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Simple Summary: Palm kernel oil (PKO) is extracted from an oleaginous seed fruit (Elaeis guineenses
Jacq.) commonly cultivated in Brazil and can be used strategically as a ruminal fermentation modula-
tor to improve animal performance. We conducted three experimental trials by increasing PKO levels
in the diets of lambs. Although we observed low consumption of most nutrients, we also observed
that feed conversion improved as the PKO inclusion level increased, indicating that the animals
needed to consume less food to gain 1.0 kg of body weight. In addition, we observed that nutrient
digestibility was not affected by the inclusion levels of PKO. We also did not observe differences in
ruminal fermentation parameters but noted a reduction in the protozoan population. Therefore, we
conclude that the inclusion of palm kernel oil may be beneficial to lambs and can lower the cost of
feed in regions that contain an abundance of this byproduct.

Abstract: The aim of this study was to evaluate the effects of the inclusion of palm kernel oil
(PKO) in a lamb diet on nutrient intake, digestibility, ingestive behavior, nitrogen balance, blood
metabolites, rumen fermentation parameters, and animal performance. Three experimental trials
were conducted. The treatments consisted of varying levels of PKO included in the diet, with
PKOzero = no PKO inclusion, PKO1.3 = 1.3% addition, PKO2.6 = 2.6% addition, PKO3.9 = 3.9% addition,
and PKO5.2 = 5.2% addition, based on the total dry matter (DM) of the diet. With the inclusion
of PKO in the diet, linear decreases in DM (p < 0.001), crude ash (p < 0.001), crude protein (CP)
(p < 0.001), neutral detergent fiber (NDF) (p < 0.001), nonfibrous carbohydrate (NFC) (p < 0.001), and
total digestible nutrient (TDN) (p = 0.021) intake were observed, as was an increase in ether extract
(EE) intake (p < 0.001). The digestibility coefficients of NDF and NFC were not affected by PKO
addition to the diet. However, the digestibility of DM (p = 0.035), EE (p < 0.001), CP (p < 0.001),
and TDNs (p < 0.001) increased when PKO was added to the lambs’ diet. Reductions in N intake
(p < 0.001), fecal nitrogen excretion (p < 0.001), and microbial protein production (p < 0.001) were
noted with increasing PKO levels. Serum cholesterol increased (p < 0.001) while serum GGT enzyme
concentrations in the blood decreased (p = 0.048) with increasing PKO levels. PKO addition had no
effect on total weight gain and average daily gain; however, feed conversion improved (p = 0.001)
with increasing PKO levels. The intake, digestibility, ingestive behavior, and growth performance of
lambs with PKO1.3 added to their diet were similar to animals that did not receive PKO, meaning
that PKO could be an alternative energy source for growing lambs because it does not harm animal
performance and can lower the cost of feed.
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1. Introduction

The use of strategies to increase the efficiency of the production system promotes
ruminal fermentation modulation through microbiota modification. Modulation can occur
by removing groups of microorganisms, especially protozoa, which decrease the nutrients
available to the animal [1]. According to Newbold and Ramos-Morales [2], the defaunation
process is related to increased microbial growth efficiency due to decreased predation of
bacteria by protozoa. Therefore, palm kernel oil is an interesting option for this purpose [3].

Palm kernel oil (PKO) is extracted from oleaginous seed fruits (Elaeis guineenses Jacq.),
which are commonly found and cultivated in Brazil [4]. PKO is a source of medium-chain
fatty acids, such as lauric acid, which has antimicrobial activity [5], exerting effects on
bacteria [5–7] and protozoa [8,9]. As a result of its antiprotozoal activity, studies have
been carried out to verify its effects on nutrient intake and digestibility, mainly in dairy
cattle [8–11]. This inhibitory effect may be related to a lower microbial adhesion to the plant
fiber caused by the lipids coating the fiber or to the possible direct cytotoxic effect of the fatty
acids changing the lipid composition and physicochemical properties of the membranes,
increasing the fluidity and permeability of the microbial cells [1,12–14]. Regarding the use
of lauric acid for lambs, Machmüller and Kreuzer [15] observed no effect on the digestibility
of dry matter and neutral detergent fiber when they provided increasing doses of coconut
oil as a source of lauric acid to lambs; however, they identified an increase in crude protein
digestibility as the concentration of lauric acid increased, and such effects were related to a
decrease in the protozoan population.

The added PKO associated with corn oil in dairy cow diets increased milk production
without decreasing intake or diet digestibility [3]. However, no information on palm kernel
oil administration and its effects on lambs is available. Other studies using palm kernel
cake have shown some benefits from its inclusion in lamb feed [16,17], which may indicate
a positive impact of this oil when added to the diet. Thus, the aim of this study was to
evaluate the effects of different levels of palm kernel oil in the diet of lambs, evaluating
intake, performance, nutrient digestibility, ingestive behavior, and ruminal and blood
parameters. Furthermore, we hypothesize that the inclusion of different levels may benefit
nutrient digestibility and decrease the ruminal protozoan population.

2. Materials and Methods
2.1. Experimental Diets and Animals

The study was carried out at the experimental facilities of the School of Veterinary
Medicine and Animal Science of the Federal University of Bahia (UFBA) in São Gonçalo
dos Campos.

A total of 70 animals were included in three experimental trials. In all trials, the same
experimental diets were used. The experimental diets were based on the inclusion of palm
kernel oil (PKO; PalmFry, Jundiaí, Brazil) in the diet, with PKOzero = no palm kernel oil
addition, PKO1.3 = 1.3% palm kernel oil addition, PKO2.6 = 2.6% palm kernel oil addition,
PKO3.9 = 3.9% palm kernel oil addition, and PKO5.2 = 5.2% palm kernel oil addition, and
on the dry matter of the total diet.

The animals in all experimental trials were fed twice a day (08:00 and 16:00) a total
mixed ration (TMR) diet, with feeding design ensuring 10–20% refusals, and water was
provided ad libitum. Tifton-85 hay (Cynodon sp.) chopped into particles of approximately
5 cm was included in the diets at a 40:60 roughage:concentrate ratio. The diet compositions
are described in Table 1. The diets were isonitrogenous and were formulated according to
the NRC [18] to provide an average daily gain of 200 g.
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Table 1. Ingredient proportions, chemical composition, and fatty acid profile of the experimental diets.

Palm Kernel Oil Levels (% DM Total)

0 1.3 2.6 3.9 5.2

Ingredients (% Total Diet)
Hay 40.0 40.0 40.0 40.0 40.0

Ground corn 42.5 41.0 39.6 38.1 36.6
Soybean meal 16.0 16.2 16.3 16.5 16.7

Palm kernel oil 0.0 1.30 2.60 3.90 5.19
Mineral mixture 1 1.50 1.50 1.50 1.50 1.50

Chemical Composition (% Dry Matter)
Dry matter (% fresh matter) 86.8 86.9 87.1 87.3 87.5

Organic matter 93.9 93.9 93.9 94.0 94.0
Crude ash 6.1 6.1 6.1 6.0 6.0

Crude protein 13.9 13.9 13.8 13.8 13.7
Ether extract 1.40 2.66 3.92 5.18 6.44

Neutral Detergent Fiberap 36.6 36.5 36.4 36.3 36.2
Acid Detergent Fiber 17.1 17.1 17.1 17.0 17.0

Non-Fibrous Carbohydrates 2 42.0 40.1 39.8 38.7 37.6
Fatty Acid Profile (g/100 g Total Fat)

C 10:0 (Capric) 0.38 2.00 2.36 2.58 2.78
C 12:0 (Lauric) 3.92 28.20 33.94 36.46 38.61

C 14:0 (Myristic) 2.84 10.62 11.77 13.00 14.20
C 16:0 (Palmitic) 56.00 52.70 49.05 50.70 50.80

C 16:1 (Palmitoleic) 0.42 0.34 0.35 0.34 0.32
C 18:0 (Stearic) 9.80 9.74 9.02 7.35 9.56

C 18:1cis9 (Oleic) 42.17 32.67 31.17 29.27 27.57
C 18:2cis9 cis12 (Linoleic) 54.60 33.10 31.90 28.60 24.70

C 18:3n-3 (Linolenic) 11.18 10.41 10.40 10.38 10.07
Others 6.28 9.52 9.74 11.38 11.67

1 Assurance levels (per kilogram of active elements): 120 g of calcium, 87 g of phosphorus, 147 g of sodium, 18 g
of sulfur, 590 mg of copper, 40 mg of cobalt, 20 mg of chromium, 1800 mg of iron, 80 mg of iodine; 1300 mg
of manganese, 15 mg of selenium; 3800 mg of zinc, 300 mg of molybdenum; maximum 870 mg of fluoride.
2 NFC = 100 − NDFap − CP − EE.

2.2. Trial 1—Nutrient Intake, Blood Metabolites, Fatty Acids, and Chemical Diet Analysis

Nutrient intake was evaluated in 40 noncastrated male Santa Inês lambs (body weight
(BW) 25.73 ± 4.01 kg), which had been previously vaccinated and dewormed and were
randomly assigned to groups according to an entirely randomized design, housed in
individual stalls measuring 1.0 m2, and suspended in wooden slats with individual water
and feed troughs, with a total of eight animals per treatment.

The evaluation period was 96 d, and the first 15 d were intended for adaptation to the
environment, management, and diets. The animals were weighed at the beginning of the
experimental period and every 25 d to follow weight gain. Every day in the morning before
feeding, the orts were collected and weighed to determine intake, allowing adjustments in
the quantities to be offered. Every three days, a sample was collected for further chemical
and bromatological analysis. At the end of the experimental period, the animals were
weighed after a 16 h fast on solids and water to determine total weight gain (TWG), average
daily gain (ADG), and the feed conversion ratio (FCR: the ratio between total feed intake
and total weight gain).

Blood samples (i.e., 10 mL) were collected by jugular venipuncture, on the last day of
the experiment, using a vacutainer system in tubes free of anticoagulants. After collection,
the blood samples were centrifuged (Centrilab® model CE3001, São Paulo, Brazil) at
5000× g for 20 min to obtain the serum, which was placed in Eppendorf tubes and stored
in a freezer (−20 ◦C) for further analysis. The blood parameters were analyzed using
specific commercial enzymatic kits from Labtest® Diagnostica S.A. (Lagoa Santa, Minas
Gerais, Brazil) using a semiautomatic biochemical analyzer (BioPlus 2000®, São Paulo,
Brazil): albumin was measured with bromocresol green (Ref. 19); total cholesterol was
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measured by the cholesterol enzymatic method (Ref. 13); triglycerides were measured with
glycerol phosphate oxidase (GOD; Ref. 87); the total protein concentration was measured
by the biuret method (Ref. 99); and alanine aminotransferase (ALT; Ref. 108), aspartate
aminotransferase (AST; Ref. 109) and gamma-glutamyltransferase (GGT; Ref. 105) were
measured by UV IFCC kinetic assay.

The ingredient samples and refusals were predried at 55 ◦C for 72 h and ground in
a 1 mm sieve in a Wiley mill (Tecnal, City of Piracicaba, State of São Paulo, Brazil) for
further laboratory analyses of dry matter (DM; AOAC method 930. 15), crude protein (CP;
AOAC method 968.06), ether extract (EE; AOAC method 954.05), and crude ash (AOAC
method 942.05). The neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents
were evaluated according to Van Soest et al. [19]. The NDF content was corrected for ash
and protein (NDFap) using thermostable alpha-amylase without sodium sulfite, and for
residual ash [20] and residual nitrogenous compounds [21]. Nonfiber carbohydrate (NFC)
contents were calculated as described by Weiss [22].

The fatty acid compositions of the experimental diets were determined according to
Palmquist and Jenkins [23]. A total of 0.5 g of dry sample was weighed in duplicate into
Pyrex-type test tubes with a Teflon cap. In each tube, 2 mL of hexane and 3 mL of 10%
methanolic acetyl chloride were added. The tubes were capped, vortexed (Fisatom 772,
São Paulo, Brazil), heated in a water bath at 90 ◦C for 2 h, and then cooled. A total of 1 mL
of hexane and 10 mL of 6% K2CO3 were added. Samples were again homogenized by
vortexing. The tubes were centrifuged (Centribio 80–2B, Equipar Ltda., Paraná, Brazil) for
5 min, and the solvent layer was collected and transferred to another test tube containing
1.0 g of Na2SO4 and activated charcoal. The tubes were centrifuged, and the supernatant
was transferred to small vials for gas chromatography (GC).

Fatty acid methyl esters (FAMEs) were separated in a GC (Perkin Elmer Clarus 680)
equipped with a flame ionization detector (GC–FID) and an ELITE-WAX fused silica
capillary column (30 m × 0.32 mm × 0.25 µm). The analysis parameters were as follows:
the injector temperature was 250 ◦C; the detector temperature was 280 ◦C; and the column
temperature was programmed at 150 ◦C for 16 min, with increases of 2 ◦C per minute up
to 180 ◦C and maintenance of this temperature for 25 min, followed by increases of 5 ◦C up
to 210 ◦C, which was maintained for 25 min. Helium gas was used as a carrier gas with a
flow of 1 mL/min. The hydrogen gas flow rate was 30 mL/minute, and the synthetic air
flow rate was 300 mL/min. Injections were performed in duplicate for each extraction, and
the injection volume was 1 µL. FA was identified by comparing the retention times of the
sample peaks with the retention time of the mixed standard FA (189–19, Sigma, St Louis,
MO, USA). The results were quantified by area normalization and expressed in g/100 g
of FAME.

2.3. Trial 2—Nutrient Digestibility, Nitrogen Balance and Ingestive Behavior

For the second trial, 25 noncastrated male Santa Inês lambs (34.61 ± 2.61 kg BW)
were distributed according to an entirely randomized design with five treatments and five
repetitions. All animals had been previously vaccinated and dewormed and were housed
in individual metabolic cages (1.5 m × 0.75 m) with individual feed and water troughs,
each of which had a system that allowed separate feces and urine collection.

The digestibility evaluation was performed for 21 d, including 14 d for adaptation to
the facilities and experimental diets and 7 d for collection of feces, urine, feed, and orts.
The feed and ort samples were analyzed as previously described. Feces were collected
in individual plates and weighed before the morning feeding. After total collection, the
feces were weighed and a 20% portion was separated and dried in an oven with forced air
circulation at 55 ◦C for 72 h and subsequently analyzed.

The total digestible nutrients were calculated according to NRC [24] using the di-
gestible fractions of nonfiber carbohydrates, crude protein, ether extract, and neutral
detergent fiber. The nutrient digestibility coefficient (CD) was determined according to
the equation:
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CD = ((kg of ingested portion − kg of excreted portion)/(kg of ingested portion)) × 100 (1)

The nitrogen balance and microbial protein production were evaluated by total urine
collection. Total urine collection was carried out in individual bowls containing 50 mL of
20% sulfuric acid solution. The volume and pH were measured daily, and 10% of the total
volume was stored to compose a pooled sample at the end of the collection period.

A 10 mL aliquot of the pooled urine sample was diluted in 40 mL of 0.036 N sulfuric
acid (H2SO4) solution and frozen at −20 ◦C for further analysis of nitrogen compound
excretion and purine derivatives, allantoin, uric acid, xanthine, and hypoxanthine to
calculate the efficiency of microbial protein synthesis and the intestinal flow of nitrogen
compounds, respectively. The nitrogen balance was determined by the difference between
the amount ingested and the losses recorded in urine and feces.

The total urinary nitrogen content was determined according to the Kjeldhal method [25],
and the nitrogen balance (NB) was obtained using the following equations and expressed
in g/day and in g/kg0.75/day:

NB = Ningested − (Nfeces + Nurine) (2)

Nabsorbed = Ningested − Nfeces (3)

Ningested = Noffered − Norts (4)

Allantoin, xanthine, hypoxanthine, and uric acid were determined according to Chen
and Gomes [26] by calculating microbial purines absorbed from the excretion of purine
derivatives in urine. The intestinal flux of microbial nitrogenous compounds (N) was
calculated as a function of microbial purines absorbed [26].

The ingestive behavior of the animals was evaluated during a 24 h period with
observations every five minutes according to Martin and Bateson [27] by evaluating each
animal individually in relation to the time spent on rumination, feeding, and idle activities.
Chewing parameters were evaluated in each animal individually [28] in the morning (10:00),
afternoon (15:00) and evening (21:00) by observing the number of chewing movements
per bolus feeding, which was performed by previously trained evaluators using digital
chronometers and artificial lighting at night, with previous adaptation of the animals.
Feeding and rumination efficiencies based on DM and NDF were obtained by calculations
described by Bürger et al. [29].

2.4. Trial 3—Ruminal Fermentation Parameters Evaluation

The ruminal fermentation parameters were evaluated using five Santa Inês sheep
(52.1 ± 13.2 kg BW), cannulated in the rumen and housed individually in suspended stalls
with feed and water troughs distributed in 5 × 5 Latin squares. The experiment had a
duration of 55 days divided into periods of 11 days, with 10 days for adaptation to the diets
and 1 day for data collection. Ruminal fluid samples (i.e., 100 mL) were collected in the
morning at 0 (before feeding), 2, 4 and 6 h after feeding, and the pH of the ruminal fluid
was measured immediately after collection using a digital potentiometer.

To determine the ammoniacal nitrogen (N-NH3) concentration, samples of approx-
imately 25 mL of rumen fluid were filtered through cheesecloth, placed in a recipient
containing 1 mL of 1:1 sulfuric acid solution and stored at −10 ◦C for later analysis. After
thawing, the samples were distilled with 2 N KOH solution, following the procedures of
Detmann et al. [25] for total nitrogen determination. A 50 mL aliquot of ruminal fluid was
mixed (1:1, v/v) with a 50% formalin solution for subsequent counting of the total number
of protozoa, according to the method described by Dehority and Tirabasso [30].
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2.5. Statistical Analysis

The variables of nutrient intake and digestibility, nitrogen balance, and ingestive
behavior were analyzed by means of PROC MIXED SAS® 9.4 software in an entirely
randomized design, using the following mathematical model:

Yi = µ + Ti + εi (5)

where µ is the overall mean, Ti is the treatment effect, which is the fixed effect, and εi is the
experimental error.

Heterogeneity of variances was tested by the REPEATED command and used when
significant; however, the variance was not homogeneous and was therefore not considered
in the final data analysis. The covariance structures “diagonal, autoregressive, unstructured,
and variance compounds” were tested and defined according to the lowest value obtained
for the corrected Akaike information criterion corrected (cAIC). Polynomial contrasts were
used to test the linear and quadratic effects of palm kernel oil supply in the lambs’ diet on
all parameters evaluated, selecting the contrast that best represents the data by the lowest
value of the root mean square error (RMSE). Cubic effects were not used because there is no
biological interpretation for these parameters. Initial body weight was tested as a covariate
and used when significant.

For the variables of ruminal fermentation parameters (third trial), PROC MIXED was
used for a Latin square design considering period and animal as random effects according
to the following mathematical models; the first model was used for protozoa counts and
the second for variables analyzed over time, such as pH and the ammoniacal nitrogen
concentration in ruminal fluid:

Yijk = µ + Di + aj + pk + εijk (6)

Yijkl = µ + Di + aj + pk + (D × a × p) + Tl + (D × T) + εijkl (7)

where µ corresponds to the overall mean, Di is the diet, which is a fixed effect, aj cor-
responds to the animal, pk is the period effect, which was considered a random effect,
along with the animal effect; Tl corresponds to time, with was a fixed effect; and εijkl is the
experimental error.

The pH and ammoniacal nitrogen variables were evaluated as repeated measures over
time using the cAIC value with the REPEATED command to choose the best error matrix
structure. Degrees of freedom were adjusted according to Kenward–Roger by evaluating
the effect of time using orthogonal contrasts.

The PROC NLIN command was used to analyze the observed linear plateau re-
sponse for variables related to nitrogen balance using the lowest RMSE value among linear,
quadratic, and linear plateau responses as the selection criterion. In addition, the mean
of variables analysed were compared by Tukey’s test (SAS® 9.4). A significant effect was
declared when p ≤ 0.05, and a trend was declared when 0.05 < p ≤ 0.10.

3. Results

Reductions in DM (p < 0.001), ash (p < 0.001), CP (p < 0.001), NDF (p < 0.001), NFC
(p < 0.001), and TDN (p < 0.001) intake with increasing PKO in the lambs’ diet were ob-
served (Table 2). Furthermore, an effect on body and metabolic weights was identified, with
reduced intakes of DM (p < 0.001), CP (p < 0.001), NDF (p < 0.001), and TDN (p < 0.001) as
the level of PKO inclusion increased. EE intake in g/day (p < 0.001), BW (p = 0.029), and
metabolic weight (p = 0.007) showed a quadratic effect, with higher intake levels of EE and
higher BW when the inclusion level of PKO was 2.47%. The effectively ingested CP was
not affected by the presence of PKO in the lambs’ diet. A tendency for a linear reduction in
effectively ingested NDF with increasing levels of palm kernel oil inclusion was identified.
PKO addition to the diet caused reductions in the effective ingestion of ash (p = 0.020), NFC
(p = 0.002), and TDN (p < 0.001) (Table 2). The effectively ingested EE showed a quadratic
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effect, with higher consumption as the inclusion level of PKO increased. The digestibility
of NDF was not influenced by the presence of PKO in the diet of finishing lambs. A trend
toward a quadratic effect of PKO on the digestibility coefficient of NFC (p = 0.071) was
found (Table 2). Linear increases in the digestibility coefficients of DM (p = 0.035), CP
(p < 0.001), and TDN (p < 0.001) were also noted. A quadratic effect of the addition of PKO
on the digestibility coefficient of the EE was further identified, with higher digestibility
when the inclusion level was 5.2% PKO.

Table 2. Nutrient intake (g/day; g/kg BW; g/kg BW0.75) and digestibility coefficient of finishing
lambs fed diets containing palm kernel oil (PKO).

Item
Palm Kernel Oil Levels (%DM Dietary Total)

SEM 1
p-Value 2

0 1.3 2.6 3.9 5.2 L Q Effect

Nutrient Intake (g/day)

Dry matter 1113.0 a 1092.3 a 861.6 b 816.9 b 673.1 c 37.6 <0.01 0.68 <0.01
Ash 68.0 a 65.9 a 50.9 b 48.2 b 39.7 c 2.31 <0.01 0.94 <0.01

Crude protein 166.2 a 161.1 a 129.6 b 115.2 bc 97.9 c 5.43 <0.01 0.73 <0.01
Ether extract 17.1 d 32.1 c 38.7 b 49.4 a 54.4 a 1.14 <0.01 <0.01 <0.01

NDFap
3 345.4 a 344.1 a 258.1 b 261.0 b 187.5 c 16.8 <0.01 0.39 <0.01

NFC 4 516.3 a 489.2 a 384.3 b 343.1 bc 293.3 c 14.5 <0.01 0.74 <0.01
TDN 5 755.5 a 808.9 a 654.7 b 623.7 bc 616.7 c 35.6 0.02 0.99 0.02

Nutrient Intake as Body Weight (g/kg BW)
Dry matter 34.0 a 31.9 a 27.2 b 25.8 b 20.5 c 0.93 <0.01 0.32 <0.01

Crude protein 5.09 a 4.72 a 4.10 b 3.65 b 2.93 c 0.14 <0.01 0.37 <0.01
Ether extract 0.52 e 0.94 d 1.21 c 1.55 b 1.76 a 0.04 <0.01 0.03 <0.01

NDFap 10.5 a 10.0 ab 8.09 bc 8.23 c 5.75 d 0.46 <0.01 0.18 <0.01
NFC 15.8 a 14.3 b 12.2 c 10.9 c 8.89 d 0.37 <0.01 0.95 <0.01
TDN 20.9 a 21.7 a 17.3 b 16.8 b 14.5 c 1.28 <0.01 0.65 <0.01

Nutrient Intake by Body Weight (g/kg BW0.75)
Dry matter 81.3 a 77.2 a 64.4 b 61.2 b 48.9 c 2.29 <0.01 0.40 <0.01

Crude Protein 12.1 a 11.4 a 9.71 b 8.64 b 7.03 c 0.34 <0.01 0.45 <0.01
Ether Extract 1.24 e 2.26 d 2.88 c 3.68 b 4.16 a 0.08 <0.01 <0.01 <0.01

NDFap
3 25.1 a 24.3 a 19.3 b 19.6 b 13.5 c 1.12 <0.01 0.22 <0.01

NFC 4 37.8 a 34.6 a 28.8 b 25.8 b 21.3 c 0.89 <0.01 0.96 <0.01
TDN 5 51.3 a 53.6 a 42.9 b 41.5 b 36.0 c 3.18 <0.01 0.60 <0.01

Effective Nutrient Intake (g/100g)
Ash 6.11 6.03 5.92 5.89 5.88 0.08 0.02 0.52 0.17

Crude protein 14.9 14.8 15.1 14.1 14.4 0.38 0.20 0.93 0.36
Ether extract 1.53 e 2.94 d 4.48 c 6.02 b 8.53 a 0.09 <0.01 <0.01 <0.01

NDFap
3 30.8 31.4 29.8 31.9 27.2 1.22 0.09 0.16 0.06

NFC 4 46.6 a 44.8 ab 44.6 ab 42.0 b 44.0 ab 0.78 <0.01 0.14 <0.01
TDN 5 67.3 c 71.7 bc 76.1 ab 79.1 ab 78.7 a 1.68 <0.01 0.10 <0.01

Nutrient Digestibility Coefficient (%)
Dry matter 68.9 72.3 74.5 75.5 74.1 1.78 0.04 0.13 0.28

Crude Protein 69.8 b 74.3 ab 77.6 a 79.6 a 78.3 a 1.60 <0.01 0.05 0.30
Ether Extract 63.4 d 81.2 c 88.4 b 94.1 a 94.2 a 1.12 <0.01 <0.01 <0.01

NDFap
3 40.6 47.2 47.1 51.7 42.2 4.03 0.21 0.26 0.45

NFC 4 88.8 89.8 90.4 89.7 88.0 0.73 0.65 0.07 0.33
TDN 5 67.3 c 71.7 bc 76.1 ab 79.1 ab 76.7 a 1.67 <0.01 0.10 <0.01

1 Standard error of the mean. 2 Significance at p < 0.05 and trend between p ≤ 0.05 and p ≤ 0.10; L, linear;
Q, quadratic. 3 Neutral detergent fiber corrected for ash and protein. 4 Nonfibrous carbohydrates. 5 Total
digestible nutrients. a–e Means followed by different letters differ by Tukey’s test (p < 0.05).

From the means test, the intake of lambs (g/d; g/kg BW; g/kg BW0.75), along with
DM, ash, CP, NDFap NFC, and TDN intake, were higher (p < 0.05) with 0% and 1.3% of PKO
inclusion (as DM total dietary) when compared to the other inclusion levels evaluated. In
contrast, the control treatment (0%) promoted a lower (p < 0.05) EE intake (g/d; g/kg BW;
g/kg BW0.75) in lamb, followed 1.3%; 2.6% PKO. On other hand, the inclusion of 3.9 and
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5.2% of PKO had the highest EE intake. With regard to nutrient digestibility, the inclusion
of 0% presented lower CP digestibility compared to other treatments.

The final weight (p = 0.061), total weight gain (p = 0.058) and average daily gain
(p = 0.057) showed a linear decreasing trend as the level of PKO in the diet increased,
as well as a linear decreasing effect for feed conversion, with better feed conversion for
animals fed diets containing the highest level of PKO (p = 0.001; Table 3). Also, 3.9 PKO
inclusion was associated with lower (p < 0.05) total weight gain and ADG compared to other
treatments, while the inclusion of 5.2% PKO was associated with the best feed conversion
(p < 0.05).

Table 3. Performance of finishing lambs fed diets containing palm kernel oil (PKO).

Item
Palm Kernel Oil Levels (%DM Dietary Total)

SEM 1
p-Value 2

0 1.3 2.6 3.9 5.2 L Q Effect

Initial body weight (kg) 25.10 26.85 26.40 26.48 23.83 - - -
Final body weight (kg) 40.12 42.68 37.94 37.44 39.02 1.22 0.06 0.63 0.13
Total weight gain (kg) 14.40 ab 16.92 a 12.20 ab 11.70 b 13.32 ab 1.19 0.06 0.59 0.03

Average daily gain (kg) 0.18 ab 0.21 a 0.15 ab 0.14 b 0.16 ab 0.01 0.06 0.59 0.03
Feed conversion (kg/kg) 6.91 a 5.39 ab 6.40 a 5.73 ab 4.05 b 0.51 <0.01 0.45 0.02

1 Standard error of the mean. 2 Significance at p < 0.05 and trend between p ≤ 0.05 and p ≤ 0.10; L, linear;
Q, quadratic. a,b Means followed by different letters differ by Tukey’s test (p < 0.05).

PKO addition to the diet reduced the N retained by lambs until the inclusion
level of 2.62% of this fatty acid in the lambs’ diet (∀ x ≤ 2.62 Y= 6.380; ∀ x > 2.62
Y = 6.38 + 1.7546 × (2.6272 − X); RMSE = 3.963), with stabilization in its values as the
concentration of PKO increased until the inclusion level of 5.2% (Table 4). No effect of PKO
on the microbial protein production efficiency of lambs was found. As the level of PKO
supply in the diet increased, reductions in N intake (p < 0.001), fecal N excretion (p < 0.001),
and microbial protein production (p < 0.001) occurred. There was a quadratic effect for
urinary N excretion (p = 0.048), with higher urinary N excretion when the inclusion level
of PKO in the diet was 5.2%. In means test comparisons, N intake and microbial protein
production (g/day) was similarly high for 0 (control), 1.3%, and 2.6 PKO inclusion (as DM
total dietary) compared to 3.9 and 5.2% PKO inclusion in the lambs’ diet, and the inclusion
of 5.2% PKO was associated with a lower intake. N fecal excretion was greater (p < 0.05) for
groups 0 (control) and 1.3% PKO inclusion compared to 2.6, 3.9%, and 5.2% PKO inclusion
in the lambs’ diet, which were associated with similar N fecal excretion values.

PKO inclusion in the lambs’ diet linearly increased the serum cholesterol concentration
(p < 0.001). In contrast, a linear decrease in gamma-glutamyltransferase (GGT) enzyme
blood concentration (p = 0.048) due to PKO addition in the lambs’ diet was observed. Serum
concentrations of total proteins (p = 0.860), albumins (p = 0.574), globulins (p = 0.736), and
triglycerides (p = 0.144), and the ratio between albumins and globulins (p = 0.593), as well
as the enzymatic concentrations of aspartate aminotransferase (p = 0.308) and alanine
aminotransferase (p = 0.230), were not affected by increasing levels of PKO in the lambs’
diet (Table 4).

The means test demonstrated that no PKO inclusion was associated with lower
(p < 0.05) cholesterol (mg/dL) compared to other treatments. In contrast, the inclusion of
5.2% of PKO in the lambs’ diet promoted the lower ruminal protozoa count compared to
other treatments.

A decrease in ruminal fluid pH values over time was noted after feed intake (p < 0.001;
Figure 1). PKO inclusion in the lambs’ diet did not affect the pH of the ruminal fluid
of lambs or the ammoniacal nitrogen concentration. However, PKO addition to the diet
reduced the total protozoa count (p = 0.002) of the ruminal fluid of lambs linearly (Table 4).
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Table 4. Nitrogen balance, production and efficiency of microbial protein production, and blood and
ruminal parameters of finishing lambs fed diets containing palm kernel oil (PKO).

Item
Palm Kernel Oil Levels (%DM Dietary Total)

SEM 1
p-Value 2

0 1.3 2.6 3.9 5.2 L Q Effect

Nitrogen Balance (g/day)

N intake 26.8 a 27.0 a 21.4 ab 18.3 b 18.2 b 1.10 <0.01 0.73 <0.01
N fecal 8.01 a 6.93 a 4.83 b 3.73 b 3.67 b 0.45 <0.01 0.09 <0.01

N urinary 8.55 9.99 10.9 8.46 7.64 0.99 0.30 0.04 0.18
N retained 10.3 10.1 5.72 6.07 6.77 1.86 0.08 0.37 0.24

Microbial Protein (g/day)
Production 38.0 a 33.5 ab 28.1 abc 23.9 bc 19.8 c 2.83 <0.01 0.56 <0.01
Efficiency 45.5 41.5 43.3 38.6 37.2 3.97 0.14 0.93 0.23

Blood Parameters
Proteins (g/dL) 7.60 7.59 7.91 7.48 7.61 0.16 0.86 0.96 0.92

Albumins (mg/dL) 3.43 3.91 3.45 3.37 3.53 0.18 0.57 0.71 0.28
Globulins (mg/dL) 4.17 3.68 4.24 4.11 4.08 0.24 0.74 0.79 0.51

A:G Ratio 3 0.83 1.14 0.91 0.84 0.88 0.12 0.59 0.40 0.35
Cholesterol (mg/dL) 53.7 b 72.7 ab 91.5 a 80.7 ab 91.5 a 7.18 <0.01 0.10 <0.01

Triglycerides (mg/dL) 15.2 13.2 15.7 17.4 17.9 2.02 0.14 0.58 0.49
GGT 4 (UI/L) 49.2 52.2 44.7 45.5 44.4 2.49 0.04 0.99 0.15
AST 5 (UI/L) 79.0 66.2 84.2 85.3 76.2 7.52 0.31 0.47 0.09
ALT 6 (UI/L) 12.4 11.5 15.3 14.8 14.4 2.07 0.23 0.23 0.31

Ruminal Parameters
pH 6.10 5.99 5.93 6.08 6.16 0.11 0.57 0.16 0.46

N-NH3 18.7 17.5 19.0 17.1 19.2 1.89 0.85 0.75 0.93
Protozoa (×106 mL−1) 8.87 b 14.3 a 4.52 c 3.00 d 0.72 e 1.47 <0.01 0.38 <0.01

1 Standard error of the mean. 2 Significance at p < 0.05 and trend between p ≤ 0.05 and p ≤ 0.10; L, linear;
Q, quadratic. 3 Albumin: Globulin ratio. 4 Gamma-glutamyl transferase enzyme. 5 Aspartate-aminotransferase
enzyme; 6 Alanine-aminotransferase enzyme. a–e Means followed by different letters differ by Tukey’s test
(p < 0.05).

Figure 1. Effect of feeding time on ruminal fluid pH of lambs fed diets containing palm kernel oil.

The addition of PKO to the lambs’ diet did not affect the time spent ruminating
(p = 0.72) or idling (p = 0.84; Table 5). A linear increasing trend was observed for time spent
feeding (p = 0.078) and number of chews per bolus (p = 0.066). The feeding efficiency of
DM (p = 0.008) and NDF (p = 0.018), as well as the rumination efficiency of DM (p < 0.001)
and NDF (p < 0.001), decreased linearly with the inclusion of PKO in the lambs’ diet.
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Table 5. Ingestive behavior of finishing lambs fed diets containing palm kernel oil (PKO).

Item
Palm Kernel Oil Levels (%DM Dietary Total)

SEM 1
p-Value 2

0 1.3 2.6 3.9 5.2 L Q Effect

Intake (g/d)

Dry matter 1117.1 a 1127.9 a 863.5 ab 789.5 b 692.4 b 65.5 <0.01 0.92 <0.01
NDF 324.9 a 371.1 a 259.5 ab 254.4 ab 209.5 b 23.5 <0.01 0.40 <0.01

Ingestive Behavior (min/day)
Feed 208 183 219 270 230 21.7 0.08 0.86 0.19

Rumination 475 461 533 483 446 31.8 0.72 0.17 0.40
Idleness 757 796 688 687 798 42.2 0.84 0.13 0.22

Chewing (Frequency or Number of Events)
No./bolus 55.2 50.0 57.7 65.3 66.5 2.81 0.07 0.59 0.31
Seg/bolus 41.4 38.9 46.1 47.9 43.8 1.69 0.28 0.56 0.43

Feed Efficiency (g/h)
Dry matter 337.8 ab 338.3 a 237.1 ab 177.9 b 247.8 ab 37.0 <0.01 0.20 0.03

NDF 112.0 ab 137.9 a 71.1 ab 57.2 b 73.4 ab 14.3 0.02 0.60 0.02
Rumination Efficiency (g/h)

Dry matter 141.7 a 148.2 a 98.3 b 99.8 b 92.6 b 8.57 <0.01 0.46 <0.01
NDF 45.4 a 48.8 a 29.2 b 32.1 b 27.7 b 2.83 <0.01 0.54 <0.01

1 Standard error of the mean. 2 Significance at p < 0.05 and trend between p ≤ 0.05 and p ≤0.10; L, linear;
Q, quadratic. a,b Means followed by different letters differ by Tukey’s test (p < 0.05).

From the means test, it was observed that feed efficiency (g/h) of DM and NDF was
similarly high with 0 (control), 1.3, 2.6, and 5.2% PKO inclusion (as DM total dietary)
compared to 3.9 PKO inclusion in the lambs’ diet. DM and NDF rumination efficiency was
similarly high with 0 (control) and 1.3% PKO inclusion compared to other treatments.

4. Discussion

The DM intake reduction observed in the present study consequently reduced the
intake of other nutrients (except for the ether extract) and the feeding (g DM/h) and
rumination (g DM/h and g NDF/h) efficiencies as PKO inclusion increased. As a result,
this lower intake consequently resulted in more time spent feeding, probably due to feed
selection behavior and lower animal performance. PKO addition resulted in lower nutrient
intake. Allen [31] suggested that this effect on intake may be related to the impact of fat
on ruminal fermentation, the acceptability of diets, the release of gut hormones, such as
cholecystokinin, that act on the satiety control center, and the effect of lipid oxidation in the
liver. However, despite this low intake and lower performance, the inclusion of PKO in the
diet indicated better utilization of the ingested feed according to the digestibility and feed
conversion data. This is probably due to the higher energy density as the inclusion of oil
increased. Furthermore, it is also interesting to note that this did not affect fiber digestibility,
even with reduced intake. According to Palmquist and Jenkins [32], high lipidic levels in
ruminant diets (>70 g/kg DM) can inhibit ruminal fermentation, negatively affect fiber
digestibility and modify the microbial population [1,33]. However, we did not observe any
effect on ruminal fermentation.

The fatty acids present in PKO (Supplementary Table S1) were related to the reduction
in the protozoan population [34]. In our study, we evaluated only the ruminal protozoan
population and observed that PKO addition in the diet of lambs up to the level of 5.2%
dry matter caused a decrease in these microorganisms without causing effects on ruminal
fermentation parameters, which may be related to the presence of lauric acid, as observed
by [8,15,35] and Matsumoto et al. [36], who reported the toxic effect of lauric acid on some
ruminal microorganisms, especially protozoa [1]. Indeed, this effect can be explained by the
fact lauric acid, a medium-chain fatty acid with characteristics similar to polyunsaturated
fatty acids, can be adsorbed to the microbial surface and incorporated into the membrane,
promoting changes in its permeability and fluidicity [13,14,37], leading to membrane
destabilization and potentially impairing microbial development. This corroborates our
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data, since we also observed lower microbial protein synthesis with the inclusion of palm
kernel oil. However, the reduction of the protozoan population may be beneficial, since
its presence in the ruminal environment is closely related to energy loss in the form of
methane [38,39].

Despite the effect on microbial protein production, the efficiency of microbial protein
production was not affected by the presence of this source of fatty acids in the diet of animals.
The efficiency of microbial protein production is closely related to the amount of microbial
protein that reaches the small intestine, and the increase in the nitrogenous compound
concentration in serum and urine indicates a reduction in production efficiency [1,40].
Thus, even with reduced intake and decreased microbial protein production, microbial
protein production efficiency remained unaffected due to increased nitrogen availability
and decreased nitrogen losses in the ruminal environment. Under conditions of low N
intake, more recycling of metabolized nitrogen in the form of urea occurs, which may lead
to a decrease in N excretion due to higher utilization by the animal [41,42], as verified in
the present study.

The inclusion of PKO affected only two blood metabolites evaluated. The plasma
concentration of cholesterol increased with the increased inclusion of palm kernel oil in
the diet. According to Mayes and Botham [43], the presence of saturated fatty acid sources,
such as PKO, in the diet promotes the formation of smaller VLDL particles, which are
used by the extrahepatic tissues more slowly when compared to larger particles, and the
decrease in absorption rates by the tissues could increase circulating cholesterol, causing
an increase in serum concentrations of this component. The GGT serum concentration
was reduced by the presence of palm kernel oil, and this enzyme is normally associated
with liver status, being particularly linked to long-term liver injury [44]. Most likely, this
increased dietary lipid content can have positive effects on the liver of lambs; however, all
the mean values observed are within the range considered normal [45,46].

5. Conclusions

The inclusion of 1.3% palm kernel oil (PKO) in a lamb diet was associated with intake,
digestibility, ingestive behavior, and growth performance in lambs similar to animals that
did not receive PKO. In contrast, the inclusion of 5.2% of PKO in total DM dietary reduced
intake, despite increasing digestibility and feed conversion and reducing fecal nitrogen
excretion. Thus, PKO, up to 1.3% DM total, can be an alternative energy source for growing
lambs. It is important to note that the use of this byproduct is recommended when it is
easily available and cost-effective.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani12040427/s1, Table S1: Fatty acid composition of palm kernel oil.
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