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Meta-analysis of data from 
spaceflight transcriptome 
experiments does not support 
the idea of a common bacterial 
“spaceflight response”
Michael D. Morrison & Wayne L. Nicholson

Several studies have been undertaken with the goal of understanding how bacterial transcriptomes 
respond to the human spaceflight environment. However, these experiments have been conducted 
using a variety of organisms, media, culture conditions, and spaceflight hardware, and to date no 
cross-experiment analyses have been performed to uncover possible commonalities in their responses. 
In this study, eight bacterial transcriptome datasets deposited in NASA’s GeneLab Data System were 
standardized through a common bioinformatics pipeline then subjected to meta-analysis to identify 
among the datasets (i) individual genes which might be significantly differentially expressed, or (ii) 
gene sets which might be significantly enriched. Neither analysis resulted in identification of responses 
shared among all datasets. Principal Component Analysis of the data revealed that most of the variation 
in the datasets derived from differences in the experiments themselves.

Space travel inside human-rated spacecraft exposes living organisms to a number of stressors including micro-
gravity, ionizing radiation, vibration, and altered atmospheric composition1. During the history of human space-
flight, many studies have been performed in low-Earth orbit within the protection of Earth’s magnetic field, to 
understand how spaceflight factors, particularly microgravity, affect macroscopic organisms. As a result we have 
a fairly detailed mechanistic understanding of how humans2, animals3, and plants4 respond when exposed to 
microgravity. In contrast, we have a relatively poor understanding of how single-celled microorganisms respond 
to the microgravity environment.

In order to understand how microbes sense and respond to stresses encountered during human spaceflight, 
a number of experiments have been conducted inside various human space habitats (e.g. Shuttle, Mir, ISS) using 
model microbial systems. In early studies, various phenotypic outputs from microbes grown in space were meas-
ured, such as: growth rate and yield; virulence; biofilm formation and architecture; and resistance to antibiotics 
or abiotic stresses, to name but a few [reviewed in5–7]. In more recent years, with the advent of the genomics 
and post-genomics revolutions in biology, there have been efforts to understand more fundamental molecu-
lar aspects of microbial spaceflight responses, by performing global-scale “-omics” analyses of the transcrip-
tome, proteome, or metabolome of microbes cultivated in spaceflight. Such studies have yielded insights into the 
molecular responses of certain individual microbes to the spaceflight environment8–11, but a common “spaceflight 
response” has not emerged. Collectively the data rather seem to indicate that each individual organism mounts 
its own unique response to the microgravity environment; to date, however, this notion has not been subjected 
to rigorous testing.

Datasets from spaceflight biology experiments have been deposited into a common repository, NASA’s 
GeneLab Data System (GLDS) (genelab.nasa.gov). The GLDS contains a collection of -omics data obtained from 
NASA-funded spaceflight and ground-based spaceflight simulation experiments. The GLDS was designed to 
consolidate and archive such datasets in a publicly accessible manner to facilitate the testing of novel research 
questions and new hypotheses, beyond those for which the spaceflight experiments were originally conducted. 
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Often, exposure of a microorganism to a particular environmental stress (heat, cold, high salt, etc.) will provoke 
a stereotypic and reproducible response to that particular exposure (i.e., heat-shock, cold-shock, osmotic-shock, 
etc. response) which can be visualized by alterations in the organism’s global pattern of transcription, i.e., its 
transcriptome. We therefore sought to investigate spaceflight-induced changes in bacterial transcriptomes with 
an eye toward identifying commonalities in their response to spaceflight exposure. Transcriptome datasets were 
collected from the GLDS and analyzed using a standardized bioinformatics pipeline to detect and quantify dif-
ferential gene expression. The results from each dataset were then compared to identify possible effects from 
spaceflight as well as spaceflight-independent effects such as those arising from different hardware configurations 
or growth conditions. We report here that our meta-analysis of the current transcriptome datasets deposited 
in the GLDS failed to find any significant commonalities in the response of diverse bacteria to the spaceflight 
environment.

Results
Examination of the data summarized in Table 1 revealed that the transcriptome datasets deposited in the GLDS 
were derived from spaceflight experiments utilizing different hardware, media, incubation times, and transcript 
measurement technologies. In all cases, flight (FL) cultures were compared with a set of ground control (GC) cul-
tures incubated under matched conditions of hardware, growth medium, and temperature. Five different bacterial 
species were examined, 3 Gram-negative species (P. aeruginosa, S. enterica, and R. rubrum) and 2 Gram-positive 
species (B. subtilis and S. aureus). Two species (P. aeruginosa and S. aureus) have been flown only once, whereas 3 
species (B. subtilis, R. rubrum, and S. enterica) have each been flown in space on two separate occasions (Table 1). 
The raw data from each experiment were extracted from the GLDS, converted into a common format, and ana-
lyzed using the bioinformatics pipeline as described in Methods.

Principal Component Analysis.  Datasets for the 3 organisms flown on 2 separate occasions presented an 
opportunity to better understand the possible sources of variation among the datasets. We therefore performed 
Principal Component Analysis (PCA) and plotted the results (Fig. 1). Examination of the plots revealed some 
interesting features. First, the tightness of clustering of replicates within each experiment is an indication of 
reproducibility among the replicates. For example, in the B. subtilis data, BRIC-21 FL and GC samples clustered 
relatively tightly, whereas BRIC-23 FL and GC samples showed greater dispersion (Fig. 1A). The R. rubrum data-
sets showed reasonably tight clustering of replicates (Fig. 1B), as did the S. enterica datasets, with the exception of 
an outlier in the STS-123 GC replicates (Fig. 1C). Second, examination of Principal Component 1 (PC1) revealed 
that for all three organisms the greatest source of variation in the datasets was derived from differences in the two 
experimental trials (Fig. 1). Third, examination of Principal Component 2 (PC2) revealed variation between FL 
and GC samples within the same experiment. Examination of PC2 showed that in the BRIC-21, BRIC-23 (B. sub-
tilis), and MESSAGE 2 (R. rubrum) datasets the FL and GC samples formed well-separated groups, indicating dif-
ferences in gene expression patterns (Fig. 1A and B). In contrast, FL vs. GC samples in the BASE A (R. rubrum), 
STS-115 and STS-123 (S. enterica) experiments clustered closely together, indicating very little difference in gene 
expression patterns between FL and GC samples from these missions (Fig. 1B and C).

Differential Expression Analysis: Gram-negative species.  The Gram-negative species examined 
included the α-proteobacterium R. rubrum, and two γ-proteobacteria, P. aeruginosa and S. enterica; the raw 
data for these organisms were originally derived from fluorescence microarray technology using three different 
platforms (GenePix, Affymetrix, and QuantArray) (Table 1). In order to make meaningful comparisons among 
the datasets, they were imported into a common bioinformatics pipeline as described in Methods and analyzed to 
discover significantly differentially expressed transcripts.

P. aeruginosa. Crabbé et al.8 cultivated P. aeruginosa strain PAO1 in Lennox broth in Fluid Processing 
Apparatus (FPA) hardware on the STS-115 mission. They reported the differential expression of 167 genes 
between FL and GC samples (52 up-regulated and 115 down-regulated in FL samples)8. After the raw datasets 
from that experiment were run through our bioinformatics pipeline and the resulting P values adjusted for mul-
tiple testing bias12, we found no significantly differentially expressed transcripts between FL vs. GC samples from 
that experiment (Table 2).

GLDS Mission Organism Medium Hardware Temp (°C) Time Platform Reference

31 MESSAGE 2 R. rubrum SPYA Sealed Petri Dish 21 10 d Microarray (GenePix) 11

39 BASE A R. rubrum SSA 6 well culture plate 21 12 d Microarray (GenePix) 11

15 STS-115 P. aeruginosa LB FPA 23 25 h Microarray (Affymetrix) 8

11 STS-115 S. enterica LB FPA 23 25 h Microarray (QuantArray) 9

11 STS-123 S. enterica M9 FPA 23 25 h Microarray (QuantArray) 10

185 BRIC-21 B. subtilis TSYG BRIC-PDFU 23 25 h RNA-seq (Illumina) Morrison et al. 2018

138 BRIC-23 B. subtilis TSYG BRIC-PDFU 22 36 h RNA-seq (Illumina) 15

145 BRIC-23 S. aureus TSYG BRIC-PDFU 22 48 h RNA-seq (Illumina) 15

Table 1.  Bacterial transcriptome datasets used in this study. Abbreviations: BRIC-PDFU, Biological Research in 
Canisters-Petri Dish Fixation Unit; FPA, Fluid Processing Apparatus; LB, Lennox broth; M9, M9 minimal broth; 
SPYA, Sistrom peptone-yeast agar; SSA, Sistrom succinate agar; TSYG, trypticase soy yeast extract broth with 
10% glycerol.
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S. enterica. Wilson et al.9,10 reported on the transcriptomic response to spaceflight of S. enterica serovar 
Typhimurium strain χ3339 on two separate missions, STS-1159 and STS-12310. In the STS-115 experiment, cells 
were cultivated in liquid Lennox broth in FPA hardware, and 167 transcripts were reported to be significantly 
differentially expressed (69 up-regulated and 98 down-regulated in FL samples)9. Processing of the raw data 
from this experiment through our bioinformatics pipeline resulted in identification of fewer (104 total) differen-
tially expressed transcripts, and most of the discrepancy resided in genes up-regulated in FL samples (6 up- and 
98-down regulated in FL samples) (Table 2). In the STS-123 experiment10, cells were cultivated in liquid M9 
medium in FPA hardware, and 38 total transcripts were reported to be significantly differentially expressed (14 
up-regulated and 24 down-regulated in FL samples)10. However, our processing and analysis of the raw data from 
this experiment resulted in identification only 1 significantly up-regulated transcript in FL samples and 0 signifi-
cantly down-regulated transcripts (Table 2).

R. rubrum. Mastroleo et al.11 reported on the transcriptomic response to spaceflight of R. rubrum strain S1H 
on two separate experiments called MESSAGE 2 and BASE A. In the MESSAGE 2 experiment, R. rubrum was cul-
tivated on Sistrom-peptone-yeast agar in Petri plates for 8 days, and 218 total transcripts were reported to be sig-
nificantly differentially expressed (191 up-regulated and 27 down-regulated in FL samples)11. Our own processing 
of the raw data from the MESSAGE 2 experiment resulted in close agreement; we found 220 total transcripts 
differentially expressed (191 up- and 29 down-regulated in FL samples) (Table 2). In the BASE A experiment, R. 
rubrum was cultivated on Sistrom-succinate agar in Petri plates for 12 days, and 64 total transcripts were reported 
to be significantly differentially expressed (53 up-regulated and 11 down-regulated in FL samples)11. Our own 

Figure 1.  PCA plots of datasets for which 2 independent spaceflight experiments have been conducted. 
Datasets included are: (A) BRIC-21 and BRIC-23 (B. subtilis), (B) MESSAGE 2 and BASE A (R. rubrum) and 
(C). STS-115 and STS-123 (S. enterica).

Dataset Genes up-regulated in FL Genes down-regulated in FL

MESSAGE 2 (R. rubrum) 191 29

BASE A (R. rubrum) 41 9

STS-115 (P. aeruginosa) 0 0

STS-115 (S. enterica) 6 98

STS-123 (S. enterica) 1 0

BRIC-21 (B. subtilis) 198 311

BRIC-23 (B. subtilis) 181 137

BRIC-23 (S. aureus) 161 50

Table 2.  Number of differentially expressed genes identified in each GLDS dataset.
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processing of the raw data from the BASE A experiment resulted in reasonable agreement; we identified 50 differ-
entially expressed genes (41 up-regulated and 9 down regulated in FL samples) (Table 2).

We next compared the S. enterica STS-115 and the R. rubrum MESSAGE 2 and BASE A datasets using KEGG 
Orthology (KO) terms to identify differentially expressed genes in common. As depicted in the resulting Venn 
diagrams (Fig. 2), we failed to find any genes in common among the up-regulated (Fig. 2A) or down-regulated 
(Fig. 2B) transcripts from all three experiments, and in pairwise comparisons only 2 genes were found to be 
up-regulated in common, both from the R. rubrum MESSAGE 2 and BASE A experiments (Fig. 2A). The first 
of these genes belonged to KEGG Orthology K00341 and was annotated as nuoL, encoding NADH-quinone 
oxidoreductase subunit L, which shuttles electrons from NADH to quinones in the respiratory electron trans-
port chain13. The second gene belonged to KEGG Orthology K02897 and was annotated as rplY encoding large 
subunit ribosomal protein L2514 (Table 3). In all other cases, genes were either significantly expressed but in the 
opposite direction or were not significantly differentially expressed (Table 3). Functional enrichment analysis of 
the differentially expressed genes found statistically significant enrichment of 4 up-regulated pathways from only 
one dataset (R. rubrum MESSAGE 2)—including butanoate metabolism, TCA cycle, oxidative phosphorylation, 
and ribosomes (denoted by asterisks in Fig. 3A). Among down-regulated pathways, no significantly enriched 
pathways were found (Fig. 3B).

Figure 2.  Venn diagrams depicting genes found to be up-regulated (A) or down-regulated (B) in common 
among the MESSAGE 2, BASE A, (both R. rubrum) and STS-115 (S. enterica) spaceflight datasets.

KO

R. rubrum S. enterica

Description

MESSAGE 2 BASE A STS-115 STS-123

L2FC P value L2FC P value L2FC P value L2FC P value

N/A 2.11 4.25E-07 −1.17 2.45E-02 — — — — UPF0391 membrane protein

K00341 1.13 8.03E-07 1.61 7.98E-04 0.41 5.39E-01 −0.52 5.63E-02 NADH-quinone oxidoreductase 
subunit L

N/A 2.25 5.56E-10 −1.23 1.24E-02 — — — — Uncharacterized protein

K02897 1.49 1.63E-07 1.39 1.97E-03 −0.65 4.94E-01 −0.24 9.62E-01 large subunit ribosomal protein 
L25

K02078 1.49 4.56E-07 −0.41 1.24E-03 −2.76 4.56E-02 −0.24 9.13E-01 acyl carrier protein

K00242 1.33 3.98E-07 −0.01 9.64E-01 −1.62 4.81E-02 0.25 9.53E-01
succinate dehydrogenase/ 
fumarate reductase, membrane 
anchor subunit

K04047 1.20 5.74E-06 −0.19 4.15E-01 −1.60 2.71E-02 −0.11 9.79E-01 starvation-inducible DNA-
binding protein

K02911 1.30 6.80E-08 0.34 9.46E-03 −2.87 4.49E-02 0.20 9.38E-01 large subunit ribosomal protein 
L32

K02892 1.52 7.44E-09 0.52 3.89E-03 −2.99 3.48E-02 −0.04 9.86E-01 large subunit ribosomal protein 
L23

K02863 1.03 1.03E-06 0.09 4.57E-01 −2.62 2.71E-02 0.60 7.79E-01 large subunit ribosomal protein 
L1

Table 3.  KEGG Orthology (KO) numbers identified as differentially expressed in two or more datasets in 
Gram-negative organisms*. *Significantly differentially expressed transcripts are denoted in boldface type. 
N/A, not applicable.
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Differential Expression Analysis: Gram-positive species.  Datasets for Gram-positive species included 
the Firmicutes B. subtilis (BRIC-21 and BRIC-23 missions) and S. aureus (BRIC-23 mission) (Table 1). It should 
be noted here that all three missions were performed using the same hardware (BRIC-PDFU), medium (liquid 
TSYG), and transcriptome mapping method (RNA-seq), thus minimizing these potential confounding factors15. 
The three raw datasets were run through our bioinformatics pipeline and compared to identify differentially 
expressed genes in common (Fig. 4). B. subtilis samples had the highest number of shared differentially expressed 
genes between two datasets. We identified 55 up-regulated and 36 down-regulated genes in common, resulting in 
a 33% concordance between the B. subtilis BRIC-21 and BRIC-23 datasets. Detailed analysis of the differentially 
expressed B. subtilis genes in the BRIC-21 and BRIC-23 missions will be described in detail in a separate publica-
tion (Morrison et al., submitted).

KEGG Orthology comparisons identified only one gene, KEGG Orthology K00318 annotated as proline dehy-
drogenase encoded by the putB gene16, as being significantly up-regulated during spaceflight in all three exper-
iments. In pairwise comparisons, 25 S. aureus genes were found to be differentially expressed in at least one of 
the B. subtilis spaceflight experiments (Table 4). Eight genes were significantly down-regulated in both B. subtilis 
datasets, but significantly up-regulated in the S. aureus datasets, including nitrate reductase (narG, narH, narJ), 
nitrite reductase (nasD, nasE), arginosuccinate synthase (argG), lactate dehydrogenase (ldh) and lactate permease 
(lctP) (Table 4). Functional enrichment analysis of the Gram-positive datasets found significant enrichment of 
3 up-regulated KEGG pathways only in B. subtilis BRIC-21 FL samples (the pathways for alanine, aspartate, 
and glutamate metabolism; arginine and proline metabolism; and siderophore biosynthesis) (Fig. 5A). B. subtilis 
BRIC-23 FL samples were significantly enriched in up-regulated chemotaxis and two-component systems, and 
the up-regulated KEGG pathways for biotin metabolism and non-ribosomal peptide antibiotic biosynthesis were 
significantly enriched in both B. subtilis BRIC-21 and BRIC-23 experiments (Fig. 5A). No up-regulated pathways 
were significantly enriched in the S. aureus BRIC-23 experiment (Fig. 5A). Regarding down-regulated pathways, 
functional enrichment analysis identified significant enrichment of ABC transporters in the B. subtilis BRIC-21 
dataset, and the pathways of nitrogen metabolism and two-component systems in both the B. subtilis BRIC-21 
and BRIC-23 datasets (Fig. 5B). Again, no down-regulated pathways were significantly enriched in the S. aureus 
BRIC-23 experiment (Fig. 5B).

Gene Set Enrichment Analysis.  The analytical method used above (i.e., differential expression analysis 
of single genes) failed to uncover any commonalities in the response of all bacteria tested to the spaceflight envi-
ronment. However, because these organisms belong to various taxa which have evolved divergent mechanisms 
for dealing with stress, it is possible that commonalities in their response to spaceflight might not be revealed by 
single-gene analyses. Therefore, we turned to Gene Set Enrichment Analysis (GSEA), an analytical method that 
derives its power by focusing on groups of genes that share common biological functions, chromosomal locations, 
or regulation17.

Figure 3.  Functional characterization of the differentially expressed genes identified in the datasets for Gram-
negative organisms. Depicted are numbers of genes belonging to the indicated biological pathways (KEGG 
Orthologies) found to up-regulated (A) or down-regulated (B) in FL samples from the R. rubrum BASE A and 
MESSAGE 2 experiments (gray and purple bars, respectively), and the S. enterica STS-115 experiment (yellow 
bars) experiment. Asterisks denote pathways deemed to be significantly enriched (adjusted P < 0.05, Fisher’s 
exact test).
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GSEA of Gram-negative datasets.  GSEA results of the Gram-negative datasets are presented in Table 5 
and Fig. 6. Raw microarray fluorescence images were processed and normalized using the same pipeline used for 
differential expression analysis as described in Methods. Normalized expression value files were converted into 
the required format for GenePattern and GSEA was performed using the default settings.

P. aeruginosa. Roy et al.18 previously conducted a GSEA on the STS-115 P. aeruginosa dataset. Their P. aerugi-
nosa GSEA identified 36 enriched KEGG gene sets (8 enriched in FL and 28 enriched in GC), whereas our GSEA 
identified 31 enriched gene sets (6 enriched in FL and 25 enriched in GC), for a concordance rate of 60% between 
our results and those of Roy et al.18.

S. enterica. Roy et al.18 also performed a GSEA on the STS-115 and STS-123 S. enterica datasets. For the STS-
115 experiment Roy et al. reported 19 enriched KEGG gene sets (1 enriched in FL and 18 enriched in GC sam-
ples). Our bioinformatic normalization and GSEA identified 21 enriched KEGG gene sets (7 in FL and 14 in GC), 
and a pair-wise comparison of the results resulted in a 38% concordance between the two GSEA results. GSEA 
of the STS-123 experiment by Roy et al. reported a total of 13 enriched KEGG gene sets (3 enriched in FL and 10 
enriched in GC)18. However, when the STS-123 data was processed using our pipeline, GSEA found no enriched 
KEGG gene sets in FL or GC samples (Table 5).

R. rubrum. GSEA of the MESSAGE 2 experiment identified 13 enriched KEGG gene sets (12 enriched in FL 
and 1 enriched in GC) (Table 5 and Fig. 6). GSEA of the BASE A experiments identified only 1 enriched KEGG 
gene set in the FL samples and no enriched gene sets in the GC samples (Table 5). Pairwise comparisons of the 
two R. rubrum experiments found that the KEGG gene set “protein export” was enriched in both MESSAGE 2 
and BASE A experiments (Table 5), suggesting a possible organism-specific response.

Cross-comparison of Gram-negative datasets revealed no gene sets that were enriched in all datasets (Fig. 6). 
Pairwise comparisons of the datasets found 9 KEGG enriched gene sets (1 in FL and 8 in GC) (Table 5) in the 
STS-115 P. aeruginosa and S. enterica experiments (Fig. 6). Pairwise comparisons of the two STS-115 experiments 
and the two R. rubrum experiments did not uncover any common enriched gene sets in FL (Fig. 6A) or GC 
(Fig. 6B) samples.

GSEA of Gram-positive datasets.  GSEA results of the Gram-positive datasets are presented in Table 5 and 
Fig. 7. As noted with the Gram-negative datasets, there were no KEGG gene sets that were enriched in all three 
Gram-positive datasets (Fig. 7). Pair-wise comparisons between the datasets identified a total of 11 shared gene 
sets (8 enriched in FL and 3 enriched in GC). Seven of these gene sets (5 in FL and 2 in GC) were enriched in both 
B. subtilis datasets resulting in a 27% concordance rate between the two B. subtilis experiments (Fig. 7). Two gene 
sets, “arginine biosynthesis” and “quorum sensing”, were enriched in BRIC-21 B. subtilis and BRIC-23 S. aureus 
FL samples (Table 5), and two gene sets, “TCA cycle” in FL and “pyrimidine metabolism” in GC, were enriched in 
the BRIC-23 B. subtilis and S. aureus datasets (Table 5).

Discussion
In order to determine the effect that cultivation in the human spaceflight environment has on global gene expres-
sion in bacteria, several transcriptome studies have been performed, and have reported that spaceflight alters 
the transcript levels of genes involved in primary and secondary metabolism, ribosomal proteins, and virulence 
factors8–11,15. For the most part, these studies were performed independently with little or no direct compar-
ison across different experiments. In this communication we describe the first meta-analysis comparing all 
publicly available transcriptome profiles from bacteria exposed to the human spaceflight environment. Using a 

Figure 4.  Venn diagrams depicting genes found to be up-regulated (A) or down-regulated (B) in common 
among the BRIC-21 and BRIC-23 (both B. subtilis) and BRIC-23 (S. aureus) spaceflight datasets.
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standardized bioinformatics pipeline, the datasets were normalized and analyzed both for differentially expressed 
single genes and enriched gene sets. Neither single-gene analysis nor GSEA uncovered any genes or gene sets 
that were significantly differentially expressed across all datasets examined, a finding which does not support the 
notion of a shared bacterial “spaceflight response” at the level of the transcriptome.

There are several potential reasons why the meta-analysis described here did not uncover a common space-
flight response. First may be due to the disparate collection of bacteria tested, consisting of both Gram-negative 
and Gram-positive species. It has been well-documented that microbes belonging to widely dispersed taxonomic 
groups can respond to the same environmental stress using partially overlapping and partially distinct mecha-
nisms19–21. A second reason may derive from the diverse experimental setups used; the eight datasets were derived 
from experiments using 5 different types of growth media (2 semisolid and 3 liquid) and 4 different types of 
spaceflight hardware (Table 1). Such variation could be visualized by PCA of different datasets utilizing the same 
organisms (Fig. 1). The highest percentage of explained variance between datasets (PC1) indicated that differ-
ences in cultivation conditions (e.g., media, hardware, incubation time) exerted a greater effect on global gene 
expression than differences in FL vs. GC samples (PC2) (Fig. 1). In most bacterial studies conducted in space, 
experimenters chose growth conditions and medium according to the historical precedent of the particular bacte-
rium being used. While this is a perfectly valid justification when designing a single experiment, such confound-
ing factors make it difficult to separate spaceflight effects from procedural, hardware, or media-specific effects. 
Third, the Gram-negative datasets were obtained several years ago using traditional fluorescence microarrays, 
necessitating conversion of the data into a format compatible with modern RNA-seq technology for statistical 
comparison. When statistical correction for multiple testing bias was applied, 2 of the 5 Gram-negative datasets 
(STS-123 S. enterica and STS-115 P. aeruginosa) demonstrated essentially no statistically significant difference in 
their transcriptome patterns in FL vs. GC samples. Fourth, the final phenotype that a bacterium would exhibit is 

KO

B. subtilis S. aureus

Function

BRIC-21 BRIC-23 BRIC-23

L2FC P value L2FC P value L2FC P value

K00016 −3.609 3.18E-06 −2.313 1.27E-04 1.019 2.39E-03 L-lactate dehydrogenase

K00318 3.671 8.84E-05 1.016 4.39E-04 1.06 1.51E-08 proline dehydrogenase

K00362 −2.656 2.86E-04 −2.016 3.27E-06 2.076 4.83E-06 nitrite reductase (NADH) large subunit

K00363 −1.661 4.51E-04 −1.202 1.63E-07 2.013 4.74E-05 nitrite reductase (NADH) small subunit

K00370 −3.405 7.22E-06 −1.951 8.86E-04 1.537 2.42E-05 nitrate reductase/nitrite oxidoreductase, 
alpha subunit

K00371 −3.32 1.31E-05 −2.081 2.74E-04 1.284 8.85E-04 nitrate reductase/nitrite oxidoreductase, 
beta subunit

K00373 −3.012 3.89E-05 −2.149 1.02E-04 1.113 3.19E-03 nitrate reductase molybdenum cofactor 
assembly chaperone

K00609 −3.307 9.93E-04 −0.379 0.458 −1.621 9.09E-06 aspartate carbamoyltransferase catalytic 
subunit

K00611 1.914 8.87E-05 0.066 0.585 3.343 2.72E-06 ornithine carbamoyltransferase

K01465 −3.142 1.62E-03 −0.174 0.738 −1.618 2.22E-05 dihydroorotase

K01940 2.607 3.97E-06 1.3 1.39E-06 −1.035 1.98E-04 argininosuccinate synthase

K01955 3.995 5.38E-06 0.776 4.74E-04 −1.633 4.39E-05 carbamoyl-phosphate synthase large 
subunit

K01956 3.39 1.62E-05 0.174 0.44 −1.628 4.36E-05 carbamoyl-phosphate synthase small 
subunit

K02824 −2.491 0.0011 −0.117 0.698 −1.444 2.83E-05 uracil permease

K03303 −3.351 5.97E-07 −1.775 3.73E-04 1.656 6.87E-06 lactate permease

K03758 −0.043 0.858 1.083 1.13E-05 3.111 2.80E-06 arginine:ornithine antiporter/lysine 
permease

K05338 0.772 0.373 1.491 3.09E-03 1.079 0.0197 holin-like protein

K05339 0.628 0.397 1.688 7.30E-04 1.348 1.13E-04 holin-like protein LrgB

K05845 1.594 1.67E-04 0.318 0.065 1.181 1.58E-06 osmoprotectant transport system substrate-
binding protein

K05846 1.815 2.69E-05 0.45 0.014 1.116 1.01E-05 osmoprotectant transport system permease 
protein

K05847 1.559 7.26E-05 0.374 0.048 1.151 6.19E-09 osmoprotectant transport system ATP-
binding protein

K05847 1.801 5.40E-06 0.417 0.022 1.166 8.69E-07 osmoprotectant transport system ATP-
binding protein

K06518 −0.706 0.139 1.24 2.26E-07 2.118 3.51E-10 holin-like protein

K16264 1.137 0.062 3.015 4.14E-06 1.54 6.62E-10 cobalt-zinc-cadmium efflux system protein

1.34 2.98E-11 zinc resistance protein

Table 4.  KEGG Orthology (KO) numbers identified as differentially expressed in two or more datasets using 
Gram-positive organisms*. *Significantly differentially expressed transcripts are denoted in boldface type.
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the product of its physiological response to the spaceflight environment. Measuring the transcriptome captures 
only one aspect of physiology; it does not take into account the numerous post-transcriptional processes (transla-
tion, protein processing and modification, metabolic regulation of enzyme activity, assembly of supramacromo-
lecular structures, etc.) which must take place in order for a microbe to manifest its final phenotype.

A slightly more consistent situation was encountered in the Gram-positive datasets used in this study, as these 
3 experiments were designed and executed using the same liquid medium (TSYG) and hardware (BRIC-PDFU) 
(Table 1). However, a notable difference in the 3 experiments were the times of incubation, hence growth phase at 
which cells were frozen for subsequent RNA extraction. According to pre-flight ground validation experiments15, 
BRIC-21 B. subtilis samples were grown to late exponential phase, whereas BRIC-23 B. subtilis and S. aureus sam-
ples were more likely experiencing the transition from exponential to stationary phase15. By PCA, this difference 
was revealed in PC1 between the BRIC-21 and BRIC-23 B. subtilis samples (Fig. 1A). Cross-comparison of the B. 
subtilis and S. aureus datasets found only one gene, proline dehydrogenase, up-regulated in all three experiments, 
and there were no significantly enriched gene sets common among all 3 datasets (Table 5, Fig. 7). In fact, we 
noticed that several genes associated with growth under oxygen limitation (encoding nitrate/nitrite reductases 
and lactate permease) were down-regulated in B. subtilis FL samples but up-regulated in S. aureus FL samples 
(Table 4). Oxygen availability should have been consistent across all samples, due to their being cultivated in the 
same medium (TSYG) and hardware (BRIC-PDFUs); thus it is possible that these differences may be pointing 
towards organism-specific responses to the spaceflight environment.

Interestingly, we noted that the B. subtilis BRIC-21 and BRIC-23 datasets exhibited the highest concordance 
(~33%) in shared differentially expressed transcripts of any of the datasets examined (Fig. 4). Of all the datasets 
examined, these two were generated under the closest approximation of identical conditions. This observation 
reinforces the notion that a necessary first step towards distinguishing true spaceflight effects from experimental 
noise is the strict control and replication of experimental conditions. In order to develop an accurate understand-
ing of how bacteria respond and adapt to the human spaceflight environment, we suggest that future spaceflight 
experiments should attempt to utilize standardized experimental conditions, and to perform flight experiments 
on at least two independent missions15. This would greatly reduce experimental noise and, in the long run, 
more rigorously address the question of whether microorganisms mount common and consistent responses to 
spaceflight.

Methods
Dataset selection.  For this study, we investigated transcriptomes from bacterial cultures grown in the human 
spaceflight environment and their corresponding ground control cultures. Spaceflight experiments and organ-
isms included: MESSAGE 2 and BASE A (Rhodospirillum rubrum strain S1H)11; STS-115 (Salmonella enterica  
serovar Typhimurium strain χ3339 and Pseudomonas aeruginosa strain PAO1)8,9; STS-123 (S. enterica serovar 
Typhimurium strain χ3339)10; BRIC-21 (Bacillus subtilis strain 168)22,23; and BRIC-23 (B. subtilis strain 168 and 
Staphylococcus aureus strain UAMS-1)15. All of the datasets used are openly available through NASA’s GeneLab 
Data System (GLDS) repository (genelab.nasa.gov) and are listed in Table 1. It should be noted that some of the 

Figure 5.  Functional characterization of the differentially expressed genes identified in the datasets for Gram-
positive organisms. Depicted are numbers of genes belonging to the indicated biological pathways (KEGG 
Orthologies) found to up-regulated (A) or down-regulated (B) in FL samples from the B. subtilis BRIC-21 
(red bars) and BRIC-23 (blue bars) experiments, and the S. aureus BRIC-23 (green bars) experiment. Asterisks 
denote pathways deemed to be significantly enriched within the up- or down-regulated genes (adjusted 
P < 0.05, Fisher’s exact test).
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Dataset Enriched in FL Enriched in GC

MESSAGE 2
(R. rubrum)

Ribosome
Protein export
Oxidative phosphorylation
Starch and sucrose metabolism
TCA cycle Glycolysis/Gluconeogenesis Carbon metabolism
Butanoate metabolism
Aminoacyl-tRNA Biosynthesis Bacterial secretion system Mismatch repair

Nitrotoluene degradation

BASE A
(R. rubrum) Protein export none found

STS-115
(P. aeruginosa)

Nitrogen metabolism
Synthesis and degradation of
ketone bodies
Sulfur metabolism
Valine leucine and isoleucine
degradation
Styrene degradation
ABC transporters

Ribosome
Oxidative phosphorylation
Protein export
Purine metabolism RNA degradation
Biosynthesis of amino acids
Pyrimidine metabolism
Carbon metabolism
Pentose phosphate pathway
Fatty acid biosynthesis
Homologous recombination
Lysine biosynthesis
Lipopolysaccharide biosynthesis
Aminoacyl-tRNA biosynthesis
Methane metabolism
Thiamine metabolism
Streptomycin biosynthesis
Flagellar assembly
Cysteine and methionine metabolism
TCA cycle
Alanine, aspartate, and glutamate metabolism DNA replication
Fatty acid metabolism
2-oxocarboxylic acid metabolism
Mismatch repair

STS-115
(S. enterica)

Pentose and glucuronate
interconversions
Ascorbate and aldarate metabolism
ABC transporters
Arginine biosynthesis
Benzoate degradation
2-oxocarboxylic acid metabolism Biosynthesis of siderophore group
nonribosomal peptides

Ribosome
Protein export
Bacterial chemotaxis
Oxidative phosphorylation
Propanoate metabolism
Carbon metabolism
Aminoacyl-tRNA biosynthesis
Purine metabolism
RNA degradation
Glutathione metabolism
Glycine, serine, and threonine metabolism TCA cycle
Bacterial secretion system
Pyruvate metabolism

STS-123
(S. enterica) none found none found

BRIC-21
(B. subtilis)

Biotin metabolism Nonribosomal peptide structures
Biosynthesis of siderophore group
nonribosomal peptides
Arginine metabolism
Quorum Sensing
Alanine, aspartate, and glutamate
metabolism
Arginine and proline metabolism Aminoacyl-tRNA biosynthesis 
Ribosome

Valine, leucine, and isoleucine biosynthesis
Pantothenate and CoA biosynthesis
Folate biosynthesis
Glycine, serine, and threonine metabolism Histidine metabolism
Cysteine and methionine metabolism
C5-branched dibasic acid metabolism

BRIC-23
(B. subtilis)

Ribosome
Aminoacyl-tRNA biosynthesis Bacterial chemotaxis
Biosynthesis of siderophore group
nonribosomal peptides Nonribosomal peptide structures
TCA cycle
ABC transporters
Flagellar assembly
Biotin Metabolism

Nitrogen metabolism
Peptidoglycan biosynthesis
Porphyrin and chlorophyll metabolism
Folate biosynthesis
Homologous recombination
Propanoate metabolism
Valine, leucine, and isoleucine degradation
Pyrimidine metabolism

BRIC-23
(S. aureus)

Nitrogen metabolism
Amino sugar and nucleotide sugar
metabolism
Riboflavin metabolism
Quorum Sensing
TCA cycle Glycolysis/gluconeogenesis
Two-component system
Arginine biosynthesis
Butanoate metabolism
Pentose phosphate pathway Phosphotransferase system Pyruvate 
metabolism
Chloroalkane and Chloroalkene
degradation

Ribosome
Biotin metabolism
Phenylalanine, tyrosine, and tryptophan
biosynthesis
Pyrimidine metabolism

Table 5.  GSEA analysis of spaceflight datasets*. *Shown are Level 3 KEGG Orthology gene sets enriched in 
each dataset. Gene sets denoted in boldface type were also enriched in datasets from organisms of the same 
Gram-staining group; gene sets in italic type were enriched in datasets from organisms of the opposite Gram-
staining group.
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GLDS datasets also contained transcriptome profiles obtained from simulated microgravity (clinostat) exper-
iments, but only samples exposed to actual spaceflight and their corresponding ground control samples were 
analyzed in this study. One dataset, GLDS-9524 (Escherichia coli strain ATCC 4157), was excluded from this 
study because transcriptome effects caused by antibiotic stress could not be distinguished from possible effects 
of spaceflight.

Microarray processing and normalization.  All datasets were preprocessed and normalized individu-
ally. Non-Affymetrix microarray files were imported and normalized using the R package limma25. The normexp 
method26 with an offset of 50 was used for background correction, and expression values were normalized within 
and between arrays using the loess and quantile27 methods, respectively. Normalization of Affymetrix files was 
done using a second R package affy28. Background correction of Affymetrix files was accomplished using the 
Robust Multichip Average (RMA) algorithm29 and normalization of Affymetrix arrays was accomplished using 
the same quantile method used in limma25.

RNA-seq read alignment, quantification, and normalization.  Raw Illumina RNA-seq FASTQ files 
were transferred directly without preprocessing from the GLDS into the University of Florida’s High-Performance 
Research Computing system HiPerGator v. 2.0 (https://www.rc.ufl.edu/services/hipergator/). Samples were 
trimmed using FASTQ Trimmer30 and the read quality for each file was determined by FASTQC31. Reads were 
aligned to their appropriate genomes using Bowtie232 and read alignment quality was checked using the program 
SAMstat33. Finally, gene count quantification was performed using HTSeq34. The trimmed mean of M-values 
(TMM) normalization of gene counts was performed in limma25,35, and the normalized counts were transformed 
using the built-in ‘voom’36 conversion. Reference genomes and annotation files used throughout the RNA-seq 
analysis were acquired from the National Center for Biotechnology Information Genome page (https://www.ncbi.
nlm.nih.gov/genome/).

Principal Component Analysis.  Normalized microarray expression values and RNA-seq gene counts 
derived from the same organism were combined for principal component analysis (PCA). PCA was performed 
on each organism individually using the built-in stat package in R37. The calculated loading scores and explained 
variance for the first two principal components were plotted in R to visualize sample clustering.

Differential Expression Analysis.  Normalized microarray expression values and RNA-seq gene counts 
were run through limma to identify differentially expressed genes. For a gene to be considered differentially 
expressed, it had to exhibit at least a 2-fold change with a P value < 0.05 between flight (FL) and ground (GC) 
samples. To reduce false positive results, P values were adjusted in limma using the Benjamini-Hochberg 
method12. Differentially expressed genes were annotated using the NCBI database. Functional enrichment anal-
ysis of differentially expressed genes was carried out using the STRING database38.

Comparison of Differentially Expressed Genes.  To compare the differentially expressed genes found 
in each dataset we used a method based on functional similarity. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Orthology (KO) identifiers are genome annotations within the KEGG database39,40 which are assigned 
according to the molecular function of a gene. KO information for all differentially expressed genes was acquired 
from the Universal Protein Resource (UniProt)41. KO numbers shared between multiple datasets were collected 
for manual inspection. Common KO numbers with opposing magnitude directions (i.e. up in FL for dataset A 

Figure 6.  Venn diagrams depicting KEGG gene sets found to be enriched in FL (A) or GC (B) samples in 
common among the MESSAGE 2 (R. rubrum), STS-115 (S. enterica), and STS-115 (P. aeruginosa) spaceflight 
datasets.

https://www.rc.ufl.edu/services/hipergator/
https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/genome/
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and down in FL for dataset B) were not considered similar responses to spaceflight and were left out when dis-
cussing common responses between differing datasets.

Gene Set Enrichment Analysis.  Gene set enrichment analysis (GSEA) was conducted using the multitool 
platform GenePattern42 following a previously published protocol comparing datasets GLDS-11 and GLDS-1518. 
The gene sets for all organisms used in this study were obtained from the KEGG database. Normalized microarray 
expression values and RNA-seq gene counts were converted into the format recommended by GenePattern, and 
GSEA was performed using the default settings. Gene sets with a P value < 0.05 and q-value < 0.25 were consid-
ered to be enriched. Enriched gene sets among FL and GC samples were compared across datasets to identify any 
similarities.
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