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Abstract
In living organisms, proteins are considered as the executants of biological functions. Owing to its pivotal role played in

protein folding patterns, comprehension of protein structure is a challenging issue. Moreover, owing to numerous protein

sequence exploration in protein data banks and complication of protein structures, experimental methods are found to be

inadequate for protein structural class prediction. Hence, it is very much advantageous to design a reliable computational

method to predict protein structural classes from protein sequences. In the recent few years there has been an elevated

interest in using deep learning to assist protein structure prediction as protein structure prediction models can be utilized to

screen a large number of novel sequences. In this regard, we propose a model employing Energy Profile for atom pairs in

conjunction with the Legion-Class Bayes function called Energy Profile Legion-Class Bayes Protein Structure Identifi-

cation model. Followed by this, we use a Thompson Optimized convolutional neural network to extract features between

amino acids and then the Thompson Optimized SoftMax function is employed to extract associations between protein

sequences for predicting secondary protein structure. The proposed Energy Profile Bayes and Thompson Optimized

Convolutional Neural Network (EPB-OCNN) method tested distinct unique protein data and was compared to the state-of-

the-art methods, the Template-Based Modeling, Protein Design using Deep Graph Neural Networks, a deep learning-based

S-glutathionylation sites prediction tool called a Computational Framework, the Deep Learning and a distance-based

protein structure prediction using deep learning. The results obtained when applied with the Biopython tool with respect to

protein structure prediction time, protein structure prediction accuracy, specificity, recall, F-measure, and precision,

respectively, are measured. The proposed EPB-OCNN method outperformed the state-of-the-art methods, thereby cor-

roborating the objective.

Keywords Energy profile � Legion-Class Bayes � Protein structure identification � Thompson optimization �
Convolutional neural network � Secondary structure prediction

1 Introduction

Proteins are the macromolecules that are almost universally

in charge of bestowing out the numerous functionalities

requisite to endure life, cell structural underpinning,

immune safeguarding, enzymatic catalysis, cell signal

transduction, and translation control. These numerous

functionalities are made feasible by the distinctive three-

dimensional structures applied by distinct protein mole-

cules. The objective of protein structure prediction methods

is to make use of computational representation to govern

the spatial location of every atom in a protein molecule

beginning from only its sequences of amino acid. Based on

the homologous structures present in the Protein Data Bank

(PDB), numerous protein structure models have been

generally classified as template-based modeling (TBM) or

template-free modeling (FM) approaches. Template-based

modeling (TBM) was proposed in [1] via deep learning

techniques, therefore increasing the precision in a signifi-

cant manner. Even though a significant amount of precision
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was said to be attained, there is still an issue with the cost

of accuracy. Nevertheless, the swift improvement observed

over the past few years alone bestows certain types of

assistance in holistic protein structure prediction issue that

may be addressed by employing deep learning, where

predictions may continually attain accuracies that even

may go on par with the experimental methods.

The functioning and structuring of protein are deliber-

ated by the positioning of the linear arrangement of amino

acids in 3D space. Protein design using deep graph neural

networks (PD-DGNN) was proposed in [2] by utilizing

energy-based scores and molecular dynamics. Followed by

this, as validation for proof-of-principle, ProteinSolver was

also utilized to bring about sequences that counterpart the

formation of serum albumin, then synthesize the top-

scoring representation and substantiate it in vitro utilizing

circular dichroism, therefore contributing to accuracy.

Even though accuracy was found to be improved, the

specificity and recall measure were not included. One

limitation of PD-DGNN methods for protein design is the

observation and interpretation of steep learning curve and

the immense magnitude of domain competence that is

required to provide rational and logical predictions.

A deep learning-based S-glutathionylation sites predic-

tion tool called a computational framework (CF) was

proposed in [3] to significantly identify the species-specific

S-glutathionylation sites. In this study, species-specific

S-glutathionylation sites prediction was made on the basis

of the deep learning and particle swarm optimization

algorithms. With this, the prediction results were said to be

significantly improved. Despite improvement observed in

the prediction accuracy, the time involved in prediction

was not focused. Though better performance is being

achieved by means of DeepGSH tools, there are numerous

characteristics to be included, i.e., the inclusion of addi-

tional features like information concerning evolutionary

aspect, interactions between proteins, secondary structures

and so on, which may result in an accurate performance.

With the potentiality of deep learning (DL) [4], it was

featured in considering numerous magnitudes of data

structure, dispensing with noisy data, acquiring raw fea-

tures without the requirement for feature engineering, and

incorporating in a sensible manner to fabricate sensible

predictions for data not utilized in training. Moreover, the

ideal objective of bioinformatics not only remained in

ensuring prediction accuracy but also remained in thorough

comprehension of the fundamental biological procedures at

work. Each member of the protein structure family may

possess a moderately distinct form or shape from every

other member, and hence, this creates an intrinsic accuracy

constraint to deep learning-based modeling. This feasibly

highlights the increased significance of structure cleansing

to the succeeding protein structure prediction.

A distance-based protein structure prediction using deep

learning, called DPSP method, was proposed in [5]. The

method utilized a distance geometry algorithm with the

purpose of enhancing the threading of protein without the

presence of good templates in a protein data bank. With

this, a significant amount of accuracy was said to be

achieved in addition to the concentration of errors.

Although the current protocol for predicting via predicted

distance distribution went well, it was not found to be

optimal for constructing 3D models.

1.1 Contributions

Motivated by the above state-of-the-art methods for sec-

ondary protein structure prediction, in our work, an Energy

Profile Bayes and Thompson Optimized Convolutional

Neural Network (EPB-OCNN) method is proposed. The

major contributory factors of EPB-OCNN method are

given below.

• A novel secondary protein structure prediction method

is proposed based on Energy Profile Bayes and

Thompson Optimized Convolutional Neural Network

model, which can offer maximum accuracy and preci-

sion rate with minimum time and therefore contributing

to overall prediction accuracy.

• A separate algorithm is designed for the settings of

Energy Profile Bayes and Thompson Optimized Con-

volutional Neural Network, respectively, therefore

addressing protein structure prediction time, accuracy,

precision, specificity, recall, and MCC.

• An integrated theoretical, qualitative analysis and

experimental results are given, which validate the

proposed method.

• The performance was evaluated through extensive

simulations based on Protein Data Bank dataset. In

comparison with TBM [1], PD-DGNN [2], CF [3], DL

[4], and DPSP [5], our EPB-OCNN method is superior

in terms of protein structure prediction time, accuracy,

precision, specificity, and recall.

1.2 Contribution explanation

The explanation about the Energy Profile Legion-Class

Bayes Protein Structure Identification algorithm and

Thompson Optimized CNN Protein Secondary Structure

Prediction algorithm is detailed below.

1.2.1 Energy Profile Legion-Class Bayes Protein Structure
Identification algorithm

Energy Profile Legion-Class Bayes Protein Structure

Identification algorithm differentiates itself from others
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where it possesses energy profiles for two atoms of given

types based on the protein sequence profile context of the

atom. Next, Legion Class Bayes function via Location-

Specific Resultant Matrix reveals the patterns with maxi-

mum precision.

1.2.2 Thompson Optimized CNN Protein Secondary
Structure Prediction algorithm

Thompson Optimized CNN Protein Secondary Structure

Prediction algorithm is that the optimization function in the

pooling layer via nonlinear down-sampling aids in mini-

mizing the dimensionality of the features and parameters

for obtaining relevant and precise protein structure pre-

diction. Also, the learning rate forming hyperparameter

controls how much to change in response to the estimated

error each time during the prediction process.

1.3 Organization of the paper

The fundamental materials and methods connected with

this study and the related works are discussed in brief in

Sect. 2. The pseudo-codes representation with the aid of

block diagram of the proposed Energy Profile Bayes and

Thompson Optimized Convolutional Neural Network

(EPB-OCNN) methods is outlined in Sect. 3. The experi-

mental setup along with the results is summarized and

contextualized in Sect. 4. Finally, the study is concluded in

Sect. 5.

2 Related works

Secondary protein structure prediction is a paramount issue

as far as structural biology and structural bioinformatics are

concerned. Though enormous progression in structural

bioinformatics has been seen in the recent few years,

specifically accuracy of predicted structures inclines to

differ in an extensive manner based on supplementary

information availability and frequency of homologous

structures and sequences in databases. Soluble and mem-

brane protein design was proposed in [6] for fine tuning

protein structures of low resolution, modeling drug binding

sites in an accurate manner and modeling solvent-mediated

protein catalysis. However, it was found to be a laborious

and cumbersome process which remained difficult to dis-

tinguish at high resolution. A spherical graph convolutional

network denoted as a molecular graph was designed in [7]

for accurate structure prediction via angular information.

Moreover, the spherical convolution technique can also be

integrated with other methods for assessment of the cor-

responding protein model quality, and hence can also pave

the way for additional and supplementary input features. In

this manner, it will be probable to attain even better pre-

diction results by including biological and chemical

information in the corresponding input graphs.

Protein loop modeling was presented in [8] by means of

deep learning. Owing to the drawbacks of computing

potentialities, simulation experiments were only performed

in limited settings of distinct network configurations.

However, additional network configurations can still more

assist in enhancing the overall loop modeling performance

to a greater extent. The objective of protein structure pre-

diction is to employ computational models to estimate

spatial location of every atom in protein initiating from its

amino acid sequence. Despite stagnancy observed in recent

past two decades, contemporary application of deep neural

networks to spatial prediction and end-to-end model has

extensively enhanced the protein structure prediction

accuracy.

Incorporation of deep learning techniques into numerous

steps of protein folding and design was proposed in [9].

Nonetheless, while there are unquestionably many issues in

the domain, the advancement noticed over the past few

years bestows expectation that one of the most laborious

and significant biological issues, i.e., predicting protein

structures at their stability state of affairs initiating from

the amino acid sequences unattended could be addressed

via the employment of deep learning within the destined

future. However, due to a lack of sufficient solved struc-

tures, high-throughput deep transfer learning model facil-

itating drug discovery was designed in [10]. One of the

crucial disadvantages of the deep learning technique is that

it is laborious and cumbersome to interpret the resultant

technique. Even though machine learning technique has

been giving solutions toward this issue, extracting simple

rules from the deep learning technique to explain why

particular pair of residues is predicted to form a contact is

yet to be hard to incept, or else a simpler model of contact

prediction can also be developed.

Neural network model was presented in [11] for analysis

of dynamics and function prediction. Neural networks

protein structure and function prediction was performed for

dynamic analysis comprising of prediction based on amino

acid sequences using multiple sequence alignment, uti-

lization of assay data for interaction between protein and

compound prediction and application of molecular

dynamic simulation for protein detection. Though study

here only presented a single approach, room for improve-

ment is still said to persist. Machine learning techniques

were applied in [12] for AlphaFold2 protein structure

prediction involving foundation reconfiguration for bio-

molecular modeling. Though the design and analysis of

AlphaFold2 is said to be unquestionably a milestone in the

prolonged history of protein structure prediction, achieving

accuracy for single domain prediction is only possible.
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However, predictions empathetic to insignificant trans-

poses that result in crucial structure altercations are said to

be uneven and untested.

In [13], deep learning methods like convolutional neural

networks and recurrent networks were applied to enhance

prediction accuracy involved in protein structure predic-

tion. To be more specific, though the convolutional neural

network and recurrent network heavily depend on certain

types of sensitive models to detect similarity from dis-

similar structures and sequences, it is not clear whether the

predictions accurately denote low energy arrangements

except for their correctness. However, further enhance-

ments with the inclusion of additional resources required

for computation and a high volume of data are certainly

necessitated. Different machine learning methods using a

support vector machine and decision tree were applied in

[14] for enhancing stability for protein structure forecast-

ing. This proposed support vector machine and decision

tree model was found to be advantageous in protein anal-

ysis for the sequences provided in an anonymous structure.

However, these machine learning methods can be applied

to even other protein datasets to ensure an efficient,

aggressive analysis of the protein structure prediction.

Protein biological functions are fundamentally con-

nected with its structure. Hence, for the last few years,

protein structure identification has been considered as hot

research issue in the field of bioinformatics. Accurate

protein structure identification may help the research

communities in evaluating numerous protein functions.

The primary structure of a protein involves a polymer of 20

amino acids, which are heavily responsible for numerous

functions and these functions are said to be largely based

on their corresponding structures. Hence, protein structure

information bestows indicators in secondary and tertiary

protein structure prediction.

A framework called protein distance net was proposed

in [15] for protein structure prediction for training and

testing real-valued distances. Protein distance can also be

analyzed by testing the importance by including certain

other features via covariance and precision matrix. Also, an

in-depth analysis can also be made by concentrating on the

loss aspect specifically for distance prediction. Yet another

deep structural inference for proteins that integrated both

deep learning and template based structural model was

designed in [16] therefore solving protein structure pre-

diction problem. Also, tertiary structure prediction in a

large-scale manner was performed for over 1200 single-

domain proteins. Moreover, it predicted the tertiary struc-

ture in a successful manner four times that was predicted

previously. In [17], clustering recurrent neural network was

proposed for predicting distance matrices, torsion angles

and secondary structures. However, the method was even

found to be highly expensive upon comparison to the

shallow learning method. Owing to this reason, measures to

speed up the overall learning process in addition to the

accuracy maintenance of the prediction system was not

focused.

Despite improvement observed inaccuracy, it was not

found to be computationally efficient. Yet another novel

computational method using deep learning was investi-

gated in [18], therefore, achieving secondary structure

prediction accuracy. Moreover, a learning strategy per-

formed based on the multi-task model was also utilized in

predicting secondary structures and the trans-membrane

helixes. The novel computation method was elaborately

trained and tested by employing an independent dataset

that was found to be non-redundant in nature. As a result,

the secondary structure prediction accuracy was found to

be 78% as far as the non-transmembrane region was con-

cerned and found to be 90% for the transmembrane region.

A linear predictive coding model using position-specific

score matrices was proposed in [19] for predicting protein

structural class. To sum up, the method was found to be

satisfactory upon comparison with other methods on a

single type of features. Owing to this reason, cost-effective

mechanism for predicting protein structural class was

ensured.

A secondary structure prediction based on the position-

specific scoring value using matrix representation was

proposed in [20]. Although numerous and extensive

machine learning algorithms have been provided for pre-

dicting secondary structures in every short period, the

enhancements rate were found to be comparatively mini-

mum. This is owing to the reason that the amino was

already introduced in and around 2000. However, there

have been only elementary shifts in the feature set pre-

diction. However, to improve the rate of accuracy, the

foundation must be enhanced. In [21], an integration of

physical, chemical, statistical, and biological characteris-

tics of protein were employed as the features with which a

novel mechanism was presented with the purpose of pre-

dicting protein’s post-translational modification sites,

therefore contributing to accuracy. Despite improvement

observed in accuracy, numerous types of protein post-

translational modification must be elaborated in detail as

far as the domain of biology is concerned. Also, specialized

formation of a structure must be utilized as the means for

feature prediction.

Yet another deep learning approach based on position

specific scoring matrix employing deep network architec-

ture was investigated in [22]. By taking into consideration

the enormous endeavor essential for researchers to bring

about small enhancements, the realistic objective would

remain in concentrating on the enhancement in the overall

prediction of protein. A review of deep learning involving

protein structural modeling was investigated in [23].
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Finally, with the objective of acquiring a greater purview

into the biomolecule fundamental science, a specific

requirement to associate artificial intelligence (AI) with the

biochemical and biophysical properties would arise. Also,

a holistic approach to the underlying strategies and hidden

patterns that result in the development of therapeutics is

also the need of the hour. A state-of-the-art machine

learning method was proposed in [24] by building on the

alpha fold model, therefore, ensuring high quality predic-

tions. Key features on alpha-fold two were concentrated in

[25] using attention mechanism, therefore, ensuring com-

putational capability.

Protein model quality assessments were made in [26] by

employing spherical convolutions via rotation-equivariant

spherical filters, therefore ensuring critical assessment of

structure prediction benchmarks. Despite critical assess-

ment, the precision with which the benchmark arrived was

not discussed. Gaining a thorough insight into the protein

structure is contemplated as the laborious process toward

the design and development of new types of drugs.

Therefore, acquiring a thorough knowledge and under-

standing of its functionalities would provide a good

understanding into life machinery and organization,

therefore the paving way for great social influence.

In [27], protein engineering was performed by means of

deep diving with only a small proportion of protein

sequence descriptors. With this, protein redesign issues in

the pharmaceutical industry were addressed in a precise

manner. Even though an extensive protein sequence

selection along with the state-of-the-art machine learning

techniques have been provided in detail, still further

enhancement would cause an overall improvement. To

name an objective may be to enhance the learning rate

polity that in turn would result in minimizing the training

time and hence the overall performance improvement. Yet

another critical assessment of protein structure prediction

using a simple gradient descent algorithm was proposed in

[28] with increased accuracy. With the analysis results, it

can be inferred that the overall process can be optimized by

means of simple gradient descent algorithm that, in turn,

would acquire structures without complicated sampling

procedures.

An ensemble of deep convolutional neural networks for

protein function prediction was investigated in [29] to

address the time analysis. To sum up, the proposed method

can, in turn, bestow swift prediction of the protein func-

tioning, therefore making room for pertinent applications,

to name a few being identification of target concerning

pharmacological application. Also, a thorough analysis can

be made for hierarchical function prediction and enzyme

annotation toward the enzyme classification system. Yet

another protein structure prediction that was performed

automatically using I-TASSER was proposed in [30]. Here,

from the target proteins of the respective amino acid

sequence, the I-TASSER initially generated a comprehen-

sive lengthy atomic structure format based on multiple

threading alignments. Followed by this, an assembly sim-

ulation performed in an iterative fashion based on the

atomic-level structure refinement was also proposed.

Finally, protein biological functions comprising of ligand-

binding sites and commission number of the respective

enzyme were then acquired from protein function data-

bases based on the sequence and comparative structure

profile. A prediction model of protein consisting of Kunitz-

type trypsin inhibitor from the respective seeds of Acacia

Nilotica (L) based on the antimicrobial and insecticidal

activity was proposed in [31]. Here, two generation pro-

genies were studied, therefore reducing the mean percent

mortality.

Protein family identification and classification are one of

the most paramount issues as far as bioinformatics and

protein studies are concerned. In these cases, it becomes

necessary to mention the protein family as it finds a place

chiefly in smart drug therapies, functioning of protein and

so on. However, determining these families with

sequencing yet consumes an enormous time. A novel

protein mapping method was designed in [32] based on the

Fibonacci numbers and hashing table called (FIBHASH).

The Fibonacci number was assigned to each amino acid

code based on integer representations. Followed by these

amino acid codes were inserted into hashing table for

further classification using recurrent neural networks,

therefore improving protein mapping accuracy to a greater

extent. As of now, the novel coronavirus (COVID-19) is a

swiftly proliferating disease with a high rate of mortality.

In [33], interactions between specific flavonols such as

2019-nCoV receptor binding domain (RBD) and cathepsins

(CatB and CatL) were medically analyzed. Based on the

Relative Binding Capacity Index (RBCI) value estimated

based on the free energy of binding and calculated inhi-

bition constants, results were analyzed that robinin (ROB)

and gossypetin (GOS) were determined to be the most

significant flavonols among all the targets. Biological

organism sequence data like nucleotide and amino acid are

stored in databases that comprise billions of records. With

the objective of processing enormous data in a compara-

tively lesser amount of time, high-performance analysis

models were designed.
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In [34], pairwise and multiple sequence alignment

operations were proposed to perform sequence alignment

concerning bioinformatics in minimal time. As far as

uncharacterized protein sequences are concerned, predic-

tion of the functioning of protein in an automated fashion is

said to be a critical issue to be handled. Over the past few

years, deep learning-based algorithms were said to out-

perform the existing methods owing to the issues con-

cerning overfitting and significance involved in training.

A DEEPred was proposed in [35] that involved multi-

tasking deep neural networks in a feed forward manner

with the structure of hierarchical stack-based protein

function prediction. With this organization, protein func-

tion prediction was found to be good.

From the above hypothesis, present-day research works

explored above are mandatorily recapitulating necessity for

novel secondary protein structure prediction method. Thus,

in this work, it is concentrated on deliberately proposing an

Energy Profile Bayes and Thompson Optimized Convolu-

tional Neural Network (EPB-OCNN) method that provides

significant results for precise and accurate Protein Sec-

ondary Structure Prediction method with minimum time

and maximum improvement in specificity, recall and

F-measure.

3 Energy Profile Bayes and Thompson
Optimized Convolutional Neural Network
(EPB-OCNN) protein secondary structure
prediction

This section mainly deals with the proposed Energy Profile

Bayes and Thompson Optimized Convolutional Neural

Network (EPB-OCNN) method of protein secondary

structure prediction from a broader point of view. The

EPB-OCNN method is divided into three parts. The first

part consists of the problem definition, whereas the second

portion contains an extensive protein structure identifica-

tion using Energy Profile Legion-Class Bayes Protein

Structure Identification. The third subsection includes a

detailed analysis of protein secondary structure prediction

by employing the Thompson Optimized Convolutional

Neural Network model. Figure 1 shows the block diagram

of the EPB-OCNN method.

As shown in the above figure, the protein sequences are

obtained from Protein Data Bank (PDB) [20] dataset. Next,

protein structure identification called Energy Profile

Legion-Class Bayes is designed based on the energy pro-

files of corresponding atom pairs to describe protein energy

and accordingly rank different conformations based on

energy. Next, the Thompson Optimized Convolutional

Protein Data Bank 

(PDB) dataset 

Atom pairs 

Energy profiles  

Extract features between amino acid

Extract associations between protein sequences 

Fig. 1 Block diagram of Energy

Profile Bayes and Thompson

Optimized Convolutional

Neural Network (EPB-OCNN)

method
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Neural Network model is designed by extracting features

between amino acid and extracting the association between

protein sequence, optimizing parameters involved in pre-

dicting protein structure via CNN.

3.1 Problem definition

Protein structure prediction from amino acid sequence has

been a striking confront for decagons. Therefore, atomic-

level structures of proteins are frequently the initiating

locality to perceive protein structure identification and

engineer them. Naturally occurring proteins denote only a

minuscule subset of probable amino acid sequences des-

ignated by evolutionary process to carry out a biological

function. The state-of-the-art methodology for protein

structure prediction is based on the thermodynamic

hypothesis. The thermodynamics concerning protein

structure prediction states that the indigenous protein

structure must possess the lowest free energy. Identifying

the lowest-energy state is demanding owing to the fact as it

occupies an enormous space of possible conformations

obtainable to a protein. Considering these challenges, in

our work, Legion-Shape Protein Structure Identification is

proposed. Next, with the identified secondary protein

structure and optimized parameter learning, protein struc-

ture prediction employing Thompson function is made for

robust and accurate prediction.

3.2 Energy Profile Legion-Class Bayes Protein
Structure Identification

To start within this section, protein structure identification

using Energy Profile Legion-Class Bayes is designed. For

this, first, protein and location based analytical Evolution-

ary Duo Distance Reliance Potential (EDDRP) is obtained.

We configure the perceived probability in EDDRP by the

Fig. 2 Block diagram of Energy

Profile Legion-Class Bayes

Protein Structure identification
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evolutionary information in addition to atom types.

EDDRP differentiates itself from others in that it possesses

numerous energy profiles for two atoms of given types,

according to protein taken into consideration and sequence

profile atom context. With this EDDRP, Energy Profile

Legion-Class Bayes Protein Structure Identification is

made. Figure 2 shows the block diagram of Energy Profile

Legion-Class Bayes Protein Structure Identification.

As shown in the above figure, with protein sequences

obtained as input, initially, distance reliance analytical

potential with energy profiles is measured. Second, the

posterior probability at each location is measured to form

Location-Specific Resultant Matrix. Finally, with the

obtained Location-Specific Resultant Matrix, accurate and

relevant protein structures are identified. To start with,

distance reliance analytical potential and energy profiles

for atom pairs are mathematically represented as given

below.

U DisjAi;Aj;Areai;Areaj;RadG
� �

¼ TLog
Prob DisjAi;Aj;Areai;Areaj;RadG

� �

Ref DisjRadGð Þ

� �
ð1Þ

From Eq. (1), ‘T’ is the temperature factor corre-

sponding to each amino acid, ‘Ref DisjRadGð Þ’ denotes the

reference state ‘Ref’ with respect to distance ‘Dis’ and

gyration radius ‘RadG’ of protein considered for simula-

tion. In addition, ‘Prob DisjAi;Aj;Areai;Areaj;RadG
� �

’

denotes the discovered probability of two atoms ‘Ai,’ ‘Aj’

linked within a distance ‘Dis’ and gyration radius ‘RadG.’

With the utilization of the above distance reliance ana-

lytical potential model, accurate energy functions are

evolved for describing protein physics and sampling pro-

tein sequence. With the concept of Legion Class Bayes

employed in our work and energy profiles for pair of atoms,

let us consider, ‘P ¼ P1;P2; . . .;PnPnþ1f
D1½ �;Pnþ2; . . .;P2n D2½ �; Pmþ1;Pmþ2; . . .;Pmn Dn½ �g,’ where

‘Pi ¼ 1; 2; . . .:mf g’ with ‘i’ denoting amino acid position

in protein sequence. In the case of Legion-class problem,

the trial sample ‘S’ comprises of ‘ CL1;CL2; . . .;CLnð Þ’
where ‘CL1’ is the first class, ‘CL2’ is the second class, and

‘CLn’ denotes the last class, respectively. Then, the

posterior probability for each class is estimated employing

the probability of amino acid at each location in trial

samples. With this, the Legion Class Bayes is mathemati-

cally formulated as given below.

Prob CLijSð Þ ¼ Prob SjCLið ÞProb CLið Þ
Prob Sð Þ ð2Þ

From Eq. (2), ‘Prob CLijSð Þ’ represents posterior prob-

abilities of amino acid at each location with respect to each

class ‘CLi’ and samples ‘S,’ ‘Prob CLið Þ’ denotes the prior

probabilities of amino acid at each location for the corre-

sponding class ‘ CLið Þ,’ ‘Prob SjCLið Þ’ represents the like-

lihood of amino acid at each location and ‘Prob Sð Þ’ denotes
the probability of the overall trial sample taken into con-

sideration for simulation. The likelihood of each sample ‘S’

with respect to distance ‘Di’ is mathematically formulated

as given below.

Prob SjDið Þ ¼
Ym

j¼1
Prob SjjDi

� �
ð3Þ

With the resultant Legion Class Bayes value Location-

Specific Resultant Matrix (LSRM), an evolutionary energy

profiles for pair of atoms is estimated. The LSRM is then

mathematically formulated for a protein sequence ‘P’

possessing area ‘Area’ as given below

From Eq. (4), ‘R i ! jð Þ’ corresponds to the resultant

outcome of ‘ith’ amino acid location, that was swapped by

‘j’ amino acid in protein sequence during the process of

evolution. The ‘PLSRM’ is produced for multiple sequence

with protein sequence ‘P,’ possessing ‘A � 20’ resultant

outcomes. Finally, the probability of evolution ‘Evol’ (i.e.,

protein structure identification) from ‘p-th’ to ‘q-th’ amino

acid ‘Evolpq’ is mathematically formulated as given below.

Evolpq ¼ ProbipProbjq 1� p� 20; � q� 20½ � ð5Þ

From Eq. (5), the probability of evolution from ‘p-th’ to

‘q-th’ amino acid ‘Evolpq’ is obtained for 20 resultant

outcomes (i.e., sliding window ranging between 13 and

19). The pseudo-code representation of Energy Profile

Legion-Class Bayes Protein Structure Identification is

given below.

.

PLSRM ¼

R 1 ! 1ð Þ R 1 ! 2ð Þ . . . R 1 ! ið Þ . . . R 1 ! 20ð Þ
R 2 ! 1ð Þ R 2 ! 2ð Þ . . . R 2 ! ið Þ . . . R 2 ! 20ð Þ
. . . . . . . . . . . . . . . . . .
R j ! 1ð Þ R j ! 2ð Þ . . . R j ! ið Þ . . . R j ! 20ð Þ
. . . . . . . . . . . . . . . . . .
R Area ! 1ð Þ R Area ! 2ð Þ . . . R Area ! ið Þ . . . R Area ! 20ð Þ

2

6666664

3

7777775

ð4Þ
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As given in the above Energy Profile Legion-Class

Bayes Protein Structure Identification algorithm, the

objective remains in obtaining accurate and reliable protein

data utilizing the Legion-Class Bayes function in addition

to the higher-resolution energy profiles. Initially with PDB

dataset provided as input, for each amino acid, distance

reliance analytical potential with energy profiles is mea-

sured. With this function, optimal molecules are arrived at

with minimum time. Next, to the energy profile values, the

Legion Class Bayes function is applied to obtain Location-

Specific Resultant Matrix, therefore revealing patterns with

maximum precision. Finally, utilizing the probability of

evolution, protein structure identification is made with

improved true positive rate.

Initially, with the PDB dataset provided as input for

each amino acid, the first distance relies on analytical

potential with energy profiles using the features, amino

acid name/residue name, residue number, X, Y, Z coordi-

nates and occupancy. Followed by this, the posterior

probability with the probability of amino acid at each

location was measured employing record type, atom

number, atom name, amino acid name, chain name, residue

number, X, Y, Z coordinates, occupancy, temperature fac-

tors and element symbols, respectively. Next, Location-

Specific Resultant Matrix was estimated based on the

record type, atom number, atom name, residue number,

chain name, residue name, X, Y, Z coordinates, occupancy,

temperature factors and element symbols, respectively.

Finally, the probability of evolution is obtained to acquire

the final features, namely amino acid name/residue name,

residue number, X, Y, Z coordinates and occupancy,

respectively.

3.3 Thompson Optimized Convolutional Neural
Network Protein Secondary Structure
Prediction model

The accurate protein secondary structure prediction not

only warrants us to realize complicated association

between protein sequence and protein structure, but also

assists in analyzing the functioning of the protein. In this

work, a deep learning algorithm based on convolutional

neural network, called Thompson Optimized Convolu-

tional Neural Network Protein Secondary Structure Pre-

diction model has been applied to protein secondary

structure prediction. The objective of designing this model

remains in optimizing network parameters and speed up

overall process. Structure of Thompson Optimized Con-

volutional Neural Network Protein Secondary Structure

Prediction model is shown in Fig. 3.

Algorithm 1 Energy Profile Legion-Class Bayes Protein Structure Identification  
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The Thompson Optimized Convolutional Neural Net-

work extracts features between amino acid. The input of

each neuron in the convolutional layer comes from Loca-

tion-Specific Resultant Matrix (LSRM) in a definite area.

In addition, the size of this definite area is obtained by

means of a convolution kernel. The feature map initially

‘FMi’ is formulated as given below.

FMi ¼ CKi
1;CK

i
2;CK

i
3; . . .;CK

i
n

� �
ð6Þ

From Eq. (6), ‘CKi
n’ corresponds to the convolution

kernel of the ‘i-th’ layer with ‘n’ representing a number of

convolution kernels. The functioning of convolution is to

perceive convolution operation via a feature extraction

filter for input matrix LSRM. Each region, in turn, is

obtained by multiplying the input ‘LSRM’ matrix and

weights and then added with the offset constant ‘Off’ to

produce the feature map.

FMi
l ¼ fun

X

l

LSRM CKi
l

� �
�Wi

l þ off

 !

ð7Þ

From Eq. (7), ‘LSRM CKi
l

� �
’ denotes the feature map

obtained by the convolution kernel ‘CK’ of the input

‘LSRM’ matrix data with the weight of the ‘i-th’ convo-

lution kernel represented by ‘Wi
l’ and offset value denoted

by ‘off’ for ‘l’ amount of convolution kernels, respectively.

Next, the pooling layer known as nonlinear down-sampling

aids in minimizing dimensionality features and parameter

to minimize the frequency of calculation. To adjust weights

during training or learning process, our work uses a

Thompson Function. Finally, the output layer of our forms

fully connected layer and SoftMax layer. The SoftMax

function layer in our protein secondary structure prediction

employs activation function as fined below.

Prob Pr
i
;CL

� �
¼ Prob CL= Prið ÞProb Prið Þ
PCL

j¼1 Prob CL= Prj
� �

Prob Prið Þ
ð8Þ

From Eq. (8), ‘Prob CL=Prið Þ’ refers to the probability of
given class sample (i.e., from four different classes) and

‘Prob Prið Þ’ denotes the prior probability of the protein

secondary structure class. Owing to the increasing number

of protein sequences present in a protein data bank, a

considerable amount of time is said to be consumed while

modeling the CNN to the protein secondary structure pre-

diction. This is because of the reason that it takes a sig-

nificant amount of time to modify the hyperparameters of

CNN. This work employs a Thompson optimization algo-

rithm to optimize the hyperparameters of CNN, employing

learning rate (i.e., 0.01), impulse and regularization factor,

respectively. First, let us assume that the Gaussian kernel

function is selected as an acquisition function to obtain

consecutive sampling points. Thompson optimization of

hyperparameters is Gaussian prior modeling of the loss

function ‘f pdð Þ’ by hyperparameters of corresponding

protein data ‘pdi.’

L OPi;Vj

� �
¼ CL OPi pdið ÞYi½ � ð9Þ

As the observations on the secondary protein structure

prediction involves a considerable amount of noise,

Gaussian noise ‘a’ is added to each observation sample

‘L OPi;Vj

� �
’ for the objective function ‘CL OPi pdið ÞYi½ �.’

Thompson Optimization  

Convoluting feature map 

Pooled Feature  

SoftMax function  

Robust Secondary Protein Structure Prediction  

Convolution kernels  
Feature 
Maps 

Probabilistic function   

Fig. 3 Structure of Thompson

Optimized Convolutional

Neural Network protein

secondary structure prediction
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f pdð Þ ¼ L OPi;Vj

� �
þ a ð10Þ

Let us further consider input hyperparameters

‘pd ¼ pd1; pd2; pd3; . . .; pdnð Þ’ obtains the output

‘Y ¼ CL pdi;Vj

� �
.’ Then, the Thompson optimization for

hyperparameters ‘f pd’ is mathematically formulated as

given below.

fpd ¼
Z

IF Exp rjpd; að Þ ¼ max Exp rjpd; að Þ½ �Prob ajDð Þda

ð11Þ

The expected improvement based on the above

Thompson optimization is given below.

pdjDð Þ ¼ Exp max a; fpd � fbest
� �� �

ð12Þ

From Eq. (12), ‘f best’ forms optimal solution for

hyperparameters, learning rate, impulse, and regularization

factor, respectively. The pseudo-code representation of

Thompson Optimized CNN Protein Secondary Structure

Prediction is given below.

As given in the above Thompson Optimized CNN Protein

Secondary Structure Prediction algorithm, the objective

remains in predicting secondary protein structure sequence

with maximum precision and accuracy, therefore, contribut-

ing to robustness. To achieve this, the Location-Specific

Resultant Matrix is employed as input to the CNN. Followed

by which, for each protein data, convolved feature map is

evolved by means of kernel weight and offset parameter.

Next, Thompson optimized learning rate, impulse and regu-

larization factor is estimated and applied to pooled layer,

therefore obtaining robust protein structure prediction

sequence. Also, in our work, first, the loss function is eval-

uated via Thompson optimization of hyperparameters. Sec-

ond, if the detected loss is starting to increase, the weights are

reset based on the Gaussian noise ‘a’ back to where the

minimum occurred. This ensures that the proposed method

using Thompson Optimized CNN Protein Secondary Struc-

ture Prediction algorithm won’t continue to learn noise and

overfit the data. In this manner, Thompson Optimized CNN

Protein Secondary Structure Prediction algorithm addresses

overfitting, hence guaranteeing accurate results.

Algorithm 2 Thompson Optimized CNN Protein Secondary Structure Prediction  
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4 Experimental setting and qualitative
analysis

In this section, initially, dataset details are provided. Sub-

sequent subsections contain the performance metrics

analysis and discussion, comparison with the state-of-the-

art methods, and the statistical analysis, respectively.

4.1 Dataset details

The Protein Data Bank (PDB) [21] used in our work cor-

responds to a database containing three-dimensional pro-

tein structure hitherto determined by nuclear magnetic

resonance. The PDB dataset consists of the protein struc-

tural domains that have been categorized based on the

structure similarities and amino acid sequences provide a

detailed and comprehensive description of the structural

and evolutionary relationships between proteins. However,

for practical applications, only four classes ‘all� a,’
‘all� b,’ ‘aþ b’ and ‘a=b’ are considered.With an overall

‘1673’ protein sequences, they are classified as

‘443 all� að Þ,’ ‘443 all� bð Þ,’ ‘441 aþ bð Þ’ and

‘346 a=bð Þ,’ respectively (as given in the Table 1), with a

typical 80% training data size and 20% testing data size.

The dataset is a list of protein sequences that are an

arrangement of amino acids having 1673 as the sample

size. Out of it, 80% remains the training data size (i.e.,

1339) and 20% (i.e., 334.6 = 335) is the testing data size.

With 335 amino acids arrangements in the list of protein

sequences, protein data ranging between 500 and 5000 are

considered for simulation.

4.2 Performance metrics analysis and Discussion

In this section, performance analysis of metrics such as

prediction time, accuracy, ROC curve, precision, speci-

ficity, recall, F-measure, Mathew Correlation Coefficient

and precision–recall curves are discussed.

Table 2 lists the hyperparameters and their description

employed in our proposed method.

4.2.1 Performance analysis of protein structure prediction
time

In this section, a detailed analysis of protein structure

prediction time is made. During prediction of secondary

protein structure, a considerable amount of time is said to

be consumed. This is mathematically expressed as given

below.

PSPtime ¼
Xn

i¼1
Pi � Time Prob Pr

i
;CL

� �� 	
ð13Þ

From Eq. (13), the protein structure prediction time

‘PSPtime’ is measured based on the number of protein data

considered for simulation ‘Pi’ and time consumed in ana-

lyzing protein secondary structure prediction using Soft-

Max function ‘Time Prob Pri;CLð Þ½ �.’ It is measured in

terms of milliseconds (ms). Table 3 provides the protein

structure prediction time of the proposed method EPB-

OCNN method and the state-of-the-art methods, TBM [1],

PD-DGNN [2], CF [3], DL [4], and DPSP [5], respectively,

for hyperparameter with a sliding window of 13.

Figure 4 shows a graphical representation of the sec-

ondary protein structure prediction analysis of the proposed

Table 1 Typical PDB dataset with four categories utilized for

benchmarking

Dataset all� a all� b aþ b a=b Total

Protein Data Bank (PDB) 443 443 441 346 1673

The number of proteins in each category and the total number of

proteins in PDB dataset

Table 2 Hyperparameters and description

S.

no

Hyperparameters Description

1 Number of hidden layers used Two hidden layers are used (the first hidden layer from the convolution and the second hidden layer from

the pooling)

2 Activation function used in

hidden layers

Nonlinear down-sampling function (i.e., linear activation function) is used in hidden layer

3 Activation function used in

output layer

Sigmoid activation function

4 Learning rate The value of the learning rate used in our work is 0.01

5 The momentum set The momentum is set of 0.9

6 Batch size Batch size in our work refers to the samples from the training dataset. In our work, the batch size is 5000

as samples are considered for simulation

7 Number of epochs The number of epochs in our work is 10
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method EPB-OCNN, and the five state-of-the-art methods,

TBM [1], PD-DGNN [2], CF [3], DL [4], and DPSP [5],

respectively. As shown in the above figure, with the x axis

representing a number of protein data and the y axis rep-

resenting protein structure prediction time, increasing

protein data result in an increase in secondary protein

structure time also. This is because with a large number of

protein data sequence considered for simulation, protein

structure modeling and designing also increase. This, in

turn, causes an increase in the corresponding time. But

simulations show that the proposed method EPB-OCNN

achieved betterment in comparison with the five state-of-

the-art methods. Single protein structure prediction time of

the proposed method EPB-OCNN and the five state-of-the-

art methods, TBM [1], PD-DGNN [2], CF [3], DL [4], and

DPSP [5] was observed to be 0.110 ms, 0.120 ms,

0.165 ms, 0.185 ms, 0.195 ms, and 0.200 ms, respectively.

With this, the overall prediction time of the proposed

method EPB-OCNN, and the five state-of-the-art methods,

TBM [1], PD-DGNN [2], CF [3], DL [4], and DPSP [5]

was observed to be 55 ms, 60 ms, 82.5 ms, 92.5 ms,

97.5 ms, and 100 ms, respectively, for 500 number of

protein data, therefore reducing time using EPB-OCNN

method. The reason was due to the application of distance

reliance on analytical potential precise energy for

describing protein and protein sequence sampling. As a

result, the protein structure prediction time of the proposed

method EPB-OCNN in comparison with the five state-of-

the-art methods, TBM [1], PD-DGNN [2], CF [3], DL [4],

and DPSP [5] was observed to be improved by 23%, 38%,

49%, 55%, and 60%, respectively.

4.2.2 Performance analysis of protein structure prediction
accuracy

The second parameter of significance is the accuracy

involved during the prediction of secondary protein struc-

ture. This is mathematically stated as given below.

PSPacc ¼
Xn

i¼1

PSCP Prob Pri;CLð Þ½ �
Pi

� 100 ð14Þ

From Eq. (14), protein structure prediction accuracy

‘PSPacc’ is measured based on protein structure correctly

predicted using Softmax function ‘PSCP Prob Pri;CLð Þ½ �’
and the overall number of protein data considered for

simulation ‘Pi.’ It is measured in terms of percentage (%).

Table 4 provides the protein structure prediction accuracy

values of proposed method EPB-OCNN, and the state-of-

the-art methods, TBM [1], PD-DGNN [2], CF [3], DL [4]

and DPSP [5], respectively, for hyperparameters with a

sliding window of 13.

Figure 5 shows a graphical representation of the sec-

ondary protein structure prediction accuracy analysis of the

proposed method EPB-OCNN, and the five state-of-the-art

methods, TBM [1], PD-DGNN [2], CF [3], DL [4], and

DPSP [5], respectively. As shown in the above figure,

protein structure prediction accuracy is found to be inver-

sely proportional to number of protein data considered for

simulation. This is because an increasing number of protein

data, a large number of protein sequence to be analyzed are

kept in a stack and this, in turn, results in making a small

Table 3 Tabulation for protein

structure prediction time
Number of protein data Protein structure prediction time (ms)

EPB-OCNN TBM PD-DGNN CF DL DPSP

500 55 60 82.5 92.5 97.5 100

1000 68.20 90.05 110.05 140.15 170.20 200.25

1500 80.09 120.25 135.55 160.25 185.15 220.05

2000 90.09 135.05 180.05 200.05 220.35 280.35

2500 120.25 170.05 200.05 240.45 280.25 300.05

3000 135.15 200.15 230.25 270.25 320.05 350.15

3500 160.55 215.05 275.05 320.05 380.25 400.15

4000 195.05 235.25 300.05 380.25 419.45 480.05

4500 220.25 275.05 330.15 420.05 480.05 520.25

5000 265.05 290.25 375.15 480.43 530.05 590.05
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amount of the wrong predictions. However, simulation

analysis made with 500 protein data shows that the accu-

racy of the proposed method EPB-OCNN, and the five

state-of-the-art methods, TBM [1], PD-DGNN [2], CF [3],

DL [4], and DPSP [5] was observed to be 98.8%, 98%,

97%, 96%, 95%, and 94%, respectively. With this analysis,

secondary structure prediction accuracy of the proposed

method EPB-OCNN was found to be better than that of

other five state-of-the-art methods. The betterment was due

to the application of Energy Profile Legion-Class Bayes

Protein Structure Identification algorithm. Legion-Class

Bayes function was applied along with the higher-resolu-

tion energy profiles to model secondary protein structure

prediction. As a result, the secondary protein structure

prediction accuracy of the proposed method EPB-OCNN in

comparison with the five state-of-the-art methods, TBM

[1], PD-DGNN [2], CF [3], DL [4], and DPSP [5] was

found to be improved by 10%, 15%, 16%, 18%, and 21%,

respectively.

4.2.3 Performance analysis of ROC curve

In this section, receiver operating characteristic (ROC)

curves are analyzed to measure the prediction rate perfor-

mance. With the assistance of ROC curve, binary classifi-

cation is made based on either protein structure correctly

predicted or wrongly predicted. The ROC curve is mea-

sured based on the true positive, false positive, true nega-

tive and false negative. With these four probable outcomes,

receiver operating characteristic (ROC) curve is made

where false positive rate is plotted on the x axis, and the

true positive rate is plotted on the y axis. Table 5 provides

the ROC curve analysis values of the proposed method

EPB-OCNN, and the five state-of-the-art methods, TBM

[1], PD-DGNN [2], CF [3], DL [4], and DPSP [5],

respectively, for hyperparameters with a sliding window of

19.

Figure 6 illustrates the graphical representation of ROC

curve analysis of the proposed method EPB-OCNN and the

five state-of-the-art methods, TBM [1], PD-DGNN [2], CF

[3], DL [4], and DPSP [5], respectively. In the above

graphical representation, the x axis denotes the false pos-

itive rate, whereas the y axis denotes the true positive rate.

A diagonal line from (0, 0) in the lower left-hand corner to

(1, 1) in the upper right-hand corner is drawn. This diag-

onal line displays the protein structure prediction test

results. Also, the ROC makes an analysis of the protein

structure prediction based on the true positive rate and false

positive rate for each possible cut point value of the test.

From the above figure, it is illustrative that the roc curve of

EPB-OCNN method is identified to be comparatively bet-

ter than that of the five state-of-the-art methods, therefore

corroborating the secondary protein structure prediction

rate.

Table 4 Tabulation for protein

structure prediction accuracy
Number of protein data Protein structure prediction accuracy (%)

EPB-OCNN TBM PD-DGNN CF DL DPSP

500 98.8 98 97 96 95 94

1000 98.80 96.25 92.45 92.10 91.10 90.45

1500 98.60 94.25 90.55 89.45 89.10 88.25

2000 98.30 93.45 87.65 86.25 85.35 85.10

2500 98.25 90.55 85.75 84.35 83.25 82.10

3000 97.15 88.25 82.45 81.10 80.65 79.10

3500 97.10 85.35 81.55 80.25 79.35 79.10

4000 97.10 84.25 81.25 80.10 79.10 78.65

4500 96.95 81.35 80.35 78.45 78.25 78.10

5000 96.65 81.10 76.45 75.31 74.25 74.10
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4.2.4 Performance analysis of precision

The next parameter of significance is precision. While

predicting secondary protein structure, precision measure-

ment has to be evolved. This is mathematically expressed

as given below.

P ¼ tp
tp þ fp

� 	
ð15Þ

From Eq. (15), precision ‘P’ is measured based on the

true positive rate ‘tp’ (i.e., protein structure correctly pre-

dicted as it is) and the false positive rate ‘f p’ (i.e., protein

structure incorrectly predicted). It is measured in terms of

percentage (%). Table 6 gives the analysis of the precision

of the proposed method EPB-OCNN, and the five state-of-

the-art methods, TBM [1], PD-DGNN [2], CF [3], DL [4],

and DPSP [5], respectively, for hyperparameters with a

sliding window of 19.

Figure 7 illustrates a graphical representation of preci-

sion analyses of the proposed method EPB-OCNN, and the

five state-of-the-art methods, TBM [1], PD-DGNN [2], CF

[3], DL [4], and DPSP [5], respectively. To analyze the

precision factor, protein sequence data in the range of 500

to 5000 are taken into consideration. From the above fig-

urative representation, it is inferred that the precision of the

proposed method EPB-OCNN is found to be comparatively

higher than that of the five state-of-the-art methods. The

reason behind the improvement was due to the application

of Legion Class Bayes function employed for obtaining

energy profile resultant values via Location-Specific

Table 5 Tabulation for ROC

curve
False positive rate True positive rate

EPB-OCNN TBM PD-DGNN CF DL DPSP

0.1 0 0 0 0 0 0

0.2 0.33 0.23 0.18 0.17 0.16 0.15

0.3 0.48 0.33 0.23 0.21 0.18 0.17

0.4 0.63 0.48 0.36 0.28 0.23 0.21

0.5 0.71 0.54 0.48 0.40 0.34 0.31

0.6 0.76 0.63 0.51 0.44 0.40 0.34

0.7 0.83 0.74 0.63 0.55 0.43 0.41

0.8 0.95 0.85 0.75 0.68 0.58 0.53

0.9 0.98 0.88 0.83 0.76 0.68 0.63

1.0 1 0.93 0.87 0.83 0.75 0.68
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Fig. 6 ROC curve analyses

Table 6 Tabulation for

precision
Number of protein data Precision

EPB-OCNN TBM PD-DGNN CF DL DPSP

500 0.99 0.93 0.77 0.75 0.72 0.70

1000 0.94 0.88 0.78 0.77 0.75 0.80

1500 0.94 0.87 0.79 0.80 0.77 0.76

2000 0.99 0.87 0.80 0.73 0.73 0.72

2500 0.99 0.90 0.90 0.79 0.76 0.75

3000 0.96 0.89 0.91 0.77 0.75 0.73

3500 0.94 0.90 0.88 0.78 0.77 0.75

4000 0.96 0.89 0.89 0.78 0.76 0.75

4500 0.98 0.89 0.89 0.68 0.66 0.65

5000 0.94 0.89 0.89 0.79 0.77 0.75
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Resultant Matrix. With this pattern, maximum precision is

said to be revealed. The precision of the proposed method

EPB-OCNN method in comparison with the five state-of-

the-art methods, TBM [1], PD-DGNN [2], CF [3], DL [4],

and DPSP [5] is improved by 8%, 14%, 26%, 30%, and

31%, respectively.

4.2.5 Performance analysis of specificity, recall and F-
measure

Specificity denotes the percentage ratio of negatives that

are correctly identified as with not possessing the actual

secondary protein structure. On the other hand, recall

denotes the percentage ratio of relevant protein sequences

instances that were retrieved as it is. Finally, F-measure

represents the harmonic mean of both the precision and

recall. Table 7 provides the specificity, recall and F-mea-

sure analyses of the proposed method EPB-OCNN and five

state-of-the-art methods, TBM [1], PD-DGNN [2], CF [3],

DL [4] and DPSP [5], respectively, for hyperparameters

with a sliding window of 13.

Figure 8 shows the graphical representation of speci-

ficity, recall and F-measure analysis of the proposed

method EPB-OCNN and the five state-of-the-art methods,

TBM [1], PD-DGNN [2], CF [3], DL [4], and DPSP [5],

respectively. From the above figure, the specificity rate of

the proposed method EPB-OCNN and the five state-of-the-

art methods, TBM [1], PD-DGNN [2], CF [3], DL [4], and

DPSP [5] is inferred to be 88.25%, 86.45%, 84.25%,

76.75%, 71.25%, and 67.32%, respectively. In addition, the

recall rate of the proposed method EPB-OCNN and the five

state-of-the-art methods, TBM [1], PD-DGNN [2], CF [3],

DL [4], and DPSP [5] was found to be 87.65%, 85.25%,

83.55%, 77.15%, 72.65%, and 68.65%, respectively. From

the specificity and recall results, it is identified that speci-

ficity, recall, and F-measure of the proposed method EPB-

OCNN were found to be better than the five state-of-the-art

methods. The reason behind improvement was due to the

application of Thompson optimized function to obtain

learning rate, impulse, and regularization factor. With this,

improvement was observed at a true positive rate in turn

reducing true negative rate, therefore contributing to

specificity, recall and F-measure.

4.2.6 Performance analysis of precision–recall curve

In this section, the precision–recall curve is analyzed. The

precision–recall curve shows graphical representation of

secondary protein structure prediction at different threshold

values. This ROC curve plot two different parameters,

namely precision and recall. Table 8 makes a detailed

analysis of the precision–recall curve of the proposed

method EPB-OCNN and the five state-of-the-art methods,

TBM [1], PD-DGNN [2], CF [3], DL [4], and DPSP [5],

respectively, for hyperparameters with a sliding window of

13.

Figure 9 illustrates the graphical representation of pre-

cision–recall analysis of the proposed method EPB-OCNN

and the five state-of-the-art methods, TBM [1], PD-DGNN

[2], CF [3], DL [4], and DPSP [5], respectively. In this

study, simulation was performed for all the six methods

with unique recall values ranging between 0.1 and 1. For
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Fig. 7 Precision analyses

Table 7 Tabulation for

specificity, recall and F-measure
Metrics Methods

EPB-OCNN TBM PD-DGNN CF DL DPSP

Specificity 88.25 86.45 84.25 76.75 71.25 67.32

Recall 87.65 85.25 83.55 77.15 72.65 68.65

F-measure 85.55 83.45 81.55 75.45 70.25 65.45

0 20 40 60 80 100
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CF

DL

DPSP

F-measure

Recall

Specificity

Fig. 8 Specificity, recall, and F-measure analyses
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these simulation values, the precision–recall value of the

proposed method EPB-OCNN and the five state-of-the-art

methods, TBM [1], PD-DGNN [2], CF [3], DL [4], and

DPSP [5] was observed to be 0.26, 0.23, 0.21, 0.18, 0.17,

and 0.15, respectively. From the simulation results, opti-

mality between precision and recall was found by the

comparison of the precision–recall value of the proposed

method with that of the five other existing methods. The

precision–recall improvement was observed owing to the

application of Thompson Optimized Convolutional Neural

Network Protein Secondary Structure Prediction model.

With this model, optimizing the network parameters, in

turn, resulted in speeding up of overall process and hence

causing an improvement in the precision–recall curve of

the proposed method EPB-OCNN over the five other

existing methods.

4.2.7 Performance analysis of MCC coefficient

Matthews Correlation Coefficient considers true positive,

true negative, false positive and false negatives and hence

considered as a balanced measure even when it is used with

classes of distinct sizes. Therefore, MCC refers to a cor-

relation coefficient between observed and predicted binary

classifications, returning a value between - 1 and ? 1.

The coefficient of ? 1 denotes a perfect prediction made, 0

is not better than the random prediction made, and

finally, - 1 denotes total disagreement between prediction

and observation. This is mathematically formulated as

given below.

MCC ¼ TP � TNð Þ � FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p

ð16Þ

From Eq. (16), the Matthews Correlation Coefficient

‘MCC’ is measured using the true positive rate ‘TP,’ true

negative rate ‘TN,’ false positive rate ‘FP’ and the false

negative rate ‘FN,’ respectively. Table 9 provides the

MCC resultant values of the proposed method EPB-OCNN

and the five state-of-the-art methods, TBM [1], PD-DGNN

[2], CF [3], DL [4], and DPSP [5], respectively.

Table 8 Tabulation for precision–recall curve

Recall Precision

EPB-OCNN TBM PD-DGNN CF DL DPSP

0.1 0.26 0.23 0.21 0.18 0.17 0.15

0.2 0.29 0.27 0.26 0.22 0.21 0.19

0.3 0.38 0.37 0.35 0.32 0.30 0.26

0.4 0.43 0.40 0.39 0.36 0.32 0.29

0.5 0.44 0.42 0.39 0.36 0.34 0.33

0.6 0.45 0.43 0.41 0.35 0.36 0.33

0.7 0.46 0.44 0.43 0.39 0.37 0.35

0.8 0.48 0.46 0.45 0.40 0.38 0.36

0.9 0.48 0.48 0.46 0.40 0.38 0.38

1 0.52 0.49 0.47 0.42 0.39 0.39
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Table 9 Tabulation for MCC
Number of protein data MCC

EPB-OCNN TBM PD-DGNN CF DL DPSP

500 0.93 0.88 0.82 0.81 0.78 0.77

1000 0.92 0.87 0.81 0.80 0.77 0.74

1500 0.91 0.85 0.80 0.79 0.75 0.73

2000 0.90 0.84 0.78 0.76 0.73 0.71

2500 0.90 0.84 0.77 0.76 0.72 0.69

3000 0.88 0.83 0.77 0.73 0.70 0.66

3500 0.88 0.83 0.76 0.71 0.68 0.64

4000 0.85 0.81 0.75 0.70 0.66 0.63

4500 0.84 0.80 0.73 0.68 0.63 0.62

5000 0.83 0.78 0.72 0.66 0.62 0.57
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Finally, Fig. 10 shows a graphical representation of

MCC analysis of the proposed method EPB-OCNN and the

five state-of-the-art methods, TBM [1], PD-DGNN [2], CF

[3], DL [4], and DPSP [5], respectively. As illustrated in

the above figure, with the increase in the number of protein

data, a significant amount of decrease in the MCC is noted.

This is because increasing the number of protein data

sequences considered for simulation compromises the

results of classifications being made for secondary protein

structure prediction. This, in turn, reduces the entire MCC

values for all the six methods. However, simulation anal-

ysis showed betterment of the proposed method EPB-

OCNN method over the existing five state-of-the-art

methods. The reason behind the improvement was the

incorporation of Thompson Optimized CNN Protein Sec-

ondary Structure Prediction algorithm. By applying this

algorithm, secondary protein structure prediction was made

using Location-Specific Resultant Matrix as input to the

CNN. Next, the convolved feature map was obtained using

kernel weight and offset parameter for each protein data

based on the Thompson optimization function, therefore

corroborating the result.

4.2.8 Comparison of algorithms

The objective of the proposed Energy Profile Bayes and

Thompson Optimized Convolutional Neural Network

(EPB-OCNN) method remains in utilizing the protein

structure sequence features and focusing on both the loss

and the precision function so that the secondary protein

structure prediction can be made in an accurate and precise

manner. A comprehensive comparative analysis is pro-

vided in Table 10.

With the purpose of improving the precision involved

during protein structure prediction, spatial locations of

every atom in a protein molecule were analyzed in [1].

Though precision was analyzed, error or loss function

involved was not focused. Deep graph neural networks

were employed in [2], where the analysis of both loss and

accuracy was made while designing protein. However, the

true and false positive rate was not concentrated while

doing validation for proof-of-principle. Deep learning and

particle swarm optimization algorithms were integrated

into [3] to identify the species-specific S-glutathionylation

with maximum accuracy. However, the precision involved

in optimization was not included. Along with the accuracy,

the noise factor was analyzed in [4] by means of feature

engineering. Distance-based protein structure prediction

via deep learning was made in [5], therefore contributing to

the accuracy factor. Table 10 lists the comparison of

algorithms made with different methods.

Feature selection As we have applied the energy profiles

for pair of atoms, protein data were found to be highly

relevant for identification, and then prediction was made

using the proposed EPB-OCNN method, and this was not

performed in [3, 4] 5. However, local structure and struc-

tural features were utilized in [1] 2.

Linear/nonlinear/collinear data In the proposed EPB-

OCNN method, energy profiles were applied to the raw

PDB dataset, and hence, relevant protein structures were

said to be identified. Hence, irrespective of the type of data,

by applying energy profiles, further processing was

ensured. In the case of [1, 2, 4], 5, only linear data was said

to be applied. However, in [3], the data type was not

mentioned. Hence, upon comparison with the other state-

of-the-art methods, the proposed method EPB-OCNN

performed well for both linear and nonlinear data.

Optimization algorithm Thompson optimization func-

tion is used to fine tune the parameters in the proposed

EPB-OCNN method that in turn reduces the processing

time and hence speeds up the entire process. In the case of

torsion optimization applied in [1], any small error at local

residue may result in big RMSE, therefore, compromising

protein structure prediction accuracy. In the case of gra-

dient descent applied in [3], it results in redundant com-

putation, therefore, increasing protein structure prediction

time. Though deep learning and deep neural networks

applied in [4], 5 learnt the network parameters by fine
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tuning the parameters, it resulted in higher convergence

rate.

Activation function In the proposed EPB-OCNN

method, the sigmoid activation function is utilized and

hence controls between exploitation and exploration during

optimization. With residue network activation used in [1],

premature convergence was said to occur. Also, with linear

function utilized in [3–5], and the absence of both

exploitation and exploration, it resulted in premature

convergence.

Hyperparameters Optimization of the hyperparameters

were made using the proposed EPB-OCNN method,

whereas learning rate used in three existing methods [3–5]

was found to be 0.6, 0.6, and 0.5, respectively. Also, with

optimized learning rates used in our work, optimal protein

structure identification with a minimum time of the pro-

posed method EPB-OCNN is said to be achieved upon

comparison with the state-of-the-art methods.

Neural network construction method In the proposed

EPB-OCNN method, convolutional model was used that in

turn updated the protein amino acid sequencing based on

the optimization process, therefore discarding premature

convergence. Though deep residual and deep graphs were

utilized in [1–5], with the lack of precise optimization

model, optimized results were not arrived at.

Weight calculation of nodes The score values are only

obtained from the Thompson optimization model, therefore

ensuring optimization. In the case of the other state-of-the-

art methods, it was not available, therefore proposed EPB-

OCNN method is contributing to the better precision–recall

and ROC curve.

Error rate In the proposed EPB-OCNN method, Gaus-

sian prior modeling was applied based on the LSRM

matrix, which in turn minimized the error or loss rate. No

such provision was included to address error aspect in [2],

Table 10 Comparison of algorithms

S. no Methods

EPB-OCNN TBM PD-DGNN CF DL DPSP

1 Feature selection Energy profiles for pair of

atoms

Local

structural

feature

selection

Structural

features

No feature

selection

algorithm

is applied

separately

No feature

selection

algorithm is

applied

separately

No feature

selection

algorithm is

applied

separately

2 Linear/

nonlinear/collinear

data

Any protein data type Linear type Linear

sequence

of amino

acids

Not

applicable

Can be

applied with

linear data

only

Can be applied

with linear

data only

3 Optimization

algorithm

Thompson Optimization

function (with momentum set

to 0.9)

Torsion angle

optimization

Not applied Gradient

descent

Gradient-

based

weight

optimization

ResNet

4 Activation function Sigmoid activation function Per residue

network

activation

Not

applicable

Linear

function

Linear

function

Linear function

5 Hyper parameters

(regularization

parameter, learning

rate)

Hyper parameter is optimized

via Thompson function and

changes according to the

amino acid sequence used for

simulation

Not

applicable

Not

applicable

0.6 0.6 0.5

6 Neural network

construction

method

Convolutional model Deep residual

neural

network

Deep graph

neural

network

Deep Neural

Networks

Deep learning deep

convolutional

residual

neural

network

7 Weight calculation

of nodes

Optimization model Markov

random field

model

Hidden

Markov

models

62 Not available Not available

8 Error handling Gaussian prior modeling Not handled Spearman’s

correlation

coefficient

Not used Static – zero

training

error

Absolute error

calculation
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4. The absolute calculation was done in [5]. Zero training

error was seen in [4].

4.2.9 Statistical test/analysis

The statistical test for secondary protein structure predic-

tion is performed using McNemar test (Table 11). This

McNemar test is employed while we are identifying a

change in ratio for the paired protein structure. To evaluate

the McNemar test, the protein structure data is said to be

placed into a 2 9 2 contingency table, with the cell fre-

quencies equaling the number of pairs. The McNemar test

formula is then measured as given below.

v2 ¼ b� cð Þ2

bþ c
ð17Þ

Figure 11 shows the McNemar test (M-test) of the

proposed method EPB-OCNN and the existing five state-

of-the-art methods. From the figure, it is illustrative that by

performing the M-test analysis for simulation ranging

between 500 and 5000 numbers of protein data, an

increasing trend was found. Despite this result, with sim-

ulations conducted for 500 protein data, a comparative

improvement was observed in the proposed EPB-OCNN

method upon comparison with the five state-of-the-art

methods. The reason behind the improvement was due to

the application of the optimization function for fine tuning

the hyperparameters. With this, the M-test result of the

proposed method EPB-OCNN in comparison with the five

state-of-the-art methods, TBM [1], PD-DGNN [2], CF [3],

DL [4], and DPSP [5] was said to be improved by 6%, 7%,

9%, 10%, and 12%, respectively.

4.2.10 L2 Loss function

L2 loss function is applied to reduce the error. L2 loss

function is measured as the sum of all

the squared difference between the true value and the

predicted value. This is mathematically evaluated as given

below.

L2 Loss Function ¼
Xn

i¼1
ytrue � ypredicted
� �2 ð18Þ

From Eq. (18), L2 loss function is evaluated. Table 12

provides the L2 loss function values of proposed method

EPB-OCNN, and the state-of-the-art methods, TBM [1],

PD-DGNN [2], CF [3], DL [4], and DPSP [5], respectively,

for hyper parameters with a sliding window of 13.

Figure 12 demonstrates the L2 loss function of the

proposed method EPB-OCNN and the existing five state-

of-the-art methods, TBM [1], PD-DGNN [2], CF [3], DL

[4], and DPSP [5], respectively. The number of protein data

is taken in the horizontal direction, and the L2 loss function

is observed at the vertical axis. The number of protein data

is considered in the range of 500 and 5000 to conduct the

simulation. The reason behind the improvement was

application of the L2 loss function for fine tuning the

hyperparameters with the aid of Thompson optimization

algorithm. With this, the L2 loss function of the proposed

method EPB-OCNN in comparison with the five state-of-

the-art methods provides minimal loss. Let us considers

500 protein data for conducting the experiments in the first

Table 11 Tabulation for

McNemar test
Number of protein data McNemar test (M-test)

EPB-OCNN TBM PD-DGNN CF DL DPSP

500 78.23 76.35 75.55 74.55 73.35 72.10

1000 77.55 75.25 74.45 73.25 72.25 71.35

1500 77.10 74.45 74.35 73.10 72.10 71.10

2000 77.95 74.10 73.65 72.45 71.65 70.45

2500 78.65 73.55 73.10 72.10 71.45 70.10

3000 78.45 73.45 72.35 71.65 71.25 69.25

3500 78.10 73.10 71.10 70.35 71.10 68.10

4000 77.55 72.55 70.45 70.10 69.65 67.25

4500 77.45 72.45 71.35 69.45 69.10 67.10

5000 77.10 72.10 71.10 69.10 68.25 66.10
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iteration. By applying the proposed EPB-OCNN, 494 data

are correctly predicted and the L2 loss function is 36

whereas the L2 loss function of the existing TBM [1], PD-

DGNN [2], CF [3], DL [4], and DPSP [5] are 100, 225,

400, 625, and 900, respectively, followed which various

performance results are observed for each method. For

each method, ten different results are observed. The per-

formance of the proposed EPB-OCNN has achieved a

better result for L2 loss function than other existing

methods.

4.2.11 Root mean square error

Root mean square error (RMSE) is measured by taking the

square root of above mentioned L2 loss function. This is

mathematically computed as given below.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ytrue � ypredicted
� �2

q
ð19Þ

From Eq. (19), root mean square error ‘RMSE’ is

computed. Table 13 provides the RMSE values of pro-

posed method EPB-OCNN, and the state-of-the-art

methods, TBM [1], PD-DGNN [2], CF [3], DL [4], and

DPSP [5], respectively, for hyperparameters with a sliding

window of 13.

Figure 13 displays the root mean square error of the

proposed method EPB-OCNN and the existing five state-

of-the-art methods with respect to the number of protein

data. The x-axis denotes the number of protein data, and

the y-axis represents the root mean square error. In the

experimentation process, the different number of protein

data is taken as input in the ranges of 500 and 5000. From

the observed results, the RMSE is minimized using the

introduced EPB-OCNN method. This is because of the

implementation of the loss function to optimize the

hyperparameters by using the Thompson optimization

algorithm. In the first iteration, 500 protein data is used to

estimate the experiments. The RMSE of the proposed EPB-

OCNN is 6, whereas the RMSE of the existing TBM [1],

PD-DGNN [2], CF [3], DL [4], and DPSP [5] is 10, 15, 20,

25, and 30, respectively. The proposed EPB-OCNN

obtained good results for RMSE compared to the state-of-

the-art methods.

Table 12 Tabulation for L2 loss

function
Number of protein data L2 loss function

EPB-OCNN TBM PD-DGNN CF DL DPSP

500 36 100 225 400 625 900

1000 144 1406.25 5700.25 6241 7921 9120.25

1500 441 7439.06 20,093.1 25,043.1 26,732.3 31,064.1

2000 1156 17,161 61,009 75,625 85,849 88,804

2500 1914.06 55,814.1 126,914 153,077 175,352 200,256

3000 7310.25 124,256 277,202 321,489 336,980 393,129

3500 10,302.3 262,913 416,993 477,827 522,368 535,092

4000 13,456 396,900 562,500 633,616 698,896 729,316

4500 18,837.6 704,341 781,898 940,415 957,952 971,210

5000 28,056.3 893,025 1,386,506 1,523,990 1,657,656 1,677,025
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5 Conclusion

In bioinformatics, secondary protein secondary structure

prediction is a very significant task. To have better

apprehension between the sequencing of proteins and their

structural formations, we propose an Energy Profile Bayes

and Thompson Optimized Convolutional Neural Network

(EPB-OCNN) method. Secondary protein secondary

structure prediction is a work of considerable importance in

the area of bioinformatics. Hence it is mandatory to com-

pletely realize the purpose and protein structure. In this

work, Energy Profile Legion-Class Bayes Protein Structure

Identification and Thompson Optimized Convolutional

Neural Network Protein Secondary Structure Prediction

models are combined to predict secondary protein sec-

ondary structure. The Energy Profile Legion-Class Bayes

first measures energy profiles and extracts protein sequence

features for identifying secondary protein structures. Next,

Thompson Optimized Convolutional Neural Network uses

Location-Specific Resultant Matrix as input of convolu-

tional neural network with optimization performed via

Thompson optimization function. This is done to predict

secondary protein secondary structure. Upon comparison

with prediction results of state-of-the-art methods, protein

structure prediction accuracy, time and precision of the

proposed method EPB-OCNN method are relatively strong

and can accomplish very consequential effects and possess

good precision. Additional protein descriptors employing

regularization techniques may also be explored. Inclusion

of categorical variables to produce amino acid descriptors

are also worth further investigation. Future versions of

quantum computers, with their potential to simulate

quantum-chemical systems, may also shed light on the

protein structure prediction.
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Table 13 Tabulation for RMSE

function
Number of protein data Root mean square error

EPB-OCNN TBM PD-DGNN CF DL DPSP

500 6 10 15 20 25 30

1000 12 37.5 75.5 79 89 95.5

1500 21 86.25 141.75 158.25 163.5 176.25

2000 34 131 247 275 293 298

2500 43.75 236.25 356.25 391.25 418.75 447.5

3000 85.5 352.5 526.5 567 580.5 627

3500 101.5 512.75 645.75 691.25 722.75 731.5

4000 116 630 750 796 836 854

4500 137.25 839.25 884.25 969.75 978.75 985.5

5000 167.5 945 1177.5 1234.5 1287.5 1295
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(2021) Determination of the interaction between the receptor

binding domain of 2019-nCoV spike protein, TMPRSS2,

cathepsin B and cathepsin L and glycosidic and aglycon forms of

some flavonols. Turk J Biol. https://doi.org/10.3906/biy-2104-51

34. Yilmaz C, Gok M (2021) System designs to perform bioinfor-

matics sequence alignment. Turk J Electr Eng Comput Sci.

https://doi.org/10.3906/elk-1105-22
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