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ABSTRACT: Proteomics data analysis strongly benefits from not studying single proteins
in isolation but taking their multivariate interdependence into account. We introduce
PerseusNet, the new Perseus network module for the biological analysis of proteomics
data. Proteomics is commonly used to generate networks, e.g., with affinity purification
experiments, but networks are also used to explore proteomics data. PerseusNet supports
the biomedical researcher for both modes of data analysis with a multitude of activities.
For affinity purification, a volcano-plot-based statistical analysis method for network
generation is featured which is scalable to large numbers of baits. For posttranslational
modifications of proteins, such as phosphorylation, a collection of dedicated network
analysis tools helps in elucidating cellular signaling events. Co-expression network analysis
of proteomics data adopts established tools from transcriptome co-expression analysis.
PerseusNet is extensible through a plugin architecture in a multi-lingual way, integrating
analyses in C#, Python, and R, and is freely available at http://www.perseus-framework.
org.
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■ INTRODUCTION

The study of complex systems1 is concerned with the question
of how the relationships between the parts of a system give
rise to its collective behavior. Complex systems often generate
emergent properties2 which are not present in an obvious way
in its parts. The interactions between the components of a
complex system define a network of connections consisting of
nodes and edges. Examples of such networks range over all
disciplines of science, including the study of social media
networks,3 scientific collaboration networks,4 and the human
brain and its interconnected neurons as a particularly
interesting one. Much of the relevant content is concealed
in the network constructed from these interactions and is not
visible in the components themselves. For instance, the brain
connectome,5 and not the cellular content of the brain, is
believed to make us who we are.6,7 Similarly, the observation
of cellular concentrations of biomolecules without considering
their interaction would provide a limited picture that ignores
potential emergent properties of the biomolecular complex
system. Hence, it is mandatory to study biological systems,
such as cellular concentrations of biomolecules, in the
framework of network biology.8

At a fundamental level, all network connections between the
cellular biomolecules are biochemical reactions, and their
specification in biochemical pathways together with their
subcellular spatial distribution would provide complete
knowledge about the biological network state of the cell.
This collective network of all biochemical reactions contains
all metabolic reactions, the signaling cascades, gene regulatory

networks, and all complex-forming non-covalent interactions
between molecules, as for instance protein−protein inter-
actions (PPIs). Due to the limitations of experimental and
computational methods to map out this interaction network,
we often obtain only partial knowledge about the complete
biochemical reaction network from experiments. Networks
are, however, not limited to describing fundamental
physicochemical interactions between biomolecules. For
instance, in a gene co-expression network analysis,9 one
looks for similarity of expression patterns of gene products
over many samples. Strongly correlated expression implies that
these genes have some kind of non-physical interaction; e.g.,
they are part of the same transcriptional regulatory program,
or they share membership in the same pathway or protein
complex. However, the exact relationship in terms of
biochemical reactions remains unknown with these and
other techniques. Hence, in these cases, networks describe a
more coarsely grained level of detail, in which relationships
between molecules are not necessarily biochemical reactions,
but of a more general kind.
Computational proteomics is a mature data science that

copes well with the large amounts of data produced in mass
spectrometry (MS) experiments.10 Perseus is an established
framework for the downstream bioinformatics analysis of
quantitative proteomics data.11,12 The initial version of
Perseus provided a comprehensive framework and set of
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activities to analyze data matrices originating from quantitative
proteomics in a workflow environment. The main idea behind
Perseus is to enable researchers in biomedical sciences to
perform data analysis themselves. Here we describe how we
extend this program to the analysis of biological networks in
the context of proteomics. While cytoscape13 exists as the de
facto standard for network analysis and visualization, many
proteomics-specific tasks for the generation and analysis of
networks are lacking from this framework, as well as workflow
navigation. PerseusNet fills this gap and enables non-
computational experts to perform complete network-based
analysis of their data. We explicitly do not want to re-invent
existing methods and algorithms. Instead, we designed an
extensible framework that integrates with existing tools, like
cytoscape, and interoperates with existing code and scripts
from the network analysis community that were written in
diverse languages, like Python and R. The data structures
within Perseus that hold the networks were set up in a way
that facilitates studying dynamic changes in networks and
finding differential network properties over complex exper-
imental designs. Side-by-side analysis of networks with data
matrices in a common workflow environment allows for a
seamless transition between matrix-centric and network-
centric approaches.
In the following we start with a general description of the

new network framework in Perseus, including how it enables
multilingual programming and usage of code resources from R
and Python. We then introduce the new volcano-plot based
analysis workflow scalable to large affinity purification-mass
spectrometry (AP-MS) datasets. We describe how general
and, more specifically, large-scale PPI networks are handled
and curated in Perseus. A section on the analysis of
posttranslational modification (PTM)-induced networks, like
kinase−substrate relationships for phosphoproteomics, is next.
Finally, we cover co-expression analysis in Perseus and its
applications to clinical proteomics.

■ EXPERIMENTAL SECTION

Creating Interaction Networks from Pulldown
Experiments

We created an interaction network from a pull-down screen.14

First, .RAW files were obtained from PRIDE (PXD003758)
and processed with MaxQuant version 1.6.2.10. Mouse
protein sequences were downloaded from UniProt (release
2017_07). Parameters “matching between runs” and “LFQ”
were selected in addition to the default parameters. Down-
stream analysis of the ‘proteinGroups.txt’ output table was
performed in Perseus using the tools described in this Article.
Columns for baits Eed, Ring1b, and Bap1 and their controls in
the ESC and NPC cell lines were selected and log
transformed. Quantitative profiles were filtered for missing
values, and were filtered independently for each of the bait
control pairs, retaining only proteins that were quantified in all
three replicates of either the bait or control pull-down.
Missing values were imputed (width 0.3, down shift 1.8)
before combining the tables and performing the multi-volcano
analysis (Table S1). The s0 and FDR parameters of the multi-
volcano analysis for Class A (higher confidence, s0 = 1, FDR =
0.01%) and Class B (lower confidence, s0 = 1, FDR = 0.2%)
were chosen by visual inspection, aiming for a low number of
significantly depleted proteins in any of the experiments. Class
C interactions, which are based on profile correlation between

bait and prey, were not considered in this network due to the
limited number of pull-downs in the dataset, which would
result in inaccurate correlation estimation. Edges representing
known protein complex interactions were annotated in the
network. Due to missing mouse CORUM annotations for any
of the baits, mouse CORUM annotations were obtained by
mapping between mouse and human homologues as listed in
the MGI database.15

Approximately Scale-Free Topology of the STRING
Interaction Network

We downloaded the human STRING interaction network
(v10.5) from the STRING website. After filtering for high
confidence interactions (combined score > 0.9), the scale-free
fit index was calculated according to ref 16. Node degrees
were calculated and plotted against their frequency distribu-
tion on a log−log scale. The R2 of a linear fit to the log−log
space represents the scale-free fit index.
Network Analysis of a Phosphoproteomic Dataset of EGF
Stimulation

Two separate analysis tool, PHOTON and KSEA, were
applied to the same experimental dataset of 9184 phosphor-
ylation sites with high localization probability (>0.75)17

(Table S2). Log2 fold-changes for EGF from two replicates
were averaged. For PHOTON analysis, we first generated a
high-confidence PPI network. We downloaded all interactions
from HIPPIE and filtered them for high-confidence
interactions (confidence > 0.72), additionally removing high-
degree nodes (degree < 700). Nodes in the HIPPIE network
are identified by their Entrez GeneID. Therefore, the
experimental data were mapped from UniProt to Entrez
GeneIDs before the nodes of the network were annotated .
Phosphorylation sites with multiple GeneIDs were mapped to
all matching nodes in the network. We then performed
PHOTON analysis with adjusted default parameters. Network
reconstruction with ANAT was enabled with the 100 highest
scoring proteins and EGF anchor (GeneID 1950). Addition-
ally, we increased the number of permutations to 100 000.
The KSEA analysis was performed on the human site-specific
kinase−substrate network from PhosphositePlus.18 Data and
network were matched on the basis of UniProt identifiers.
Co-expression Analysis of a Clinical Proteomics Dataset

Protein quantification data and clinical annotation were
obtained from Yanovic et al.19 SILAC ratios were first
transformed to log(light/heavy). The dataset was filtered for
the 43 patients unique to ref 19. Using global hierarchical
clustering of the patients, four outlier samples were identified
and removed from the dataset. Additionally, proteins with less
than 70% valid values were removed from the dataset, and the
resulting patient profiles were Z-scored (Table S3). Following
the WGCNA workflow,16 the power parameter for the co-
expression analysis was selected using the ‘Soft-threshold’
activity provided by PluginCoExpression. Co-expression
analysis was performed in a signed network with biweight
midcorrelation and the power parameters set to 10. The
eigengene of each co-expression module was correlated with
the provided clinical data using Pearson correlation and
clustered using hierarchical clustering.
PluginInterop Provides a Central Entry Point for All
External Plugins

The PluginInterop project is written in the C# programming
language and implements several Perseus plugin APIs. For
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users it provides a number of activities in Perseus for
executing script files written in the Python and R languages.
Upon selection of any of these activities, users will be
prompted with a parameter window, allowing them to pass
additional arguments to the script and requiring them to
specify the executable that should be used for processing.
Since Perseus does not include an installation of Python or R,
users will have to install those and any other dependencies
separately. PluginInterop aids the user by trying to automati-
cally detect an existing installation and provide meaningful
error messages in case of missing dependencies. Developers
can additionally leverage the functionality implemented in
PluginInterop as a basis for parametrized scripts. In general,
developers are free to choose which external scripting
language or program they would like to utilize. We found
the R and Python scripting languages to be most useful, which
is why we provide two companion libraries, ‘perseuspy’ and
‘PerseusR’, to be used alongside PluginInterop. These libraries
aid the communication between Perseus and the script.
The communication between Perseus and external scripts is

straightforward and is easily implemented for any tools of
choice. In short, Perseus will persist all necessary data to the
hard-drive and call the specified tool with specific command-
line arguments. The first arguments contain all the parameters
specified by the user, per choice of the developer, either in an
XML format or simply separated by spaces. Second, the input

data from the workflow is saved to a temporary location which
is passed to the script. The final arguments specify the
expected location of the output data. The external process can
provide status and progress updates to the user, as well as
detailed error reporting by printing to stdout/stderr and
indicating success or failure through the exit code. Once the
process exits, Perseus will parse the output data for its
expected location and insert it to the workflow. Any step in
the pipeline is customizable for advanced scenarios, such as
custom data formats.
The PluginInterop binary is automatically included in the

latest Perseus version. The source code was published under
the permissive, open-source MIT license on Github (https://
github.com/cox-labs/PluginInterop). The website also pro-
vides more information on how to develop plugins, including
a video demonstration. The plugins presented in this Article
are all developed on top of PluginInterop and the perseuspy
and PerseusR companion libraries.

Library Support for Scripting Languages

We implemented libraries in R and Python which facilitate the
interoperability of Perseus with external scripting languages.
The main aim of these libraries is to map the data structures
of Perseus to a counterpart native to the external language.
Developers proficient in these languages will be more
comfortable and productive with these native data structures.

Figure 1. Schematic overview of the new network functionality in Perseus. PerseusNet implements a number of processing and analysis steps
facilitated by the network collection data type. While including proteomics centric analyses, such as for the analysis of interaction screens, the
network module also provides a number of general purpose tools, as, for instance, for network annotation, filtering, and topology determination.
With the extension of the Perseus plugin API to networks and furthermore to other programing languages, it becomes possible to integrate
existing network analysis tools in Perseus. Networks are easily imported to and exported from Perseus, due to its support for standard formats.
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The largest benefit comes from the resulting integration with
the existing data science ecosystem, all now available to
Perseus plugin developers.
The ‘perseuspy’ module provides data mappings for the

Python language. The Perseus expression matrix is mapped to
the ‘DataFrame’ object of the popular ‘pandas’ module, which
is tightly integrated with ‘numpy’, the de facto standard for
numerical computations in Python. The Perseus network
collection data type maps to a list of networks from the
‘networkx’ package. It features a variety of graph algorithms
and interfaces well with other modules, due to its usage of
standard Python dictionaries. ‘perseuspy’ is distributed via The
Python Package Index (PyPI), allowing for easy installation of
the module for developers and users alike. The code of
‘perseuspy’ is published under the permissive, open-source
MIT license, and is available alongside usage examples and
more information on https://github.com/cox-labs/perseuspy.
For the R language, we implemented the ‘PerseusR’

package. It provides a mapping of the Perseus expression
matrix to a custom wrapper class around the R ‘data.frame’
object. The wrapping was necessary to represent Perseus-
specific information such as annotation rows. Alternatively,
developers can load data as a Bioconductor ‘expressionSet’
object which enables the interface with the entire
Bioconductors bioinformatics suite. Currently there is no
support for network collections in ‘PerseusR’, but we plan to
implement it in the near future. ‘PerseusR’ is also published
under the MIT license and its code is available on https://
github.com/cox-labs/PerseusR. ‘PerseusR’ is easily installed
directly from CRAN.

Implementation of PluginPHOTON

We implemented a Perseus plugin for the PHOTON tool on
top of the functionality provided by PluginInterop and
perseuspy. PHOTON was previously capable to run only a
single experiment at a time with a fixed human PPI network.
We expanded its implementation to allow for parallel
processing of any number of experiments on any network.
These changes make large datasets from any species directly
amenable to PHOTON analysis. PluginPHOTON is pub-
lished under the MIT license, its code is available on https://
github.com/jdrudolph/photon, and it is included in the latest
Perseus release.

Implementation of PluginCoExpression

We implemented parts of the WGCNA pipeline as a Perseus
plugin. PluginCoExpression provides access to the WGCNA
functions implemented in the R language via PluginInterop
and PerseusR.

Implementation of KSEA in Perseus

KSEA analysis was implemented in Perseus and tested for
correctness against the reference implementation.

■ RESULTS AND DISCUSSION

Workflow-Based Biological Network Analysis

PerseusNet was devised to fulfill the computational needs of
proteomics researchers wishing to accomplish network
analysis of their data. While it is extensible through a new
plugin application programming interface (API), and hence
any network analysis functionality can be implemented, most
tools needed for proteomics research and connecting it to
generic network analysis platforms are included in the
software (Figure 1). Dedicated activities for analyzing AP-
MS datasets and phosphoproteomics experiments in the
context of kinase−substrate networks belong to the basic
infrastructure of PerseusNet. The most common standard data
formats (tab, txt, csv, gml, sif, json) are supported as input. An
extended multi-language plugin API allows leveraging many
existing tools in the analysis workflow. As an important
example, co-expression clustering tools are integrated in this
way.
To accommodate PerseusNet, we extended the Perseus

framework with a new data type termed network collection
(Figure 2) that represents a set of one or more networks
which are analyzed jointly in the workflow. Different networks
within the same network collection can, for instance, represent
networks derived from different individuals (patients),
experimental conditions, or biological replicates. All informa-
tion in the network collection is organized in data tables,
leveraging the existing augmented data matrix11 in Perseus.
General information on the networks in the collection is
stored in the networks table, where each row represents an
individual network. Here, sample-related annotations, such as
calculated global network properties, can be stored to enable
their usage in analysis activities operating on a network
collection. For instance, if the samples correspond to different
patients, the networks table can hold patient-specific
information as derived from patient records or questionnaires.
These variables can then be used as independent or
confounding factors in statistical analysis of the networks.
The nodes and edges of each individual network are stored

in a pair of separate tables. The nodes table further describes
the entities in the network, while the edges table provides
details on the connections between the entities. The entities
in the nodes table can be annotated with local network
properties, such as the node degree. In case the entities

Figure 2. Schematic representation of the network collection data type. User-facing information is displayed in tabular form with tables listing the
networks in the collection, as well as providing detailed information on the nodes and edges of each network. Internally an auxiliary graph data
structure aids in the implementation of graph algorithms. Node- and edge-mapping provide the required cross-references between the tabular and
graph representation.
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correspond to proteins, biologically meaningful annotations
could include membership in gene ontology terms, pathways,
or protein complexes. Similarly, edges can be annotated in the
edges table with properties of pairwise relationships between
proteins, as, for instance, interaction confidence measures. All
of these properties are then accessible to the network analysis
tools. Furthermore, all mentioned tables can be sorted and
searched, allowing all information to be browsed and
inspected intuitively. Internally, a graph data structure for
each network enables the efficient execution of graph
algorithms. We did not aim to include generic graphical
representation of networks as node-link diagrams, since this
can be achieved in other tools such as Cytoscape, for which
we provide simple adaptors for the transfer of networks.
However, several activities include specialized visualizations
tailored to specific analyses.
In Perseus, all data analysis steps are performed within a

graphical workflow (see Figure S1.) Enabled by the newly
implemented network collection, the Perseus workflow is now
capable of all import, processing, and analysis steps in the
side-by-side analysis of expression matrices and networks. All
data imported into Perseus is represented as a separate entity
in the workflow. Any matrix or network undergoing a
processing step is not modified in place but rather becomes
a new entity that gets connected to the original data in the
workflow. By inspecting both input and output data, every
step in the analysis is traceable and easily understood. Certain
processing steps allow for the transformation of matrices into
networks and vice versa, or the mapping of data between the
two. As a result, any analysis performed in Perseus, potentially
including several side-by-side processing steps of networks and
matrices, always remains transparent to the user.

Multilingual Plugin Activities

The network collection data structure (Figure 2) and the
extended Perseus workflow provide the foundation for
enabling various network analyses, many of which are available
in Perseus. In general, networks either originate from external
sources or are created in a data-driven manner from within the
workflow. To facilitate the import of external networks into
the workflow, we implemented parsers for standard network
formats, such as edge table (.tab|.txt|.csv), GraphML (.gml)
(http://graphml.graphdrawing.org/), Cytoscape’s simple in-
teraction format (.sif) (http://manual.cytoscape.org/en/
stable/Supported_Network_File_Formats.html), and D3js’s
JSONgraph (.json) (http://jsongraphformat.info/), which
enable loading interactions from most popular network
databases, including STRING,20 BioGRID,21 IntAct,22

CORUM,23 and PhosphoSitePlus.18 Furthermore, specific
quantitative expression data, such as AP-MS, drives the
creation of novel PPI networks, and phosphoproteomics
datasets allow for a more detailed view or construction of
kinase−substrate relationship networks. Specialized visual-
izations of such networks are provided (see later sections),
which allow for an intuitive visual inspection of the results of
the analysis. Perseus is not limited to physical interaction
networks: co-expression clustering provides a powerful
alternative to regular hierarchical clustering for expression
proteomics studies. Finally, any network collection can be
exported from the workflow in a plain text file format
(Supplementary Data 1) for sharing or use in any other
external tools, such as Cytoscape. In order to accommodate
these new capabilities in the Perseus plugin system, we

extended the Perseus plugin API with new programming
interfaces for the network collection and other associated data
types, as well as the respective import, processing, and analysis
interfaces (see Figure S2.) This fully featured API is available
to all developers wishing to extend Perseus’s functionality with
plugins. All analyses presented in this Article adhere to the
new API.
In order to better leverage the existing network analysis

ecosystem, we additionally implemented a new mode of
interoperability between Perseus and external tools (Figure 3).

The PluginInterop project enables this functionality and
allows the user to run external tools from within the Perseus
workflow, most prominently scripts written in the popular R
and Python languages. Open-source companion libraries for R
(PerseusR, https://github.com/cox-labs/PerseusR) and Py-
thon (perseuspy, https://github.com/cox-labs/perseuspy)
provide utilities for interfacing with Perseus. As a result,
network analysis tools originally implemented in external tools
can run from within the Perseus workflow with only minor
adjustments. The implementations of the PHOTON and
WGCNA plugins presented in this Article are based upon
PluginInterop and its companion libraries. Instructions for
interested developers on how to write scripts for Perseus or
how to adapt existing tools can be found on the PluginInterop
website (https://github.com/cox-labs/PluginInterop). In the
following sections, we will present a number of network
analyses which are now implemented in Perseus, with focus
on their application to different types of proteomics data.
Affinity Enrichment MS Interactomics

Affinity purification or enrichment coupled to MS analysis has
become a powerful tool for interrogating PPIs.24,25 Not only is
it able to provide a detailed view on proteins of interest, but it
can also determine the basic building blocks for the assembly

Figure 3. Schematic of the Perseus plugin system. Plugins written in
C# are native to Perseus and implement their functionality directly
on top of the application programming interfaces and data structures
provided by the application framework. PluginInterop enables the
execution of scripts in the Python and R languages, as well as other
external programs. By communicating via the file system, data are
transferred between Perseus and the external program. The
companion libraries ‘perseuspy’ and ‘PerseusR’ enable developers to
access the data science ecosystem in their language of choice. For
custom graphical user interface elements and an improved user
experience of external tools, developers can implement a thin C#
wrapper class that extends the generic functionality of PluginInterop.
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of large-scale PPI networks.26,27 Historically, protein complex
members were detected by subjecting the sample to a series of
purification steps followed by MS identification. With the
advent of quantitative MS, detecting even transient
interactions has become possible by relying not on the
identification itself, but instead on quantitative information.
The sample is not purified but only enriched for the protein of

interest and its interaction partners and then subjected to MS
quantification.28

Confidently identifying bona fide interactions and distin-
guishing them from background binders, arising from off-
target binding or contamination, require data analysis of
replicate case and control measurements. Compared to purely
fold-change-based methods, statistical tests provide a powerful

Figure 4. AP-MS. (a) The Hawaii plot provides an overview over an entire dataset, in this case consisting of three baits in two conditions (Table
S1 and Experimental Section).14 Each volcano plot displays the results of a pull-down of a specific bait (Bap1, Eed, Ring1b) in one of the ESC or
NPC cell lines. Significant interactors are determined using a permutation-based FDR and the resulting high-confidence Class A (solid line) and
low-confidence Class B (dashed lines) thresholds are displayed in the plot. In this case only in the Bap1 ESC pull-down, Class B interactions
could be found. Class A interactors are displayed in dark gray, other proteins are shown in light gray. (b) Enrichment plot comparing the Eed
pull-downs in ESC and NPC cell lines. Significant interactors in any of the two conditions are displayed in black, nonsignificant proteins are
displayed in light gray. Proteins differentially enriched in one of the two conditions will be located far from the diagonal and can be identified
visually. (c) Visualization of the resulting protein interaction network for both cell lines. Bait proteins are colored in green, and their interactors
are colored in blue. Thick lines represent Class A interactions, thinner lines Class B. Interactions which were already annotated in the human
CORUM database are highlighted in red.
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way to compare case and control samples by calculating a test
statistic and an associated p-value and limit the number of
false-positives. For visual inspection of the results, the
(negative logarithm of the) p-value can be plotted against
the size of the effect, i.e., the difference between the means of
logarithmic abundances, in a so-called volcano plot. Since one
statistical test is performed for each protein, which amounts to
a large number of tests performed simultaneously, the
significance level needs to be adjusted to avoid increased
numbers of false positives due to the multiple hypothesis
testing problem.29 A popular strategy to adjust for multiple
testing is to control the false discovery rate (FDR), which can
be achieved by permutation-based methods. Furthermore, in
the volcano plot method it is necessary to define the
functional form of the curves that separate significant from
non-significant hits, either by straight lines or, in a more
sophisticated way, introduced in the significance analysis of
microarrays (SAM) method,30 by modifying the t test statistic
with the background variance parameter s0. This standard
workflow is available in Perseus but becomes increasingly
cumbersome for interaction screens with more than a handful
of baits. Parameter values for s0 and the FDR thresholds are
often applied separately for each pulldown, inviting overfitting
and cherry-picking, and also requiring results be subsequently
combined manually.
We implemented the interactive multi-volcano plot (Figure

4a) to analyze interaction screens with arbitrarily many baits
and conditions simultaneously. Given the experimental design
of the dataset, defined by baits and conditions, the analysis is
applied to each experiment. FDR threshold and s0 parameters
for two different Class A (high) and Class B (low) confidence
classes can be selected globally. For sufficiently large datasets,
instead of dedicated control samples, an internal control can
be assembled from the dataset for each pulldown consisting of
pulldowns of other, unrelated baits. The results can be
inspected through an interactive user interface. All volcano
plots are displayed in the overview panel. A multi-functional
detail panel shows more information on selected plots and
provides zoom, protein selection, and labeling options. If a
single plot is selected, the volcano plot is shown in the detail
panel. When two plots are selected, the t test differences
between the selected experiments are plotted against each
other, highlighting changes in the enrichment of proteins
between experiments (Figure 4b). Additionally, all data can be
browsed in tabular form, making it easily searchable and
allowing for rich styling options. Known interactors or gene
ontology annotations matching the experiment can be used to
highlight proteins in the plot and can serve as a positive
control for the adjustment of test parameters. Since all test
parameters are controlled on a global level, overfitting and
cherry-picking parameter values is prevented effectively. We
integrated the multi-volcano analysis into the new network
module. Results from PPI screens can be exported as network
objects into the Perseus workflow. A specialized node-link
visualization based on the open-source cytoscape.js library31,32

with multiple layers of information, allows for easy
interpretation of the results (Figure 4c). A PPI network that
was newly created in this way can be integrated with existing
networks or exported in various formats using the functions
available through the network module.
As an example application, we obtained pull-down experi-

ments of Polycomb group proteins from ref 14, covering the
three baits Bap1, Eed, and Ring1 in mouse embryonic stem

cells (ESCs) and neural progenitor cells (NPCs). The filtered
dataset contained 2995 proteins (Table S1). Using the new
multi-volcano analysis (Figure 4a), we obtained an interaction
network connecting the bait proteins with their significantly
enriched prey proteins. Bait proteins were identified by their
gene name, as specified in the annotation rows of the dataset.
In order to have a consistent representation, the protein
groups of the preys are also identified by their gene names.
The resulting network contained 134 nodes and 140 edges.
The results were comparable to the original publication with
overlaps between 55% (Ring1b ESC) and 91% (Bap1 ESC)
between the previously reported interactions and detected
Class A interactions. Differences can be explained by the
slightly different methodology used in this Article. We used
the s0-modified t test with s0 set to 1.0, and FDRs of 0.01%
and 0.2% for Class A and B, respectively, while the authors of
ref 14 used individually chosen fold-change and p-value cutoffs
for each experiment. No Class C interactions were included.
Using the built-in visualization features, such as the enrich-
ment between experiments, we identified several interactions
that were conditional on the cell type (Figure 4b). By
annotating the newly created protein-interaction network with
known complex interaction from CORUM and inspecting the
resulting node-link network visualization (Figure 4c),
previously known and possibly novel interactions could be
distinguished.
Further confidence in the existence of an interaction

between a protein identified in a pulldown and the bait can
be obtained by correlation analysis. The correlation of the
intensity profiles over many pulldowns with the bait intensity
profile is reported in the output tables, together with the
volcano plot-derived significance of the interaction. When
assembling the interaction network, a threshold is applied to
this correlation in order to define an additional class of
interactions (Class C), which might not have been found by
volcano plot analysis (Class A and Class B). This workflow is
especially appealing for interaction screens with a large
number of bait proteins.

Importing, Curating, and Probing Large-Scale PPI
Networks

While protein interaction screens can uncover novel or
condition-specific interactions, a wealth of detected and
predicted interactions are already stored in PPI databases.33

Analyzing large-scale PPI networks jointly with other omics
data has great promise. However, a major obstacle to
performing systems-level analysis on these large-scale net-
works is the lack of easy-to-use software solutions to
transparently handle the processing and analysis of these
networks. Many studies under-utilize the existing resources
and mostly report the interactions of a single protein as an
afterthought. In the following, we introduce the new network
capabilities of Perseus to assemble, filter, and understand
large-scale PPI networks, which lay the foundation for any
network analysis.
The first task is assembling a high-confidence interaction

network. Many databases, such as STRING,20 BioGRID,21 or
HIPPIE,34 allow researchers to download all interactions in a
tabular format, which can be easily loaded into Perseus, even
with sizes of up to few millions of interactions. Supporting
information on the interactions such as, but not limited to, the
interaction type or a measure of confidence remains available
at each step in the subsequent data analysis. Networks are not
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restricted to originate from any single data source. Perseus
provides all necessary tools to integrate information from any
source, providing full control over the choice of identifier and
handling of duplication and ambiguity in the mapping.
Conversely, generalized interaction networks such as STRING
can be filtered by interaction type to generate a physical
interaction network. Confidence measures often integrate
diverse knowledge into a single score, derived from how often,
and by which experimental technique, an interaction was
detected, combined with more abstract measures, such as co-
expression and literature co-occurrence of the interaction
partners.20 There are two approaches for interaction
confidence aware network analysis (Figure 5a). Applying a
cutoff to the confidence score removes low-confidence
interactions from the network, which is especially useful
when applying methods that treat all interactions equally. The
cutoff can be chosen according to the confidence score
distribution and the targeted network size (Figure 5b). Other
methods operate on weighted networks and distinguish
between interactions with high or low confidence. In this
case the confidence scores can be used as an edge weight. In
addition to static confidence scores, one can devise dynamic
confidence scores from experimental data which reflect, e.g.,
changes in abundance or localization of any of the interactors.
A deeper understanding of the network requires a different

perspective in addition to the interaction-centric view. Any list
of interactions can be converted into a network collection

with a single click. A dedicated set of network-specific
processing activities are now available. While processing the
list of interactions, the focus remains on the edges of the
network. In the network view, the focus is shifted to the
nodes. With the powerful identifier and data mapping
mechanisms in Perseus, nodes are easily annotated with
various annotations, such as gene ontology (GO),35 or
quantitative proteomics data. Any annotation can be
subsequently used to filter the nodes of the network. One
could, for example, extract a sub-network of proteins
associated with a specific GO category and their interactions
from the large-scale network. Using the data mapping from,
e.g., deep proteomes of specific cell lines or tissues, condition-
specific sub-networks can be created.
Further understanding is gained by studying the intrinsic

properties of networks. By calculating node degrees,
corresponding to the number of neighbors of each node in
the network, hub nodes can be distinguished from peripheral
nodes. By analyzing the distribution of the node degrees in the
network, global network properties, such as approximate scale-
freeness,36,37 of the topology can be identified (Figure 5c).
Furthermore, intrinsic local network properties, like the node
degree, can be correlated with biological properties derived
from protein annotations or experimental data. The proper
construction of large-scale interaction networks and under-
standing of their basic properties are central to the successful

Figure 5. Handling large-scale protein interaction databases in Perseus. (a) Interactions in PPI databases are often annotated with confidence
scores derived from various sources. Perseus provides tools to load and combine confidence scores derived a variety of data sources, including
dynamic confidence adjustments based on condition-specific data. High-confidence networks can be obtained by removing edges below a given
hard threshold or alternatively, confidence scores can be utilized directly as so-called edge weights, thereby allowing for the inclusion of lower-
confidence interactions. (b) Histogram of the combined confidence score from the human STRING PPI network. Superimposed in orange is the
number of interactions in the filtered network if the edges with scores lower than the current value were removed. Filtering out low confidence
edges leads to a significant reduction in the number of edges in the final network. (c) Log−log plot of the node degree against the degree
frequency generated from the human STRING PPI network. The R2 value of the linear fit (orange) to these data represents the scale-free fit
index.
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application of more specialized analyses such as the
integration of such networks with PTM data.

Network Analysis of PTM Data

The MS-based study of PTMs is now possible on a global
scale for several types of modifications. The best known
example is MS-based phosphoproteomics,38 which is a
powerful tool for interrogating signaling events on a large
scale. However, drawing conclusions directly from phosphor-
ylation changes is challenging, due to the mostly missing
functional information on the inhibitory or excitatory action of
a specific protein phosphorylation at a specific site. Network-

based approaches for the analysis of phosphorylation data
derive functional information on the protein level by
interrogating the phosphorylation changes observed in the
network neighborhood.17,39,40

We implemented the popular kinase−substrate enrichment
analysis39 (KSEA) tool for predicting kinase activities in
Perseus. Site-specific kinase−substrate networks (Figure 6a)
assign kinases to the experimentally observed phosphorylation
sites. The core of the analysis is the calculation of a series of
scores (mean, enrichment, Z-score, p-value, q-value) for each
kinase, based on the quantitative phosphorylation changes of

Figure 6. Network analysis of an EGF stimulation phosphoproteomics study. (a) Comparison of network topologies used for the analysis of
phosphoproteomics data. Nodes in the network are represented as gray circles or pie charts where each slice represents the observed
phosphorylation changes at a specific site on the protein. Physical protein−protein interactions (left side) are present between all classes of
proteins and are by definition undirected. In order to capture the enzymatic action of kinases more accurately, directed interactions (right side)
from kinase to substrate are defined in a site-specific manner. (b) KSEA Z-score and PHOTON signaling functionality scores derived from
phosphoproteomics data measured after EGF stimulation (Table S2) only weakly correlate to each other (Pearson correlation 0.52). Kinases
annotated in GO with the term ‘Epidermal growth factor receptor signaling pathway’ are highlighted in red. Both methods assign high scores to
central members of the expected pathway. (c) Signaling network reconstructed by PHOTON from the 100 highest scoring proteins anchored at
EGF. The interactive visualization has an automatic layout and phosphorylation data overlay.
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its substrates. These predicted kinase activities can be
analyzed further to find differentially activated kinases.
KSEA most often utilizes the curated kinase−substrate
network from the PhosphoSitePlus database.18,41,42 In order
to extend the coverage of the network and thereby allow for
the utilization of a larger fraction of the experimental data, the

network can be supplemented with predicted kinase−substrate
interactions from tools such as NetworKIN43,44 or with low-
specificity interactions derived from kinase target sequence
motifs.
PHOTON,17 now available in Perseus, is an alternative

approach to KSEA that calculates more broadly defined

Figure 7. Co-expression network analysis on clinical data. (a) The correlation matrix is an equivalent representation of a fully connected network
with edge weights corresponding to the correlation between the proteins. (b) Co-expression clustering and identified co-expression modules
annotate the original expression matrix. Phenotype data can be correlated with representative co-expression module profiles and provide a high-
level interpretation of the modules. (c) Parameter selection of the power parameter for the Yanovich et al.19 dataset (Table S3 and Experimental
Section). The lowest power reaching close to a high scale-free fit index of 0.9 (red line) was selected. (d) Co-expression cluster dendrogram. Each
color corresponds to one co-expression module. (e) Correlation heat map between module eigengenes and clinical parameters.
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signaling functionality scores for any protein, rather than
activities for kinases only. A data-annotated large-scale PPI
network now serves as the input (Figure 6a). The resulting
signaling functionality scores for each experimental condition
are based on the observed phosphorylation in the neighbor-
hood of each protein and are assigned a significance by a
permutation scheme. The scores can either be analyzed
directly, to find proteins with differentially changing signaling
functionality, or utilized in a second step of the PHOTON
pipeline, in which signaling pathways are automatically
reconstructed from the large-scale network that connect the
proteins with significant signaling functionality.17

The Perseus network module allows for performing both
KSEA and PHOTON analysis on the same experimental
data17 and a choice of networks.18,34 When applied to a
phosphoproteomics dataset of EGF stimulation,17 the trade-
offs of both methods in terms of coverage can be compared at
every step of the analysis by inspecting the matrices and
network collections in the workflow. For KSEA, 583 (5.66%)
phosphorylation sites could be mapped to 975 (9.43%) site-
specific kinase substrate interactions. As expected, PHOTON
provided more coverage, with 9148 (99.82%) sites mapped to
2070 (16.87%) nodes in the PPI network. Due to the
differences in the utilized methodologies and the chosen
networks, resulting scores will differ but can be compared with
the analyses and visualizations provided by Perseus (Figure
6b). While KSEA is tailored to the analysis of phospho-
proteomics data due to its focus on kinase−substrate
interactions, PHOTON is not limited to phosphorylation.
Any quantitative, large-scale PTM dataset can be mapped to
the PPI network, signaling functionality scores can be
calculated, and sub-networks can be reconstructed.
Both tools support the analysis of datasets with multiple

conditions, effectively transforming the peptide-level phos-
phorylation data into protein-level scores. The entire well-
established toolset for the analysis of protein quantification
data can be applied to these scores, including hierarchical
clustering, enrichment analysis,17 and time-series analysis. To
visualize PTM data in the context of any network, we
implemented an interactive visualization of directly in Perseus
(Figure 6c) using the cytoscape.js library.31 The visualization
allows for the joint visual inspection of the networks, e.g., sub-
networks reconstructed by PHOTON, and the measured data.
Browsing the quantitative PTM data in a reduced and highly
structured network view while also considering the signaling
functionality scores allows for the generation of hypotheses
that explain the signal transduction mechanistically.

Co-expression Clustering and Clinical Data

When performing co-expression analysis, the correlation
matrix between the proteins in the dataset describes a fully
connected, weighted network, in which the weight on each
edge denotes the correlation between the quantitative profiles
of the two proteins (Figure 7a). Hence, the actual network
usually remains implicit. A hierarchical clustering of the co-
expression network can utilize the network neighborhood of
each protein and integrate it into the similarity calculation.45

The cluster dendrogram and the detected co-expression
modules are then transferred back to the original data,
where their interpretation is equivalent to ordinary hierarch-
ical clustering. In addition to the clustering, a representative
expression profile for each of the clusters is generated, which
is termed eigengene. This highly reduced view on the data can

be correlated with clinical or phenotype data and clustered to
gain a better understanding of the behavior of the detected
cluster (Figure 7b). The described co-expression analysis is
available in Perseus through the R language interface provided
by PluginInterop, which interfaces directly with the estab-
lished WGCNA library.16

We applied the WGCNA co-expression analysis to parts of
a cancer proteomics dataset19 following the recommended
workflow (http://www.peterlangfelder.com/wgcna-resources-
on-the-web/) from within Perseus. Bi-weight midcorrelation, a
robust alternative to Pearson correlation, was chosen to
calculate correlations between all pairs of proteins. In order to
obtain a scale-free co-expression network, a power parameter
of 10 was selected (Figure 7c), leading to an approximately
scale-free network with a scale-free fit index of 0.9.
Hierarchical clustering of the co-expression network identified
30 modules (Figure 7d). The representative expression
profiles of each of the modules, as provided by the
corresponding module eigengene, were correlated with the
available clinical annotations. This high-level overview over
the data was then visualized in a heatmap (Figure 7e). Several
modules showed high correlations with specific clinical
annotations. The magenta module showed high correlation
with the triple-negative subtype (TN) and was significantly
enriched for the ‘interferon-gamma-mediated signaling path-
way’ GO category (q = 1.12 × 10−05). The top module hub
genes with kME > 0.8 were GBP1, TAP1, TAPBP, HLA-A,
TAP2, STAT1, and EML4. The purple module showed high
correlation with Stage III, but when inspecting the profile of
its eigengene, we found it to have a single peak at one patient
while being flat for all others. Hence, a set of proteins that are
highly expressed in only a single patient, dominate the purple
module, thereby limiting the validity of the module.

Software Implementation, Download, and Maintenance

The Perseus network module PerseusNet is implemented in
the C# programming language using Visual Studio 2017, like
the whole Perseus software. PerseusNet is distributed with
Perseus by default and can be downloaded from http://www.
perseus-framework.org. The current version, which is
described in this Article, is 1.6.2.3. The PluginInterop and
PHOTON plugins are also included in the standard
download. In the current release, it is recommended to use
Windows as operating system, although Linux support is
underway, realized in the same way as for the MaxQuant
software,46,47 by ensuring Mono compatibility. A plugin API
enables external programmers to extend the functionality of
PerseusNet and Perseus in general, by programming their own
workflow activities. Plugin extensions by the user community
will be linked from the plugin store at http://www.coxdocs.
org/doku.php?id=perseus:user:plugins:store upon request.
Context-specific documentation is linked from each activity
(Figure S3). Step-by-step guides for the integration of external
tools, such as Python or R, that have to be installed and
configured separately from the main Perseus software, are
ava i lab le onl ine (ht tps://gi thub.com/jdrudolph/
PluginInterop). A help forum for Perseus and PerseusNet is
available at https://groups.google.com/group/perseus-list.
Bugs that are reproducible in the latest available software
version should be reported at https://maxquant.myjetbrains.
com/youtrack. All presented analyses and necessary installa-
tions take less than an hour altogether.
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■ CONCLUSIONS
We introduced PerseusNet, the network analysis extension for
the Perseus software. It enables proteomics researchers to
perform most network analysis by themselves. PerseusNet is
highly extensible through a plugin API and its extension to R
and Python, which allows for the incorporation of a plethora
of existing scripts and programs from the network community.
We envision that large part of the future programming will be
done not by local developers but by the global community
through the plugin API. Programmers can release their plugins
under licenses of their choice.
We have implemented powerful proteomics-specific activ-

ities for AP-MS network generation and PTM-related network
analysis, presumably the two main applications for networking
in proteomics. We plan to extend PerseusNet in the near
future by activities from other proteomics sub-domains, as
interaction determination by protein correlation profiling48

and large-scale network generation from cross-linking experi-
ments on whole-cell lysates.49
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