hermann et al., 2017, 2016).

Third, another class of receptors abundant in the supposed extinction circuitry is the 

cannabinoid receptor (Davies, Pertwee, & Riedel, 2002; Mackie, 2005; Wilson & Nicoll, 

2002). Infusion of a cannabinoid receptor antagonist in the hippocampus or IL blocks 

extinction consolidation, while activation of these receptors results in enhanced extinction 

learning and recall (Bitencourt, Pamplona, & Takahashi, 2008; de, Pasqualini, Diehl, 

Molina, & Quillfeldt, 2008; Lin, Mao, Su, & Gean, 2009). A first human imaging study 

combining a cannabinoid agonist (tetrahydrocannabinol (THC)) with extinction did not 

observe enhanced extinction learning or recall (SCR). There was increased activity in the 

vmPFC and hippocampus during extinction recall. These findings are hard to interpret given 

that the placebo group, unexpectedly, showed no involvement of these areas during recall 

and the lack of behavioural evidence of extinction enhancement. Note that the effects of 

dopamine administration on extinction in humans are described in Section 3.5.2. Together, 

more imaging studies on pharmacological enhancement of extinction are needed to explain 

these mixed results.

3.5 Prediction error and extinction in humans

Prediction error is the driving force of extinction learning and therefore a possible route to 

enhance extinction learning is to maximize prediction error (Craske, 2015; Craske, Treanor, 

Conway, Zbozinek, & Vervliet, 2014; Culver, Vervliet, & Craske, 2015). Promisingly, this 

approach is taking ground in clinical practice. Traditionally, clinicians were trained to 

consider initial fear elevation followed by fear reduction within the same session as a sign of 

therapy efficacy. However, as discussed above, within-session extinction is a poor predictor 

of longer-term reduction in fear responses, that is, across sessions. Instead of focusing on 

immediate fear elevation, present exposure therapies are rather designed such that the 
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experience maximizes violation of expectancies (Craske et al., 2014; Craske, 2015). The 

neural circuitry underlying extinction-driven PE and in humans is however scarcely 

investigated.

3.5.1 Hippocampus and PE in humans—fMRI studies revealed activation in 

response to novel stimuli in a network that included the hippocampus (for review see Kafkas 

& Montaldi, 2018). Furthermore, in different memory paradigms (i.e., implicit and explicit 

associative memory recognition tasks) PE-related hippocampal activity has been observed 

(Duncan, Curtis, & Davachi, 2009; Kumaran & Maguire, 2006; Long, Lee, & Kuhl, 2016). 

High resolution (hr)-fMRI studies identified, similar to the animal findings, a key role for PE 

signaling in the CA1 area of the hippocampus (Chen, Cook, & Wagner, 2015; Chen, Olsen, 

Preston, Glover, & Wagner, 2011; Duncan, Ketz, Inati, & Davachi, 2012). Imaging studies 

on PE during extinction are lacking (but see one study on PE-related activity during 

extinction recall; Spoormaker et al., 2012). Yet, hippocampal activity in response to 

unreinforced CS presentations has been proposed to be the neural correlate of US omission 

or a negative PE (Fullana et al., 2016; but see Spoormaker et al., 2011).

While we await further research to reveal the neurobiological correlates of PE, it should be 

noted that in human conditioning a behavioural index of PE is available, as demonstrated in 

studies on memory reconsolidation. Reconsolidation is the phenomenon that memories can 

regain plasticity after consolidation. Animal studies have shown that, upon its retrieval, a 

memory may again become dependent on protein synthesis, and protein synthesis interfering 

agents can block the memory restabilization, resulting in fear amnesia (Nader, Schafe, & 

LeDoux, 2000; Sara, 2000). While protein synthesis inhibitors are not safe to use in humans, 

pharmacological procedures involving administration of the β-noradrenergic antagonist 

propranolol shortly after re-exposure to the feared stimulus have also been shown to disrupt 

reconsolidation processes, resulting in a persistent reduction of the fear response (Kindt, 

Soeter, & Vervliet, 2009; Soeter & Kindt, 2010, 2011). Typically, reconsolidation is induced 

by short re-exposure to the feared stimulus, while prolonged re-exposure engages extinction 

(Bustos, Maldonado, & Molina, 2008; Lee, Milton, & Everitt, 2006). PE is crucial in both 

reconsolidation (memory updating) and extinction (new learning), yet the frequency and 

duration of exposure to the feared stimulus determines which of these processes is initiated. 

From a clinical perspective, it is crucial to establish markers to indicate when a PE occurs. 

This is not only relevant in the context of maximizing PE as a route to enhance the 

effectiveness of exposure therapy (Craske, 2015; Craske et al., 2014; Culver et al., 2015), but 

also to demarcate the transition from reconsolidation to extinction processes. This is 

particularly important when the aim is to pharmacologically disrupt or boost one of these 

processes: one may inadvertently enhance the original fear memory via reconsolidation 

update mechanisms (e.g., using NMDA agonists such as D-cycloserine), or hamper 

extinction learning (e.g., using noradrenergic antagonist such as propranolol). The great 

advantage of studying humans in the context of fear learning is their ability to verbalize the 

relationship between the CS and US. In studies on memory reconsolidation, a single PE 

(indexed by changes in US-expectancy ratings) served as an independent index of whether 

memory reconsolidation was or was not induced (Sevenster, Beckers, & Kindt, 2013, 2014). 

There was some evidence that two PE’s (a reduction in US-expectancy during the first trials 
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of extinction learning) corresponded to the transitional phase between reconsolidation and 

extinction (Sevenster, Beckers, & Kindt, 2014). Hence, the US-expectancy ratings served as 

an index for PE, to such an extent that it could differentiate between different memory 

processes engaged by re-exposure to a feared stimulus. Thus far, studies have not identified 

the point at which extinction is engaged during re-exposure to the CS. It should be noted that 

the number or duration of trials that corresponds to a certain underlying memory process 

depends on the learning history. That is, the number of re-exposure trials that engage 

extinction will differ following a short fear acquisition session relative to a long acquisition 

session (Sevenster et al., 2013, 2014). Future imaging studies on the neural correlates of 

extinction may use a behavioural index of PE to help identify and focus on these re-exposure 

trials that trigger PE.

3.5.2 Prediction error and the ventral tegmental area (VTA) in humans—
Human imaging data concurs with the idea that the hippocampal-VTA loop plays an 

important role in reward-based memory encoding. Activation of the loop was associated 

with successful formation of reward memory (Adcock, Thangavel, Whitfield-Gabrieli, 

Knutson, & Gabrieli, 2006; Callan & Schweighofer, 2008; Gruber, Gelman, & Ranganath, 

2014; Kahn & Shohamy, 2013; Wittmann et al., 2005; Wolosin, Zeithamova, & Preston, 

2012). However, to our knowledge, there are no studies on the role of hippocampal-VTA 

connection in extinction in humans. Given that dopamine projections from the VTA to the 

hippocampus are implicated in memory encoding (see Section 2.3.2), we will focus on the 

effects of pharmacological manipulation of dopamine on extinction.

There is preliminary evidence that manipulating dopaminergic activity can have beneficial 

consequences for extinction learning in humans. A translational study first showed that post-

extinction administration of L-dopa – a chemical precursor that enhances brain dopamine 

levels – improved extinction in mice, evidenced by reduced spontaneous recovery, 

reinstatement and renewal of fear (Haaker et al., 2013). Promisingly, the animal findings 

were translated to humans in follow-up studies. A single dose of L-dopa following 

extinction prevented renewal of conditioned skin conductance response (SCR) (Haaker et al., 

2013; but see Haaker, Lonsdorf, & Kalisch, 2015). The participants receiving placebo did 

demonstrate renewal, associated with vmPFC deactivation, whereas this deactivation was not 

observed in the L-dopa group. Instead, enhanced vmPFC activity during renewal was linked 

to decreased amygdala activity (Haaker et al., 2013, 2015). The participants showed 

generalization of the extinction training to other contexts. The finding that dopamine-

enhancing agents prevented renewal of fear responses and facilitated extinction learning is 

promising for the development of (dopamine) pharmacotherapy in the treatment of anxiety 

disorders. The findings indicate that dopamine could relieve extinction of its context-

dependency. Indeed, a first clinical trial showed that the dopamine enhancing agent 

Methylenedioxymethamphetamine (MDMA) resulted in long lasting enhancement of 

therapy efficacy in treatment-resistant PTSD patients (Mithoefer, Wagner, Mithoefer, 

Jerome, & Doblin, 2011; Mithoefer et al., 2013). Notably, it remains unclear whether effects 

of L-dopa and MDMA are solely attributable to their effects on dopamine since these agents 

also prominently affect serotonin (Farré et al., 2007; Liechti & Vollenweider, 2001).
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While it is encouraging that dopamine administration may facilitate extinction learning, it is 

important to note that several studies applied dopamine after extinction learning. Hence, 

these effects cannot be attributed to online dopamine-facilitated negative PE during 

extinction learning. Recent animal studies showed that natural enhancement of dopamine 

levels by novelty manipulation that preceded extinction facilitated both extinction learning 

and retention (de Carvalho Myskiw, Furini, Benetti, & Izquierdo, 2014; Menezes et al., 

2015). Ideally, a non-invasive method for enhancing extinction learning is preferred over 

drug administration. Novelty manipulations aimed at increasing dopamine levels might be a 

promising new avenue for therapy improvement.

4 Challenges and future directions in mapping fear and extinction 

networks in humans

Most of our knowledge about extinction learning and its underlying mechanisms comes 

from work in non-human animals. In this review we have aimed to compare this work to 

what cognitive neuroscience has taught us about this process in humans. In this section we 

discuss the problems that arise when drawing parallels between, what turns out to be, 

fundamentally different levels of observation. To illustrate this, we start with what is 

probably the most undisputed centre of associative fear memory in animals: the amygdala.

Although the amygdala is generally regarded as the brain’s integrative centre for emotions, 

and critical for emotional learning (LeDoux, 2003), its role in human associative fear 

learning and extinction is, as is evident from Section 3.1, not clear. Recent, comprehensive 

meta-analyses on human fear conditioning (Fullana et al., 2018, 2016) failed to find robust 

amygdala activation during acquisition and extinction of fear, while an earlier influential 

meta-analysis (Sehlmeyer et al., 2009) reported amygdala activation in about half of the 

included studies. It has often been argued that amygdala responsiveness habituates rapidly 

(Büchel et al., 1998; LaBar et al., 1998; Lindner et al., 2015), and activation may therefore 

be obscured when analysing over multiple trials (i.e., the entire fear conditioning epoch). 

However, the same meta-analysis (Fullana et al., 2016) showed that, even when acquisition 

was divided into an early and late phase, no evidence was found for transient amygdala 

activity.

It is also argued that absence of amygdala activity in some reports might be due to 

differences in study design (Sehlmeyer et al., 2009). For example, some studies have used 

fear-relevant stimuli, such as spiders, as conditioned stimuli (van Well, Visser, Scholte, & 

Kindt, 2012; Visser, de Haan, et al., 2016), whereas others used simple geometric shapes 

(Jensen et al., 2003), or neutral faces and houses (Visser, de Haan, et al., 2016; Visser et al., 

2015, 2013; Visser, Scholte, & Kindt, 2011). However, so far, meta-analyses have not been 

able to find a systematic pattern between studies that do find amygdala activation, and the 

studies that do not: Activation of the amygdala was independent of modality (visual, 

acoustic, olfactory) of either CS or UCS, and independent of reinforcement rate (partial vs. 

full reinforcement) (Sehlmeyer et al., 2009). Also, no clear picture emerges when comparing 

studies that used fear-relevant stimuli as CS (e.g., neutral faces, or pictures of spiders) 
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compared to studies that used neutral stimuli (geometric shapes used in the different studies 

(Fullana et al., 2016; Sehlmeyer et al., 2009).

An alternative explanation for the many null-findings is that fMRI may not be suited for 

imaging the amygdala, with its different subnuclei that putatively have dissociable or even 

opposite functions. Rodent studies identified an intricate network consisting of reciprocal 

cortical-amygdaloid and inter-amygdala pathways. On top of that, some nuclei showed 

involvement in both excitatory and inhibitory processes of fear and safety learning, 

respectively (Orsini & Maren, 2012; Quirk & Mueller, 2008). The relatively low spatial 

resolution of fMRI (as opposed to, for example, single-cell recording) does not permit the 

mapping of such a small-scale organization. Apart from its low spatial resolution, fMRI 

suffers from signal dropouts and image distortions, specifically in structures located deep 

within the temporal lobe (Fullana et al., 2016; Mechias, Etkin, & Kalisch, 2010; Sehlmeyer 

et al., 2009). At the same time, false positive findings may arise as a result of the amygdala’s 

proximity to large veins, which is especially problematic for emotion research, where (non-

specific) changes in blood flow co-vary with stimulus properties (Boubela et al., 2015). 

Thus, we may simply lack the tools to image reliably the amygdala in humans. Decades of 

animal work render it highly plausible that the amygdala plays a key role in associative fear 

learning, but Fullana et al. (2016, 2018) rightfully point out that we should acknowledge 

that, thus far, fear conditioning and extinction studies have failed to show consistent 

responding in the amygdala circuitry.

New tools to investigate neural processing during fear and extinction learning are required to 

shed light on the issue. Traditionally, fMRI analyses have focused on mapping activity in 

individual brain voxels or regions during learning tasks. In contrast, multi-voxel pattern 

analysis (MVPA) aims to identify responses across groups of voxels, to characterize the 

unique neural representation of a stimulus within a certain brain region (Haxby et al., 2001). 

Thus, whereas conventional methods compared a voxel’s or region’s signal strength between 

conditions, MVPA recognizes the unique contribution of multiple voxels within a 

population. Accordingly, a voxel that would not pass the test when considered separately can 

be identified with MVPA to make a significant contribution within a pattern of responses. By 

comparing or classifying patterns related to different stimuli, one can assess the degree to 

which different stimuli or cognitive states are alike (Haynes & Rees, 2005; Kamitani & 

Tong, 2005; Kriegeskorte, Mur, & Bandettini, 2008; Norman, Polyn, Detre, & Haxby, 2006). 

Techniques that evaluate unique patterns of responses, rather than average signal strength, 

offer increased sensitivity by capitalizing on regional variations (possibly sub-nuclei), rather 

than masking them (for review see Davis & Poldrack, 2013; Norman et al., 2006). In fear 

conditioning, this enhanced sensitivity is exemplified by a series of studies that did not 

reveal amygdala responding during fear acquisition or extinction when performing 

traditional activation-based analyses (Visser, de Haan, et al., 2016; Visser et al., 2015, 2013. 

2011). However, fear learning was evident from trial-to-trial changes in neural patterns of 

responses: stimuli that were paired with a shock, but not stimuli that were never paired with 

a shock, showed an increase in similarity of activity patterns in the amygdala over the course 

of conditioning (Visser et al., 2015, 2013). Similar changes in neural activation patterns as a 

result of fear conditioning have been reported in other studies (Bach, Weiskopf, & Dolan, 

2011; Braem et al., 2017; Dunsmoor, Kragel, Martin, & LaBar, 2014; Li, Howard, Parrish, 
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& Gottfried, 2008). Responses identified with pattern analysis were by no means restricted 

to the amygdala, or even largest in the amygdala, but did suggest that the amygdala is indeed 

involved in associative learning, along with numerous other regions.

This highlights another challenge: Human neuroimaging research frequently reveals neural 

responses in areas other than those typically studies in animals (e.g., visual association areas, 

Fullana et al., 2018). The use of pattern analysis techniques additionally reveals effects 

outside the traditional human fear circuit (e.g., in the superior frontal gyrus (e.g., in the 

superior frontal gyrus; Visser, de Haan, et al., 2016; Visser et al., 2015, 2013, 2011; the 

piriform cortex; Li et al., 2008). Similarly, evidence for extinction of fear, as indexed by a 

decrease in differential pattern similarity, was not only observed in the amygdala, 

hippocampus and vmPFC but in numerous other areas (e.g., the superior frontal gyrus; 

occipitotemporal regions) outside the traditional extinction circuitry (Visser, de Haan, et al., 

2016; Visser et al., 2015, 2013, 2011). Such findings pose additional challenges to bridging 

different levels of research. Note that finding effects in ‘non-traditional’ areas in itself does 

not necessarily indicate a discrepancy between human and rodent circuits (or a discrepancy 

between humans in ‘pattern analysis’ studies and in humans in previous neuroimaging 

studies for that matter). In most animal studies, where a priori hypotheses guide the selection 

of cells from which to record, effects that occur in other, less typical areas will most likely 

go unnoticed. This does not implicate that there are no neurons in other regions involved in 

the processes of interest. As another example, recent studies showed that the cerebellum 

contributes to fear extinction learning (Chang et al., 2015; Utz et al., 2015), an observation 

that was confirmed by a recent meta-analysis of extinction (Fullana et al., 2018). The 

cerebellum is however often ignored, or in many human neuroimaging research not even 

scanned. Also, while individual studies neglected involvement of the dorsolateral prefrontal 

cortex (dlPFC), it has been suggested that the dlPFC plays a prominent role in extinction 

learning and recall (Fullana et al., 2018). The dlPFC is implicated in cognitive control and 

emotion regulation (Hartley & Phelps, 2010; Miller & Cohen, 2001). It is likely that 

extinction is at least partly affected by higher order cognitive strategies to regulate emotion 

(Schiller & Delgado, 2010).

What these findings demonstrate is that whether one can detect an effect in a particular area 

depends on where data are collected and what method is employed, with for example neural 

pattern analysis being a more sensitive technique for detecting learning-dependent changes 

than analysis of average activation (Bach et al., 2011; Visser, de Haan, et al., 2016; Visser et 

al., 2015, 2013, 2011). Stepping away from traditional activation-based analyses may also 

provide a solution to some of the problems associated with imaging subcortical structures in 

humans. Perhaps one day new analysis methods such as MVPA may help identify 

subregions in the fear and extinction circuitry and advance our understanding of the complex 

interplay between structures within the neural circuitry underlying associative learning, 

especially when combined with high-resolution functional MRI (hr-fMRI), and/or high 

field-strength imaging, allowing for an even finer-grained mapping of regional variations 

(Balderston, Schultz, Hopkins, & Helmstetter, 2015). Yet, given the wealth of rodent data 

showing within-region intermixing of neuron types that respond in different and even 

opposite ways to conditioned and extinguished cues, it seems highly unlikely that even ultra 

high-resolution BOLD-MRI will ever be able to inform about processes at the scale of 
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neural populations. Moreover, such imaging will always be restricted by the spatial and 

temporal resolution of the BOLD signal, which is much lower than that of neuronal 

signalling.

The question is whether comparisons across species at such microscopic levels are really 

necessary, or whether we can learn from similarities in organisational structures at a larger 

scale (e.g., Kriegeskorte et al., 2008). Aside from examining similarities in spatial 

organisation, some elements of extinction learning, such as trial-to-trial changes as a 

function of different manipulations can be validly investigated using fMRI, when combined 

with MVPA (the high sensitivity of MVPA compared to analysis of average activation 

allows for single-trial analysis; e.g., Visser, de Haan, et al., 2016). In addition, MVPA is well 

suited to assess similarities in the neural representations of stimuli and therefore ideal to 

study the generalization of fear (Dunsmoor et al., 2014; Visser, Haver, Zwitser, Scholte, & 

Kindt, 2016; Visser et al., 2015) and potentially generalisation of extinction. While this does 

not in itself reveal insights into the degree to which human and animal circuits are 

comparable, such techniques do provide another read-out for learning and memory processes 

that can be used to bridge findings from animals to humans (Visser et al., 2018).

5 Conclusion

In this review, we investigated the degree to which state of the art research has provided 

evidence for differences and similarities between the neural circuitry underlying extinction 

learning in non-human animals and humans. At a macroscale, networks in rodents and 

humans seem to overlap to some extent (e.g. PL and ACC; IL and vmPFC in rodents and 

humans respectively), but current imaging techniques preclude comparisons at a smaller 

scale, especially in areas that are functionally heterogeneous, such as the amygdala. 

Moreover, human neuroimaging shows the involvement of numerous areas (insula, visual 

association areas, cerebellum) in human fear extinction, areas that are not typically studied 

in animals. Findings show that effects are partly dependent on the methods employed, not 

only across species, but also across human neuroimaging studies.

There is currently little knowledge of extinction-related PE in humans. It is surprising that 

the neural correlates of PE in animals also constitute a relatively understudied area. The 

hippocampal-VTA loop has been proposed to control memory encoding (Lisman & Grace, 

2005) and may therefore play an important part in mediating PE during extinction learning. 

Thus far, this remains mainly a theoretical construct.

Animal studies have significantly advanced the identification of the physical substrate of a 

memory, the memory engram (Josselyn et al., 2015; Tonegawa et al., 2015), with highly 

advanced techniques, such as optogenetics, allowing for the mapping of microcircuits 

involved in extinction learning and recall, and the potential to better characterise the role of 

PE in these processes. Human research is, however, lagging behind, given that the study of 

memory representations relies on relatively coarse neuroimaging techniques such as fMRI. 

New techniques such as multi-voxel pattern analysis and high-resolution imaging have 

opened up new possibilities to study processes involved in extinction at a smaller 

scale.Furthermore, the higher sensitivity of multi-voxel analysis techniques compared to 
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traditional approaches allows for single-trial analysis of neural activation patterns, and thus a 

more fine-grained study of the temporal dynamics of extinction learning, as well as 

generalisation of fear (or safety) to similar stimuli. However, it seems unlikely that even 

ultra-high-resolution BOLD-MRI will ever be able to inform about processes at the scale of 

neural populations, not in the least because such imaging will always be restricted by the 

spatial and temporal resolution of the BOLD signal, which is much lower than that of 

neuronal signalling. Translational progress will therefore continue to depend on a variety of 

techniques and clever behavioural and pharmacological manipulations, which – when 

combined – may more indirectly allow inferences regarding the underlying neurobiology.
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Fig. 1. 
Neural networks of extinction. Neural networks for extinction have been investigated heavily 

in rodents and a network including at least the amygdala, hippocampus, and prefrontal areas 

has been identified. Substantial progress has been made in uncovering the subregions 

involved in extinction in rodents; the prelimibic area (PL) innervates the basolateral 

amygdala (BLA), which in turn projects to the central amygdala (CEA). The CEA controls 

conditioned responding and receives input from the infralimbic area (IL), mediated through 

the intercalated cells (ITC) of the amygdala. The hippocampus projects directly, and 

indirectly via the PL and IL, to the amygdala. In humans, it has been hypothesized that the 

same areas are involved in extinction learning. The anterior cingulate cortex (ACC) and the 

ventromedial prefrontal cortex (vmPFC) are assumed to constitute the human homologue of 

the PL and IL, respectively. Although the amygdala is generally assumed to be involved in 

fear learning and extinction in humans, neuroimaging evidence for this involvement is 
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scarce. White areas constitute both the animal and human extinction network; black areas 

are specifically identified in animals; grey areas are related to the human extinction network.
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