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Abstract: Ruminococcus gnavus (R. gnavus) is a gram-positive anaerobe commonly resides in the human gut microbiota. The advent 
of metagenomics has linked R. gnavus with various diseases, including inflammatory bowel disease (IBD), obesity, and diabetes 
mellitus (DM), which has become a growing area of investigation. The initial focus of research primarily centered on assessing the 
abundance of R. gnavus and its potential association with disease presentation, taking into account variations in sample size, 
sequencing and analysis methods. However, recent investigations have shifted towards elucidating the underlying mechanistic 
pathways through which R. gnavus may contribute to disease manifestation. In this comprehensive review, we aim to provide an 
updated synthesis of the current literature on R. gnavus in the context of IBD, obesity, and DM. We critically analyze relevant studies 
and summarize the potential molecular mediators implicated in the association between R. gnavus and these diseases. Across 
numerous studies, various molecules such as methylation-controlled J (MCJ), glucopolysaccharides, ursodeoxycholic acid (UDCA), 
interleukin(IL)-10, IL-17, and capric acid have been proposed as potential contributors to the link between R. gnavus and IBD. 
Similarly, in the realm of obesity, molecules such as hydrogen peroxide, butyrate, and UDCA have been suggested as potential 
mediators, while glycine ursodeoxycholic acid (GUDCA) has been implicated in the connection between R. gnavus and DM. 
Furthermore, it is imperative to emphasize the necessity for additional studies to evaluate the potential efficacy of targeting pathways 
associated with R. gnavus as a viable strategy for managing these diseases. These findings have significantly expanded our under-
standing of the functional role of R. gnavus in the context of IBD, obesity, and DM. This review aims to offer updated insights into the 
role and potential mechanisms of R. gnavus, as well as potential strategies for the treatment of these diseases. 
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Background
The human gut microbiota is a complex ecosystem comprising bacteria viruses, fungi and other microbial and eukaryotic 
species.1 With bacteria being the predominant taxonomic group, the microbiota comprises around 100 trillion micro-
organisms, classified into at least 1000 different species.2 The medicinal fungus Hericium erinaceus as been shown to 
ameliorate gastrointestinal disorders through modulation of inflammatory processes.3,4 The gut microbiota grows within 
the mucin layer and plays a crucial role in maintaining host homeostasis by offering protection to the gut barrier, shaping 
the immune system, and regulating human metabolism, nutrient absorption, and drug metabolism.5–9

Perturbations in gut microbiota have been implicated in the development of multiple diseases, including inflammatory 
bowel disease (IBD), obesity, and diabetes mellitus (DM).10 In IBD patients, the most prominent changes in the microbiota 
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were the decreased diversity in bacteria species associated with decreased abundance of Bacteroidetes and Firmicutes,11,12 

alongside an increase in the abundance of Proteobacteria.11 In addition, lower abundance of Faecalibacterium prausnitzii 
and Roseburia were recorded in patients with Crohn’s disease (CD) and ulcerative colitis (UC).13 There was also an 
enhancement of proteobacteria, Neisseriacaea corrodens, Pasteurellaceae, Veillonella parvula and E. coli in patients with 
CD.14 Yeast and fungal taxa have also increased in CD patients such as Cyberlindnera jadinii, Clavispora lusitaniae, 
Candida albicans, Saccharomyces cerevisiae and Kluyveromyces marxianus.12 A systematic review on gut microbiota 
analysed sixty studies and concluded that the Proteobacteria phylum was most frequently associated with IBD15 and 
obesity.16 As seen in the animal model of obesity, the increased ratio Firmicutes to Bacteroidetes observed in individuals 
with obesity becomes a predisposing condition to excessive production of metabolites from nondigestible 
polysaccharides.17–20 Observational studies in humans have shown that the genera of opportunistic pathogens were enriched 
in type 2 diabetes mellitus (T2DM) patients, while the genera Bifidobacterium, Bacteroides, Faecalibacterium, and 
A. muciniphila were negatively associated with T2DM.21 Gut microbiota alternation in diseases have become a growing 
area of investigation.22

Ruminococcus gnavus (R. gnavus; family Lachnospiraceae) was first identified in 1974 as a strict anaerobe in the gut 
of healthy individuals.23 It was reported to be one of the 57 species present in more than 90% of healthy North American 
and European adults, and in 65% of publicly available metagenomes of gut microbiota from healthy adults from China, 
Ethiopia, Spain, USA, and Sweden.24,25 But recent evidence indicated that a disproportionate representation in the 
composition of R. gnavus can impact the pathophysiology of certain diseases, including IBD, obesity, DM, neurological 
disorders, and cancer.26 While initial research generally examined the abundance of R. gnavus and its relation to disease 
presentation with various sample size, methods of sequencing and analysis, there has recently been a more prominent 
shift towards understanding the mechanisms by which R. gnavus can lead to disease manifestation.27 Clarifying these 
mechanisms can inform the development of novel therapies and optimise clinical practice.22 Therefore, through a critical 
review of current literature, we aim to provide an updated overview of the significant advancements made and summarize 
the potential mechanisms or the role of molecules in relation to R. gnavus in IBD, obesity, and DM.

R. gnavus and IBD
Role of R. gnavus in IBD
IBD is a complex immune-mediated inflammatory condition that affects the gastrointestinal tract, encompassing CD and 
UC.28 It has been sporadically observed since ancient times, and has emerged as a growing problem in newly 
industrialized countries.29–31 The prevalence of IBD has been increasing over the past decades in most regions.32 
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Accumulating evidence suggests that perturbations in the microbiota, particularly commensal flora, and host defensive 
responses at the mucosal frontier has been implicated in the initiation and pathogenesis of IBD.33–35 An increasing 
number of studies show a positive association between R. gnavus and IBD, although a causal relationship remains to be 
demonstrated.36 Active IBD often coincides with an increase in the abundance of R. gnavus, goes from an average of 
0.1% in healthy controls (HC) to 69% in IBD patients with active disease.37 This increase in R. gnavus abundance is 
associated with a decrease in Akkermansia, and this microbial shift has been proposed as a biomarker for mucosal 
integrity in IBD.38–40 A study by Christine et al, analyzing fecal samples from children under 18 years old, found that the 
fecal microbiota profiles differentiated between IBD and non-IBD symptomatic children when compared to healthy 
children. However, both IBD and non-IBD symptomatic patients displayed similar dysbiosis.41 Similarly, there was 
a more remarkable increase in the abundance of R. gnavus in the macroscopically and histologically normal intestinal 
epithelium of IBD, when compared to HC.38

R. gnavus has been implicated in the pathogenesis of CD.42 By sequencing colonic biopsies from CD patients 
(undergoing colonoscopy or surgical resection) and HC with 16S rDNA, and detecting fecal samples with whole 
metagenome shotgun sequencing (WMGS), R. gnavus was remarkably enriched in CD patients when compared to 
HC.43 Additionally, when comparing fecal samples from CD patients and their unaffected relatives, Joossens et al, found 
a higher abundance of R. gnavus in CD patients.44 In IBD patients, the most distinctive feature between CD and UC was 
a significantly higher abundance of R. gnavus in CD.45 Interestingly, studies on twins concordant or discordant for CD or 
UC have also demonstrated an increase in R. gnavus in CD patients.46 A study of 56 mucosal microbiome samples from 
28 Chinese UC patients and their healthy family partners showed an increase in R. gnavus in the mucosal microbiome of 
UC patients.47 Consistently, furthermore, in UC patients who underwent fecal microbiota transplantation (FMT), the 
abundance of R. gnavus was found to be higher in donors of failed FMT and decreased after FMT.48,49

Pouchitis, a common complication following restorative proctocolectomy with ileal pouch-anal anastomosis for UC, 
is associated with increased levels of R. gnavus compared to UC and CD.50–52 Additionally, in patients with Clostridium 
difficile infection (CDI), which can be a complication of IBD, R. gnavus has been found to be more abundant compared 
to HC and IBD patients without CDI.53,54

However, it is worth mentioning that some studies have reported decreased or even absent levels of R. gnavus in IBD 
patients, including those with UC and CD.55,56 In a cohort study conducted in Korea, R. gnavus was found to be 
significantly more abundant in CD patients with a better prognosis, suggesting it may serve as a biomarker for favorable 
outcomes in CD.57 Overall, the role of R. gnavus in the context of IBD remains unclear, but studies suggest that it plays 
a significant role in modulating the gut microbiota at the mucosal level. For a comprehensive summary of studies 
investigating the relationship between R. gnavus and IBD, please refer to Supplementary Table 1.

Molecules in Relation to R. gnavus in IBD
Methylation-Controlled J (MCJ)
MCJ functions as an endogenous negative regulator of mitochondrial respiration.58 Its absence can lead to increased activity of 
complex I and adenosine-triphosphate (ATP) synthesis, as well as the formation of respiratory supercomplexes, which helps to 
limit the production of reactive oxygen species (ROS).58–60 In MCJ-deficient colitis-induced mice, it has been observed that 
R. gnavus levels are increased, along with higher expression of myeloid differentiation primary response gene (Myd) 88, toll- 
like receptor (TLR) 9, and immunoglobulin A (IgA).61 R. gnavus is known to be highly IgA coated, regardless of the specific 
IgA target.62 Furthermore, gene expression analyses in UC patients have shown decreased levels of MCJ and higher 
expression of tissue inhibitor of metalloproteinase 3 (TIMP3). This leads to the inhibition of tumor necrosis factor (TNF) α 
converting enzyme (TACE) activity, which in turn inhibits the shedding of TNF from the cell membrane in the colon.61 Anti- 
TNFs have been the first line of biologic therapies for IBD and have remained a cornerstone of IBD treatment in clinical 
practice over the past two decades, despite the emergence of numerous new therapies.63 Therefore, the absence of MCJ may 
contribute to an altered gut microbiota composition, such as increased levels of R. gnavus, and dysregulated immune 
responses, which could have implications for the pathogenesis and treatment of IBD.
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Glucorhamnan and Ursodeoxycholic Acid
Glucorhamnan is primarily composed of a repeating unit of five sugars, with a linear backbone consisting of three 
rhamnose units and a short side chain made up of two glucose units.64 R. gnavus has the ability to synthesize and secrete 
a complex glucorhamnan polysaccharide, which has been found to strongly induce the secretion of TNF-α through TLR4 
activation.64,65

In addition to its polysaccharide synthesis capabilities, R. gnavus has also been reported as a producer of ursodeoxy-
cholic acid (UDCA). It possesses an enzyme that can degrade 7-keto lithocholic acid (LCA) into UDCA.66 

Administration of UDCA has been shown to increase colonic LCA levels and inhibit caspase-3 cleavage.67 Abnormal 
apoptosis in intestinal epithelial cells (IECs) can disrupt the integrity of the intestinal barrier, leading to bacterial 
infiltration and triggering an inflammatory cascade.68 The dysregulated apoptosis also stimulates the production of 
TNF-α and interferon-gamma (IFN-γ), both of which further promote apoptosis.68 Moreover, UDCA has been found to 
activate the epidermal growth factor receptor (EGFR)/ Raf-1/ extracellular regulating kinase (ERK) signaling pathway in 
colorectal cancer.67

IL-10 and IL-17
Stimulation of mesenteric lymph node cells from IL-10−/− mice with R. gnavus lysate has been found to result in higher 
production of IL-17, indicating that R. gnavus can induce the secretion of IL-17.69,70 IL-17 is a cytokine that is thought to 
contribute to the development of IBD, which expressed at higher levels in IBD patients compared to healthy controls.71,72 

Additionally, the non-inflamed mucosa of IBD patients exhibits significantly lower IL-17 levels compared to inflamed 
mucosa.73 Furthermore, IL-17 has been shown to play a role in the progression of colorectal cancer through various 
signaling pathways, including signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF- 
κB), and mitogen-activated protein kinase (MAPK) pathways.74,75

Tryptamine
In patients with IBD, R. gnavus has been found to be highly abundant and positively correlated with tryptamine levels.65 

Specifically, R. gnavus is capable of producing tryptamine, which can affect gut motility through several mechanisms. 
First, tryptamine activates the serotonin receptor 4 (SR4) or 5-hydroxytryptamine receptor 4 (5-HT4R), leading to an 
increase in intracellular cyclic adenosine monophosphate (cAMP) concentration. This elevation in cAMP levels can 
enhance gut motility. Second, tryptamine can also increase fluid secretion by acting on the cystic fibrosis transmembrane 
regulator (CFTR). The activation of CFTR promotes the secretion of fluids into the gut, affecting gut motility.76–78

Caprylic Acid
Caprylic acid, also known as octanoic acid, is a medium-chain fatty acid (MCFA) that possesses antibacterial and 
antiviral properties.79 In the context of IBD, caprylic acid has been found to be enriched in non-IBD controls and 
negatively associated with the abundance of R. gnavus, which is consistent with previous observations of MCFA 
depletion in IBD.79,80 This negative association suggests that R. gnavus may either take up and metabolize caprylic 
acid, leading to its depletion, or caprylic acid may possess inhibitory effects on the growth of R. gnavus.

Relative studies have indicated that MCFA can induce the production of host defense peptides (HDP) and activate 
TLR4.81,82 Activation of TLR4 triggers the activation of NF-κB and MAPK pathways through the interaction between 
TLR4’s toll-IL-1 receptor domain and Myd88.83,84 Furthermore, TLR4 can mediate the production of interleukin(IL)-6 
and IL-10.85,86 and influences the balance of T helper (Th) 1 and Th17 cells.87 Figure 1 provides a summary of the 
potential molecules in relation to R. gnavus in IBD.

R. gnavus and Obesity
Role of R. gnavus in Obesity
According to the World Obesity Atlas 2023, over 4 billion adults and nearly 3 million children will be overweight or 
obese by 2035, a significant global health concern.88 R. gnavus has been found to be significantly more abundant in obese 
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individuals and decreases with weight loss.89,90 Similar findings have been observed in obese dogs and rats.91 

Furthermore, there is a positive association between R. gnavus and body mass index (BMI),92 as well as a strong 
correlation with fat mass.93 However, a cross-sectional study involving 236 children reported a significantly negative 
relationship between the abundance of R. gnavus and BMI status, body fat distribution, and leptin levels.94,95 A summary 
of studies investigating the relationship between R. gnavus and obesity can be found in Supplementary Table 2.

Molecules in Relation to R. gnavus in Obesity
Haptoglobin (Hp)
Hp is an inflammation marker that plays a role in the interaction between obesity and inflammation.96 Hp expression in 
white adipose tissue (WAT) is increased in obesity rodents,97 and the level of Hp was found to be significantly correlated 
with the abundance of R. gnavus in individuals of normal weight and overweight.98

Hp binds to free hemoglobin (Hb) and inhibits oxidative tissue damage by reducing the release of heme iron and the 
generation of reactive oxygen species (ROS).99 Hp has the ability to attract monocytes/macrophages through interaction 
with chemokine receptor 2 (CCR2), which is mediated by MAPK phosphorylation.100 It has been observed that the 
MAPK p38 inhibitor down-regulates the phosphorylation of CCAAT/enhancer binding protein (C/EBP)-α, peroxisome 
proliferator-activated receptor-γ (PPAR-γ), STAT 3, fatty acid synthase (FAS), perilipin A, as well as its downstream 
effector activating transcription factor-2 (ATF-2).101 Hp levels increase in WAT with weight gain, activate macrophages, 
and lead to the release of TNF-α and IL-6.102–104

Butyrate
R. gnavus was initially characterized in 1976 as a bacterium capable of producing acetate, formate, ethanol, and a small 
quantity of lactate, but not butyrate, when cultured in peptone-yeast extract glucose broth.26 However, a recent 
investigation on the dynamics of butyrate levels during the transition from an infant-like to an adult-like gut microbiota 
revealed a negative correlation between butyrate levels and the abundance of R. gnavus.105 Given the observational 
nature of this study, further research focusing on the direct relationship between butyrate levels and R. gnavus is 
warranted.

Figure 1 Molecules in relation to R. gnavus in IBD. 
Abbreviations: R. gnavus, Ruminococcus gnavus; IL, Interleukin; SR4, serotonin receptor 4; 5-HT4R, 5-hydroxytryptamine receptor 4; cAMP, cyclic adenosine monopho-
sphate; CFTR, cystic fibrosis transmembrane regulator; STAT, signal transduction and activator of transcription; NF-κB, nuclear factors- kappa B; MAPK, mitogen-activated 
protein kinase; IgA, immunoglobulin A; MCFA, medium-chain fatty acid; HDP, host defense peptides; TLR, toll-like receptor; Myd, myeloid differentiation primary response 
gene; Th, T helper; TNF, tumor necrosis factor; TACE, tumor necrosis factor α converting enzyme; TIMP, tumor necrosis factor α converting enzyme inhibitor tissue 
inhibitor of metalloproteinase; MCJ, Methylation-controlled J; UDCA, ursodeoxycholic acid; LCA, lithocholic acid; EGFR, epidermal growth factor receptor; ERK, 
extracellular regulating kinase; IFN-γ, interferon-gamma.
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Butyrate has been shown to play a role in energy homeostasis mediated by the gut microbiota, and it is found in higher 
amounts in obese individuals compared to lean individuals.106 Butyrate is involved in the thermogenesis of adipose 
tissue.106 Brown adipose tissue (BAT) is a key site of thermogenesis and energy expenditure, and butyrate can stimulate 
thermogenesis by up-regulating uncoupling protein(UCP) 1 and uncoupling mitochondrial respiration from ATP 
synthesis.107 Additionally, butyrate has been shown to activate peroxisome proliferator-activated receptor coactivator-1α 
(PGC-1α) through UCP1.108 Butyrate supplementation has been found to increase PGC-1α expression in BAT and is 
positively associated with GPCR43, suggesting a role for GPCR43 in activating PGC-1α.109 Moreover, butyrate stimulates 
PGC-1α activity by activating AMP-activated protein kinase (AMPK) and inhibiting histone deacetylases (HDACs).110 The 
knockout of lysine-specific demethylase 1 (LSD1) has been shown to block the butyrate-induced increase in thermogenesis 
and energy expenditure in BAT, suggesting LSD1 as a potential mediator of butyrate-induced thermogenesis.111,112 Further 
studies have found that butyrate can activate LSD1 to increase UCP1 expression, and these effects are independent of 
AMPK.111 Germ-free mice have been reported to have impaired thermogenic capacity in BAT due to decreased expression 
of UCP1.113 Consistent with this, depletion of gut microbiota has been found to impair the thermogenesis of BAT, and 
butyrate supplementation partially rescues thermogenesis function.113 This indicates that butyrate improves the function of 
BAT by regulating gut microbiota dysbiosis in obese mice.114,115 Similar to BAT, beige adipocytes in WAT release energy 
as heat, and their thermogenesis is mediated by UCP1.116 Butyrate supplementation has been shown to increase the 
expression of UCP1 and beige adipocyte markers to mediate thermogenesis in WAT, requiring GPCR43, GPCR41, and 
LSD1.111 Butyrate acts as a ligand for metabolite-sensing GPCRs, mainly GPCR43, GPCR41, and GPCR109a.117,118 

Butyrate is the only SCFA that can bind to GPCR109a and regulate body energy expenditure to maintain metabolic 
homeostasis.118 These mechanisms may be associated with the effects of butyrate on obesity.

Studies have shown that butyrate supplementation can lead to a reduction in body weight by decreasing lipogenesis in the 
liver and adipose tissue.119 This effect is mediated by the activation of the PPARγ-mediated AMPK-acetyl-CoA carboxylase 
(ACC) pathway, which increases the expression of the glucagon-like peptide-1 receptor (GLP-1R).119,120 Butyrate has also 
been found to modify histone acetylation on the promoter of the beta3-adrenergic receptors (β3AR) gene and activate cAMP- 
dependent protein kinase A (PKA), leading to the phosphorylation of adipose triglyceride lipase (ATGL) and hormone- 
sensitive lipase(HSL).121 Additionally, butyrate supplementation can reverse the reduction of HDACs.122

Increasing fatty acid oxidation (FAO) can help reduce fat accumulation and improve obesity.123 Butyrate has been shown 
to induce the expression of carnitine palmitoyltransferase-1 (CPT-1) in liver and adipose tissue,109 which is the rate-limiting 
enzyme of FAO.124 This effect is mediated by the AMPK/histone deacetylase inhibitor (HDACi)-PGC-1α pathway.110 

Additionally, as an HDACi, butyrate activates AMPK by enhancing the expression of adiponectin receptors (adipoR)-1/ 
2.125 Butyrate also increases the expression of cytochrome c oxidase (COX-1), UCP2, and UCP3 in skeletal muscle.126 

Furthermore, butyrate has been found to significantly increase the levels of gut hormones such as glucagon-like peptide-1 
(GLP-1) and polypeptide YY (PYY) in the colon and plasma, mediated by recombinant free fatty acid receptor 3 (FFAR3).127

Ursodeoxycholic Acid (UDCA)
R. gnavus has been reported to produce UDCA.128 In a mouse model of diet-induced obesity, UDCA treatment altered the 
profiles of bile acids and fatty acids.128 UDCA down-regulated sterol regulatory element-binding protein 1c (SREBP1c), 
a transcription factor that promotes the expression of lipogenic genes such as fatty acid synthase (FAS) and SCD1.129 

Furthermore, UDCA reversed the inhibition of factors involved in FAO, including PPAR-α, CPT-1A, acyl-CoA oxidase 
(Aco), and down-regulated the expression of genes involved in fatty acid uptake in the liver, such as fatty acid transporter 
protein (FATP) and cluster of differentiation 36 (CD36).129 These findings indicate that UDCA alters the profile of free fatty 
acids (FFAs) by inhibiting lipogenesis, promoting FAO, and reducing fatty acid uptake in adipose tissue.

Moreover, UDCA down-regulated the phosphorylation of NF-κB and STAT3 by negatively regulating the expression 
of suppressor of cytokine signaling (SOCS)-1 and SOCS3 signaling pathways.129 These changes were accompanied by 
a decrease in angiogenesis, as evidenced by the down-regulation of vasoactive endothelial growth factor (VEGF), 
vascular cell adhesion molecule (VCAM), and transforming growth factor (TGF)-β expression.129 Additionally, 
UDCA significantly up-regulated adipose tissue browning, which was associated with the up-regulation of silent mating 
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type information regulation 2 homolog (SIRT)-1-PGC1-α signaling in epididymal adipose tissue.129 Figure 2 provides 
a summary of the potential molecules in relation to R. gnavus in obesity.

R. gnavus and Diabetes Mellitus
Role of R. gnavus in Diabetes Mellitus
Compared with HC, R. gnavus showed significantly higher abundance in patients with type 2 diabetes mellitus (T2DM) and 
prediabetes (PreDM).130,131 Specifically, R. gnavus was found to be positively associated with the incidence of T2DM.132 

However, some studies have reported a reduction of R. gnavus in adults with PreDM-insulin resistance (IR), while it was found 
to be more enriched in a cluster characterized by moderate levels of blood glucose, severe IR, and hyperlipidemia. This was 
observed when compared to participants with the lowest blood glucose levels or participants with high blood glucose and insulin 
deficiency,133 Supplementary Table 3 provides a summary of studies examining the relationship between R. gnavus and DM.

Molecules in Relation to R. gnavus in Diabetes Mellitus
R. gnavus was found to have a positive correlation with glycine ursodeoxycholic acid (GUDCA) levels, which have been 
shown to improve metabolism by promoting fat thermogenesis134 Mammalian adipose tissue consists of WAT, BAT, and 
beige or brite adipose tissue.135 WAT is characterized by single-locular lipid droplets and few mitochondria, while BAT 
has abundant mitochondria and multi-locular lipid droplets, and is highly vascularized.136 Beige fat serves as an 
intermediary between BAT and WAT and can adapt to various environmental and pharmacological stimuli.136 Notably, 
BAT possesses a unique capacity, distinct from other mitochondria-rich tissues, to induce energy futile cycling through 
the protein UCP1.137 UCP1 can dissipate the mitochondrial membrane potential, resulting in the wastage of energy as 
heat.137 This process leads to increased oxidation of glucose and fat to maintain ATP production.137 However, in 
individuals with obesity and T2DM, the metabolic activity of BAT is suppressed.138,139 GUDCA has the ability to 

Figure 2 Molecules in relation to R. gnavus in obesity and DM. 
Abbreviations: R. gnavus, Ruminococcus gnavus; Hp, Haptoglobin; Hb, hemoglobin; ROS, reactive oxygen species; TNF-α, tumor necrosis factor alpha; IL-6, Interleukin-6; 
CCR2, chemokine (C-C motif) receptor 2; AMPK, AMP-activated protein kinase; MAPK, mitogen-activated protein kinase; C/ EBP, CCAAT/ enhancer binding protein; PPAR- 
γ, peroxisome proliferator-activated receptor-gamma; ATF-2, activating transcription factor-2; STAT, signal transduction and activator of transcription 3; UDCA, ursodeoxy-
cholic acid; Aco, acyl-CoA oxidase; SREBP1c, sterol regulatory element-binding protein 1c; FFA, free fatty acid; CPT-1, carnitine palmitoyltransferase-1; GUDCA, glycine 
ursodeoxycholic acid; GPBAR, G-protein-coupled bile acid receptor; FAS, fatty acid synthase; HDACs, histone deacetylases; UCP, uncoupling protein; COX, cytochrome 
c oxidase; GLP-1, glucagon-like peptide-1; ACC, AMP-activated protein kinase to phosphorylate acetyl-CoA carboxylase; PKA, cAMP-dependent protein kinase A; ATGL, 
adipose triglyceride lipase; CD36, cluster of differentiation 36; HSL, hormone-sensitive lipase; β3AR, beta3-adrenergic receptors; FAO, fatty acid oxidation; GPCR, 
G protein-coupled receptors; PGC-1α, peroxisome proliferator-activated receptor coactivator-1α; LSD 1, lysinespecificdemethylase1; TCLA, taurolithocholic acid; cAMP, 
cyclic adenosine monophosphate; adipoR-1/2, adiponectin receptors-1/2; PYY, polypeptide YY; FATP, fatty acid transport protein; FAS, fatty acid synthase; SCD1, stearoyl- 
CoA desaturase-1; FFAs, free fatty acids; SIRT, silent mating type information regulation 2 homolog; SOCS, cytokine signaling; STAT, signal transduction and activator of 
transcription; NF-κB, nuclear factors- kappa B; VEGF, vasoactive endothelial growth factor; VCAM, vascular cell adhesion molecule; TGF-β, transforming growth factor beta.
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regulate bile acid metabolism and induce the production of taurolithocholic acid (TLCA), as well as activate the 
g-protein-coupled bile acid receptor (GPBAR)-1 and UCP1.140 The deletion of the β3AR receptor-cAMP-PKA-UCP1 
cascade has been shown to reduce basal metabolic rate, making mice more prone to obesity.141 GUDCA tends to increase 
the levels of PGC-1α, although without a significant difference. Figure 2 provides a summary of the potential molecules 
in relation to R. gnavus in DM.

Conclusions
R.gnavus was initially described as an important component of the human gut microbiota by Moore et al, in 1976 and was 
classified in the genus Ruminococcus within the family Ruminococcaceae. However, with the introduction of 16S rRNA 
analysis, it was reclassified as a species belonging to the phylum Firmicutes, class Clostridia, Clostridium cluster XIVa, and 
family Lachnospiraceae.142 Across studies, gut dysbiosis, characterized by an imbalance in the abundance of R. gnavus, has 
been proposed to be associated with the development of inflammatory and metabolic diseases including IBD, obesity and 
DM. In this review, we provide an updated synthesis of the literature regarding R. gnavus in relation to IBD, obesity and DM 
in human subjects, and explore potential molecular mechanisms linking R. gnavus to these diseases through in vivo 
experiments. Despite variability in human metagenomic studies in terms of sample size, sequencing and analysis methods, 
and taxonomic classification, R. gnavus has been consistently reported to be more abundant in IBD, obesity, and DM 
compared to healthy individuals in most studies, although a few studies have reported contradictory results.

Regarding IBD, several molecules such as MCJ, glucorhamnan, UDCA, IL-10, IL-17, tryptamine, and caprylic acid, 
along with their related mechanisms, have been suggested as potential molecular mediators in the association between 
R. gnavus and IBD. In the context of obesity, molecules such as Hp, butyrate, and UDCA are proposed to be potential 
mediators in relation to R. gnavus, while GUDCA is implicated in the association between R. gnavus and DM. However, 
due to limited direct mechanistic studies on R. gnavus in these diseases, the proposed molecular relationships between 
R. gnavus and the diseases are predominantly derived from a combination of three types of research: animal studies 
investigating R. gnavus and molecules, correlation studies between R. gnavus and certain molecules in observational 
studies, and downstream effects of related molecules in disease pathogenesis. The latter two types of studies provide 
circumstantial evidence rather than direct proof, leading us to refer to these molecules as potential mediators in the 
interaction between R. gnavus and these diseases. This represents a limitation of our study.

Furthermore, it should be noted that the R. gnavus strain used in the research studies was ATCC 29149, which is 
strain-specific and may differ from R. gnavus as a species. Therefore, further intensive investigations are warranted to 
elucidate the direct effects of R. gnavus on the molecular pathways involved in IBD, obesity, and DM. It is essential to 
conduct additional research to determine whether targeting R. gnavus-related pathways could be an effective strategy in 
managing these conditions.
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