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Abstract
Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was 
to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neuroinflammation in BV2 microglial cells and the underlying 
mechanisms involved. BV2 cells were incubated with normal medium (control group), LPS, LPS plus 30 μg/mL RC extract, or LPS plus 
100 μg/mL RC extract. The BV2 cell morphology was observed under an optical microscope and cell viability was detected by MTT assay. 
Nitric oxide level in BV2 cells was detected using Griess regents, and the levels of interleukin-6, interleukin-1β, and tumor necrosis factor 
α in BV2 cells were determined by ELISA. The expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation 
factor 88 proteins were detected by western blot assay. Compared with the LPS group, both 30 and 100 μg/mL RC extract had no signif-
icant effect on the viability of BV2 cells. The levels of nitric oxide, interleukin-6, interleukin-1β and tumor necrosis factor α in BV2 cells 
were all significantly increased after LPS induction, and the levels were significantly reversed after treatment with 30 and 100 μg/mL RC 
extract. Furthermore, RC extract significantly inhibited the protein expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid 
differentiation factor 88 in LPS-induced BV2 cells. Our findings suggest that RC extract alleviates neuroinflammation by downregulating 
the TLR4/MyD88 signaling pathway. 
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Graphical Abstract

Ramulus Cinnamomi extract reduces lipopolysaccharide-induced neuroinflammation via TLR4/MyD88 
signaling pathway

Introduction
Microglia are the tissue macrophages of the brain and are 
crucial for maintaining tissue homeostasis and for the scav-
enging of pathogens, dying cells, and molecules through 

microbial-associated molecular pattern receptor dependent 
and independent mechanisms (Sid et al., 2014). Activated mi-
croglia induced by stimuli release various pro-inflammatory 
factors, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), 
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and tumor necrosis factor (TNF)-α (Innamorato et al., 2008; 
Lu et al., 2011; Lafrenaye, 2016). The excessive production of 
these inflammatory mediators can act as neurotoxins and dam-
age the brain (Chao et al., 1992; McGuire et al., 2001). There-
fore, for the treatment of many neuroinflammation-mediated 
diseases, such as stroke, Alzheimer’s disease, and Parkinson’s 
disease, controlling microglial activation and inhibiting the re-
lease of pro-inflammatory factors are of great significance.

Lipopolysaccharide (LPS) stimulates the release of pro-in-
flammatory cytokines and nitric oxide (NO) production in 
BV2 microglial cells (Kang et al., 2004; Piao et al., 2004; Lyu 
et al., 2006; Lu et al., 2007). Toll-like receptors (TLRs) play 
important roles in initiating immune responses; for example, 
TLR4 in the immune system binds to LPS to stimulate pro-in-
flammatory cytokine release (Jack et al., 2005; Takeuchi and 
Akira, 2010). Myeloid differentiation factor 88 (MyD88) plays 
a crucial role in signal transduction in the TLR4 signaling 
pathway (O’Neill and Bowie, 2007) and it was reported that 
the TLR4/MyD88 signaling pathway plays an important role 
in neuroinflammation (Qin et al., 2013).

Ramulus Cinnamomi (RC, GuiZhi in Chinese), a traditional 
Chinese herb is used to treat inflammation based on its pur-
gative, antipyretic, anti-inflammatory, and antineoplastic ac-
tivities (Zheng et al., 2015; Kwon et al., 2016). However, how 
RC extract affects neuroinflammation in microglial cells is 
poorly understood. Here, the effect and possible mechanisms 
of RC extract against LPS-induced inflammation in BV2 mi-
croglial cells were investigated.

Materials and Methods
Preparation of RC extract
Dried RC extract was extracted from GuiZhi and identified by 
Professor Hai-lin Qin (Department of Phytochemistry, Insti-
tute of Materia Medica, Chinese Academy of Medical Sciences 
& Peking Union Medical College). In brief, dried RC (30 g) 
was soaked in 95% aqueous ethanol (500 mL) for 2 hours and 
then refluxed by water-bath heating for 1 hour. The extracts 
were filtered and concentrated by a rotator evaporator (Hei-
dolph, Schwabac, Germany). Then, they were placed in a 500 
mL of separatory funnel, and extracted with petroleum ether 
three times. The extract was stored at 4°C.

Cell culture
BV2 microglial cells, an immortalized murine microglial cell 
line, have been used as a valid substitute for primary microglia 
(Hennet al., 2009). In the current study, BV2 cells were pur-
chased from Cell Resource Center, Institute of Basic Medical 
Sciences, Chinese Academy of Medical Sciences & Peking 
Union Medical College (Beijing, China) and maintained in 
Dulbecco’s modified Eagle’s medium (Gibco BRL, Gaith-
ersburg USA) containing 100 U/mL penicillin, 100 μg/mL 
streptomycin (Gibco BRL), and 10% fetal bovine serum (FBS; 
Gibco BRL) at 37°C in a 5% CO2 humidified cell incubator.

RC extract treatment and cell viability assay
BV2 cells were cultured in a 96-well plate (2 × 104 cells/well). 
At 70–80% confluence, BV2 cells were pre-incubated with 
RC extract 30 or 100 μg/mL for 1 hour and then exposed to 

200 ng/mL LPS (Sigma-Aldrich, St. Louis, MO, USA)  for an-
other 24 hours. After treatment, BV2 cell morphology was ob-
served and photographed under an optical microscope (Olym-
pus X71, Tokyo, Japan). Cell viability was measured using 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolin bromide 
(MTT; Sigma, St. Louis, MO, USA) (Han et al., 2013). Briefly, 
10 µL of the MTT solution was added to each well of the 96-
well plate and incubated at 37°C for 4 hours. After removing 
the medium, the formazan product was dissolved in 200 µL 
dimethyl sulfoxide in each well. Absorbance values were mea-
sured at 560 nm with a microplate reader (Spectramax M5 
microplate reader, Molecular Devices, Sunnyvale, CA, USA).

Cell supernatant collection
BV2 cells were added to a 6-well plate (4 × 105 cells/well). At 
70–80% confluence, the medium was replaced with DMEM 
free of FBS and cells were pre-incubated with different con-
centrations of  RC extract for 1 hour and then exposed to LPS 
(200 ng/mL) for another 24 hours. Then, the BV2 cells were 
collected and centrifuged at 4,000 ×g for 5 minutes, and the 
supernatant was collected.

NO assay
Nitrite in the cell culture media was measured as an index of 
NO production using the Griess assay kit (Promega, Madison, 
WI, USA) (de Oliveira et al., 2014). Then, 50 μL of supernatant 
was mixed with the Griess regents for 10 minutes at room tem-
perature. Absorbance values at 540 nm were measured using a 
microplate reader (Spectramax M5 microplate reader, Molec-
ular Devices) and nitrite concentrations were determined by 
comparison to the Nitrite Standard reference curve.

Cytokine quantification by ELISA
The levels of IL-6, IL-1β and TNF-α in the supernatant were 
determined using ELISA kits (Genetimes, ExCell Biology, 
Shanghai, China) in accordance with the manufacturer’s in-
structions. First, the ELISA plate was coated with anti-mouse 
antibody. After overnight incubation at 4°C, the plates were 
washed three times with sterile PBS, and the uncoated sites 
were blocked with 200 μL of PBS containing 10% FBS for 
2 hours at 37°C. After subsequent washing, 100 μL of the 
supernatant obtained from the culture samples was added, 
and the plates were incubated for 2 hours at 37°C. The plates 
were subsequently washed and the biotinylated anti-mouse 
antibody solution was added to each well except for the 
blank control, and incubated for 1 hour at 37°C. After incu-
bation and additional washing, the horseradish peroxidase 
(HRP)-streptavidin conjugated secondary antibody was add-
ed to each well and incubated for 30 minutes at 37°C. After 
washing, 3,3′,5,5′-tetramethybenzidine (TMB) solution was 
added and incubated at room temperature, followed by the 
addition of stop solution to each well. The absorbance value 
at 450 nm was measured using a microplate reader. The cyto-
kine concentration was determined using a standard curve.

Western blot assay
After treatment, the cells were lysed with Radio Immuno-
precipitation Assay (RIPA) buffer in the presence of cocktail 
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Figure 1 Effect of RC extract on cell 
morphology and cell viability of BV2 
cells.
(A) Morphology of cells treated with 
normal medium (a), LPS (b), LPS + RC 
extract 30 μg/mL (c), LPS + RC extract 
100 μg/mL (d) under an optical mi-
croscope (original magnification, 40×) 
(B) Viability of BV2 cells determined 
by MTT assay. Data are expressed as 
the mean ± SD. Experiments were 
performed in triplicate. RCE 30: RC ex-
tract at 30 μg/mL; RCE 100: RC extract 
at 100 μg/mL; LPS: lipopolysaccharide; 
RC: Ramulus Cinnamomi.

 A    B   

Figure 2 Effect of RC 
extract on NO production 
and pro-inflammatory 
factors in the supernatants 
of BV2 cells as detected by 
ELISA.
(A) NO level; (B) inter-
leukin-1β level; (C) inter-
leukin-6 level; (D) tumor 
necrosis factor-α level. Data 
are expressed as the mean 
± SD. Experiments were 
performed in triplicate. In-
tergroup comparisons were 
conducted using one-way 
analysis of variance and Stu-
dent-Newman-Keuls test. 
*P < 0.01, vs. control; #P 
< 0.05, ##P < 0.01, vs. LPS 
group. RCE 30: RC extract 
at 30 μg/mL; RCE 100: RC 
extract at 100 μg/mL; LPS: 
lipopolysaccharide; RC: 
Ramulus Cinnamomi; NO: 
nitric oxide.

Figure 3 Effect of RC extract on the expression levels of COX2, TLR4, and MyD88 in LPS-treated BV2 cells detected by western blotting.
(A–C) COX2, TLR4, and MyD88 protein expression levels. Data are expressed as the mean ± SD. Experiments were performed in triplicate. Inter-
group comparisons were conducted using one-way analysis of variance and the Student-Newman-Keuls test. *P < 0.01 vs. control group; #P < 0.05, 
##P < 0.01, vs. LPS group. RCE 30: RC extract 30 μg/mL; RCE 100: RC extract 100 μg/mL; LPS: lipopolysaccharide; RC: Ramulus Cinnamomi; COX2: 
cycloxygenase-2; TLR4: Toll-like receptor 4; MyD88: myeloid differentiation factor 88; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.
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protease inhibitors (pepstatin, leupeptin, aprotinin) in an 
iced water bath for 30 minutes and then centrifuged at 4°C at 
12,000 × g for 15 minutes. The supernatant was collected and 
the protein concentration was determined using BCA assay. 
Then, loading buffer was added into samples, boiled for 5 
minutes and used for the following assay.

Total protein from the supernatant was separated by 10% 
SDS-polyacrylamide gel electrophoresis, and the protein bands 
were transferred to nitrocellulose membranes. The membranes 
were blocked by incubation with 5% bovine serum albumin 
(BSA) in TBS-T buffer (10 mM Tris-HCl, 150 mM NaCl, and 
0.5% Tween-20) for 1 hour at room temperature and then in-
cubated with different primary antibodies: rabbit anti-COX-2 
(Rt, 1:1,000, Abcam, Cambridge, UK), rabbit anti-TLR4 (Rt, 
1:1,000, Abcam), rabbit anti-MyD88 (Rt, 1:1,000, Abcam), 
and anti-GAPDH (Rt, 1:1,000, Abcam) overnight at 4°C. After 
washing, the membranes were incubated with HRP-conjugat-
ed rabbit anti-goat secondary antibody (1:2,000, Abcam) for 2 
hours at 37°C, followed by washing. The bands were revealed 
using the ECL system (Beijing ComWin Biotech Co., Ltd., Bei-
jing, China). The signal densities on the blots were measured 
with Gel-pro software (Molecular Imager ChemiDoc XRS+ Sys-
tem, Bio-Rad, CA, USA) and normalized using anti-GAPDH 
as an internal control (optical density detected protein/optical 
density internal control).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 6.02 
(GraphPad Software Inc., CA, USA) Data are expressed as the 
mean ± SD. Measurement data between groups were compared 
using one-way analysis of variance and the Student-New-
man-Keuls test. P < 0.05 was considered statistically significant.

Results
Effect of RC extract on BV2 cell viability
After treatment, BV2 cell morphology was observed under an 
optical microscope. As shown in Figure 1, RC extract at con-
centrations of 30 and 100 μg/mL had no significant effect on 
the viability of BV2 cells following LPS induction. Therefore, 
RC extract at concentrations of 30 and 100 μg/mL was used 
for all subsequent experiments.

RC extract reduced NO, IL-6, IL-1β, and TNF-α 
production in the supernatants of LPS-induced BV2 cells
As shown in Figure 2, 200 ng/mL LPS induction for 24 hours 
significantly increased the levels of NO, IL-1β, IL-6, and 
TNF-α in the supernatants of BV2 cells compared with the 
control group (all P < 0.01). However, after treatment with 
RC extract for 24 hours, both 30 and 100 μg/mL RC extract 
significantly decreased the levels of NO (P < 0.05), as well as 
IL-6, IL-1β and TNF-α (all P < 0.05) in the supernatants of 
LPS-induced BV2 cells.

RC extract downregulated protein expression levels of 
COX2, TLR4, and MyD88 in LPS-induced BV2 cells
As shown in Figure 3, western blot assay results showed that 
LPS stimulation significantly increased the protein expression 

levels of COX2, TLR4, and MyD88 in BV2 cells (all P < 0.01). 
However, treatment with 30 and 100 μg/mL RC extract inhib-
ited the protein expression of COX2, TLR4, and MyD88 in 
LPS-induced BV2 cells (P < 0.05 or P < 0.01).

Discussion
RC is commonly used for gastritis, dyspepsia, blood circu-
lation disturbances and inflammation (Liao et al., 2012). 
RC extract was reported to relax vascular smooth muscle by 
inhibiting Ca2+ influx via L-type Ca2+ channels and inositol 
triphosphate-induced Ca2+ release from the sarcoplasmic re-
ticulum (Kang and Shin, 2012). Moreover, Jung et al. (2011) 
found that RC extract exhibited antioxidant activity in vitro 
and protected against gastric damage in vivo by the stimula-
tion of mucus secretion. Hwang et al. (2009) reported that RC 
exhibited anti-inflammatory effects by downregulating the 
expression of various genes related to inflammatory responses 
in LPS-stimulated BV2 cells. In the current study, we report 
for the first time that RC extract inhibits NO, IL-6, IL-1β, and 
TNF-α production in BV2 microglial cells, possibly by inhib-
iting the TLR4/MyD88 signaling pathway.

During central nervous inflammation, levels of the induc-
ible form of NOS are increased, and the persistent overpro-
duction of NO is mediated by appropriate stimuli such as LPS 
or pro-inflammatory cytokines (MacMicking et al., 1997; Lyu 
et al., 2006). The overproduction of NO may induce nerve 
injury. Furthermore, pro-inflammatory factors (IL-1β, IL-6 
and TNF-α) in the ischemic brain are upregulated from res-
ident brain cells and infiltrating immune cells after ischemic 
insult (Waje-Andreassen et al., 2005; Zeng et al., 2012; Jin et 
al., 2013). In our study, we found that the levels of NO, IL-1β, 
IL-6, and TNF-α were increased after LPS induction, and that 
RC extract significantly reduced the LPS-induced NO, IL-6, 
IL-1β, and TNF-α production. 

COX2, the key enzyme responsible for the synthesis of in-
flammation-related prostaglandin, is closely associated with 
chronic inflammation (Lee et al., 2002; Kim et al., 2004; Guo 
et al., 2006). Notably, RC extract was reported to suppress 
COX2 expression and decrease LPS-induced PGE2 produc-
tion in RAW 264.7 macrophages (Park et al., 2005). Our re-
sults indicate that the COX2 protein expression level was also 
increased in BV2 microglial cells by the effect of LPS. How-
ever, RC extract treatment significantly decreased the protein 
expression level of COX2.

TLRs are widely expressed in a variety of immune cells and 
brain resident cells, such as microglia, cerebral endothelium, 
neurons, and astrocytes (Bsibsi et al., 2002; Jack et al., 2005; 
Marsh et al., 2009). Activation of TLR signaling pathways reg-
ulates cytokine and chemokine production. TLR4 is a specific 
pattern recognition receptor for LPS (Park et al., 2009; Takeu-
chi and Akira, 2010). TLR signaling involves MyD88-depen-
dent and -independent pathways. It was reported that mice 
lacking either TLR2 or TLR4 were less susceptible to cerebral 
ischemic damage (Cao et al., 2007; Ziegler et al., 2007). Fur-
thermore, TLR4-/- mice were protected from brain injury in-
duced by global or permanent focal cerebral ischemia (Casoet 
al., 2007; Hua et al., 2007). In this study, our results indicated 
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that RC extract treatment significantly decreased the protein 
expression levels of TLR4 and MyD88, suggesting that RC ex-
tract alleviates inflammation in BV2 microglial cells by inhibit-
ing the TLR4/MyD88 signaling pathway.

In summary, RC extract effectively inhibites neuroinflam-
mation induced by LPS in BV2 microglial cells by downreg-
ulating the TLR4/MyD88 signaling pathway. This compre-
hensive understanding of RC extract in nervous system will 
provide novel insight into the development of therapeutic 
approaches against neuroinflammation-mediated diseases.
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